IMPLEMENTING STREAMING SIMD
EXTENSIONS ON THE
PENTIUM Il PROCESSOR

THE SSE PROVIDES A RICH SET OF INSTRUCTIONS TO MEET THE

Srinivas K. Raman
Viadimir Pentkovski
Jagannath Keshava

Intel Corporation

0272-1732/00/$10.00 © 2000 IEEE

REQUIREMENTS OF DEMANDING MULTIMEDIA AND INTERNET APPLICATIONS.

IN IMPLEMENTING THE SSE, THE PENTIUM |ll DEVELOPERS MADE A NUMBER

OF DESIGN TRADE-OFFS TO SATISFY TIGHT DIE SIZE CONSTRAINTS AND

ATTAIN FREQUENCY GOALS.

eeeeee In the volume PC market, the
demand is growing for general-purpose
processors that facilitate visual and graphical
computing on the Internet. Responding to
this need, Intel developed the streaming
SIMD extensions (SSE), a set of processor
instructions designed to boost performance
of multimedia and Internet applications, and
implemented them on its Pentium III proces-
sor. The main challenge in implementing the
Pentium III was to provide enhanced support
for multimedia applications through the SSE
while adhering to aggressive die size, fre-
quency, and schedule goals.

At the heart of several visual and graphical
computing algorithms are floating-point com-
putations. The most cost-effective way to
accelerate floating-point performance in gen-
eral-purpose processors is to use the SIMD
(single-instruction, multiple-data) parallel
computation model. Therefore, a key SSE
component is the SIMD-FP (floating-point)
extensions. The processor attains high SIMD
performance by balancing execution with
increased memory bandwidth.

Several of the targeted multimedia applica-

tions have large working sets and are stream-
ing applications—that is, applications in
which data are usually read once and then dis-
carded. For such applications, the Pentium
IIls instruction set architecture provides the
programmer with primitives to manage data
caching and minimize cache pollution. The
cache control instructions enable the software
to better tolerate increasing memory latencies.
In addition to increased floating-point per-
formance for 3D and speech recognition
applications, we added new-media instruc-
tions to accelerate video encoding/decoding
and 3D-software rendering.

SSE overview
The SSE is a rich set of 70 instructions in
the categories shown in Table 1.

SIMD-FP instructions

The SIMD-FP instructions operate in par-
allel on all (packed mode) or the least signifi-
cant pairs (scalar mode) of packed data
operands. The instructions use an architec-
turally visible new state. Adding the new state
reduced implementation complexity, eased

PENTIUM Il SSE

Instruction type

Table 1. Major types of SSE instructions.

Description

SIMD-FP, scalar arithmetic, logic

Data movement, reorganization

Type conversion

State save, restore
Memory streaming

New media

Addition, subtraction, multiplication, division, comparison,
and other arithmetic functions of packed single floating-
point numbers or scalar operands

Movement of packed and scalar operands and data
reorganization of packed operands

Integer-to-floating-point and floating-point-to-integer
conversion of packed and scalar operands

Save or restore SSE processor state to or from memory

Data prefetch to specified level of cache hierarchy and
streaming store

Compute absolute difference, rounded average, min/max of
packed MMX operands

-— 80 bits

464 bits» -4——— 128 bits ——»
HPO or MMO XMMO .
' XMM3 !
T XMM4
HP7 or MM7 L XMM7
Least
(a) (b) significant

Figure 1. SSE registers in the Pentium lll: eight 64-bit MMX
technology/Intel Architecture X87-FP registers (a) and eight
new 128-bit registers (b).

[EEE MICRO

programming-model issues, allowed SIMD-
FP and MMX technology or X87 instructions
to be used concurrently, and addressed requests
from software and operating-system vendors.

Figure 1 shows the MMX technology/X87-
EP registers and the new 128-bit registers. The
SSE state is completely separate from the X87-
EP state, and a dedicated interrupt vector han-
dles numeric exceptions. A new control/status
register MXCSR masks or unmasks numeri-
cal exception handling, sets the rounding
mode, sets flush-to-zero mode, and shows sta-
tus flags. Because applications often require
both scalar and packed operation modes, we
defined explicit scalar instructions in the
SIMD-FP mode. We provided support for
two floating-point arithmetic modes: IEEE-
compliant mode, for applications that need
exact single-precision computation and porta-
bility, and flush-to-zero mode for high-per-
formance real-time applications.

The single-precision floating-point com-
parison instruction CMP is similar to the
MMX technology instruction variants and
produces a mask for each 32-bit floating-point
datum, depending on the results of the com-
parison. Programmers can use the mask with
subsequent logic operations to perform con-
ditional moves. We used an 8-bit immediate
value to encode eight basic comparison pred-
icates for the CMP instruction (programmers
can obtain another four by using these pred-
icates and swapping source operands).

The MOVMSKPS/PMOVMSKB instruc-
tions move four mask bits (each component’s
most significant bit) into an integer register
and help simplify data-dependent branching.

The MINPS/PMIN instructions benefit
the color clamping function in graphics appli-
cations. PMIN also improves the kernel per-
formance in the evaluation of a hidden
Markov model (HMM) by 33%. The HMM
function is fundamental in many speech
recognition engines and uses more than 80%
of the execution time.

