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Abstract

We show that if k is not a perfect square, P(4k, e) is a perfect
square for an infinite number of positive integers e. If k is a perfect
square then there are two possibilities: If the square root of k is not
an element of the matrix A on page 2, then P(4k, e) is never a perfect
square for any positive integer e. Otherwise, if the square root of k
belongs to the e-th row of matrix A then P(4k, e) is the one and only
perfect square produced by the polynomial.

Our interest in these polynomials is the fact that

P(4k, e) = (2n + 1)2 if and only if t(n) = k · t(e)

where t(n) denotes the n-th triangular number n(n+1)
2 . For example, the

condition that P(8, e) be a perfect square defines the sequence of positive
integers e such that 2 t(e) is a triangular number. This sequence is item
A053141 in EIS 1

Let P(k) be the set of all positive integers e such that P(4k, e) is a perfect
square. We begin our study to find out exactly those k for which there exists
at least one e so that P(4k, e) is a perfect square. In other words, such that
P(k) 6= ∅. We first believed that P(k) was infinite provided k was not a
perfect square and P(k2) was always empty. The latter assumption came
from the fact that the polynomial value P(16, e), for every positive integer
e, is never the square of a positive integer. Eckert’s proof: (4 · e + 1)2 <
P(16, e) < (4 · e + 3)2. Eckert’s proof works also for P(36, e) as well and
a slight modification of his proof works for P(64, e) and P(100, e). But for

1Encyclopedia of Integer Sequences; http://www.research.att.com/∼njas/sequences/
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P(144, e) the modification fails in this way:

(12e + 1)2 = 144e2 + 24e + 1 < P(144, e)

(12e + 3)2 = 144e2 + 72e + 9 < P(144, e)

(12e + 5)2 = 144e2 + 120e + 25 = P(144, e), when e = 1.

From this last example, we soon discovered, using Mathematica, that P(k2)
is a singlton set for k = 6, 10, 14, · · · ; that is for k = 4e + 2 and in fact
P(k2) = {e} when k = 4e + 2.

Further complications arise because, again by Mathematica experiments,
we find that P(k2) = {1} when k = 6, 35, 204, · · · and P(k2) = {2} when
k = 10, 99, 980, · · · and so forth.

We note that P(4k2, e) = 1 + 8k2 t(e) and thus P(4k2, e) = (2m + 1)2

is an instance of the Pell equation x2 − Dy2 = 1 where D is not a perfect
square. In fact, because 1 + 8 t(e) is always a perfect square, 8 t(e) is never
one. Therefore, P(4k2, e) = (2m + 1)2 can be rewritten as

(2m + 1)2 − 8 t(e)k2 = 1.

The Chebyshev polynomials satisfy a similar Pell equation:

Definition 1. C1(n, x) denotes the n-th Chebyshev polynomial of the first
kind and C2(n, x) denotes the n-th Chebyshev polynomial of the second kind.
We note the following Pell equation for these two types of polynomials:

C2
1(n + 1, x)− (x2 − 1) C2

2(n, x) = 1

and if we set x = 1 + 2e this equation becomes

C2
1(n + 1, 1 + 2e)− 8 t(e) C2

2(n, 1 + 2e) = 1.

Thus we have the following sequential solution to P(4k2
n, e) = (2mn+1)2:

kn = C2(n, 1 + 2e) and 2mn + 1 = C1(n + 1, 1 + 2e)

This state of affairs is represented by the following two infinite matrices
A and B:

A =



6 35 204 1189 6930 40391 . . .
10 99 980 9701 96030 950599 . . .
14 195 2716 37829 562890 7338631 . . .
18 323 5796 104005 1866294 33489287 . . .
22 483 10604 232805 5111106 112211527 . . .
26 675 17524 454949 11811150 306634951 . . .
...


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B =



17 99 577 3363 19601 114243 . . .
49 485 4801 47525 470449 4656965 . . .
97 1351 18817 262087 3650401 50843527 . . .
161 2889 51841 930249 16692641 299537289 . . .
241 5291 116161 2550251 55989361 1229215691 . . .
337 8749 227137 5896813 153090001 3974443213 . . .

...


The first row of A is the sequence of Chebyshev polynomials of the second
kind evaluated at 3, the second by 5 and so on. In general the function
C2(n, 1 + 2e) will produce the e-th row of the matrix A. Rows one and two
are respectively A001109 and A004189 in EIS. In particular, row one is the
sequence of positive integers whose square is a triangular number and row
two is the sequence of positive integers whose square is a triangular number
divided by t(2). In general the e-th row is the sequence of positive integers
whose square is a triangular number divided by t(e).

Simiarly, the e-th row of the matrix B is the sequence C1(n + 1, 1 + 2e).
An element of the e-th row and m-th column of B; i.e Bem, is the square root
of P(4 A2

em, e). The first two rows of B are, respectively, the items A001541
and A001079 in EIS.

These facts are summed up in the following theorem:

Theorem 1. P(4k2) = {e} if and only if k = Aen for some positive integer
n.

We note here that the matrices A and B are generated by Chebyshev
polynomials evaluated for only odd positive integers. This raises the question
of what happens at the even positive integers? It turns out that the Pell
equation for Chebychev polynomials

C2
1(n + 1, x)− (x2 − 1) C2

2(n, x) = 1

applies here as well leading to the equation

P(4C2
2 (n, 2e),

2e− 1
2

) = C2
1 (n + 1, 2e).

Thus, for example, we have that P(4C2
2 (n, 2), 1

2) and P(4C2
2 (n, 4), 3

2) are
perfect squares.

***
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We now turn our attention to the equation (2m + 1)2 = P(4k, e) when k is
not a perfect square. We rewrite the equation as:

(2m + 1)2 = P(4k, e) = 1 + 4k(e + e2) = 1 + k(2e + 1)2 − k

and setting x = 2m + 1 and y = 2e + 1 the equation becomes

x2 − ky2 = 1− k

which is a classic Pell equation. If (p, q) is one of the infinite number of
solutions to

x2 − ky2 = 1

then the equation

1− k = (1− k)(p2 − kq2) = (p + kq)2 − k(p + q)2

shows that (p + kq, p + q) is one of the infinite number of solutions to: 2

x2 − ky2 = 1− k.

We have proven

Theorem 2. If k is not a perfect square then P(k) is infinite.

2Weisstein, Eric W. ”Pell Equation.” From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/PellEquation.html