Data manipulation instructions

A processor can realize SIMD computation
gains only if it can efficiently organize data
into a SIMD format. To this end, the SSE
supports the following data manipulation
instructions:

e SHUFPS/PSHUFW instructions sup-
port reorganization of data from source
operands and facilitate the realization of
common functions such as rotate or swap

MOVLPS/
MOVHPS

“ x2 XMM1 Al I x1 “ y0 I/XO '

‘ —7

XMM2| x3 | x2 x1 I x0 '

Figure 2. Using the MOVLPS/MOVHPS and SHUFPS instructions for 3D data reorganization. MOVLPS/MOVHPS moves the
low part of the 128-bit source to the low or high part of the 128-bit destination. SHUFPS specifies which 32-bit suboperands of
the two 128-bit sources should be gathered in the 128-bit destination.

of the data. In conjunction with SHUEF-
PS, the 64-bit load/store instructions
MOVLPS/MOVHPS enable efficient
data organization of vertex components.
Figure 2 shows 3D data reorganization
using these instructions.

e UNPCKHPS/UNPCKLPS interleave
floating-point data from the high/low
part of a register or memory operand in
a manner similar to the MMX technol-
ogy unpack operations.

e PINSRW/PEXTRW (Figure 3) support
scatter/gather operations for 16-bit
lookup table processing. Hardware sup-
port to efficiently handle memory access-
es that are not aligned to a 16-byte
boundary is expensive, and independent
software vendors prefer being alerted to
misalignment through an explicit fault.
Hence, all computation instructions
using a memory operand should be 16-
byte (128-bit) aligned. We provided
unaligned load/store instructions for
cases (video, for example) in which data
alignment cannot be guaranteed.

Conversion operations

The SSE supports several conversion oper-
ations, including SIMD-FP to MMX tech-
nology for packed data, and scalar-FP to
IA-32 integer (Intel Architecture 32-bit inte-
ger) for scalar data. To optimize the com-
monly used 3D geometry computations of
division, square root, and 1/square root,
which is used to calculate normalized values in
3D computations, the SSE introduces the two
approximation instructions RCP and

RSQRT. These instructions use hardware

16-bit value
in memory
PINSRW
Y
MMO X4 X3 X2 X1
Integer
register
A PEXTRW
MMO X4 X3 X2 X1

Figure 3. The PINSRW/PEXTRW instructions. PINSRW speci-
fies which MMX technology operand to insert into; PEXTRW
specifies which MMX technology operand to extract from.

lookup tables and provide 12-bit precision.
They are much faster than their IEEE full-pre-
cision counterparts (24 bits). When greater
precision is needed, using these instructions
with a single Newton-Raphson iteration
achieves almost the same level of precision
(~22 bits) at a lower latency and throughput.

Memory streaming

The Prefetch instruction allows the pro-
grammer to control data placement in the
cache hierarchy and distinguish between tem-
poral (frequently used) and nontemporal data
(read and used once before being discarded).
The SSE currently defines four possible
prefetches, with room for future extensions.
These instructions only provide a hint to the
hardware, and they do not generate exceptions
or faults. Besides multimedia applications,
programmers can use the prefetch instructions

JULY—AUGUST 2000 49

Figure 4. PSADBW (sum-of-absolute-difference) instruction sums the absolute

PENTIUM Il SSE

Source 1 X8 | X7 X6 | X6 | X4 | X3 | X2 X1
Source 2 Y8 | Y7 Y6 | Y5 Y4 | Y3 | Y2 Y1
[X1-Y1l + ... +1X8 -Y8I
'
N Sum of
Destination 0 0 0 difference

differences of packed unsigned bytes to produce a word result.

System bus (external)

A
Y

A
\i

L2 cache

Bus interface unit

efficient software-controlled coherency.

New media instructions
The PAVG instruction enables a 25% ker-
nel-level speedup of the motion compensation
portion of the MPEG-2 decode pipeline. The
MPEG-2 specification requires rounding the
results of pixel-averaging operations to the near-
est integer. The rounding computation is equiv-
alent to a 9-bit-precision operation. PAVG
facilitates the use of existing 8-bit instructions
by performing a 9-bit-accurate averaging oper-

ation.

Similarly, although the
video-encoding pipeline in-
volves many stages, the motion

FYY

estimation function takes up

* * the bulk of execution (40% to
70% at present). The sum of
| Instruction fetch unit | Instruction cache (L1) | Y absolute differences (SAD) is a
* Memory commonly used metric in
Instruction decoder rgﬁfrfi?r motion estimation. The
Simple Simple Complex PSADBW instruction (Figure
instruction instruction instruction A 4) retains byte-level execution
dectl)der dec?der Idef:oclierl parallelism working on 8 bytes
Y Y YYVYY at a time. This single instruc-
| Register alias table tion replaces about seven
Y MMX instructions in the
Retirement unit Retirement Data motion estimation inner loop,
o : : > register file cache and consequently increases
- _: Reorder buffer (instruction pool) (IA registers) unit (L1) motion estimation perfor-
Y A mance by a factor of two.
Reservation station Thacker et al.! discusses the
A * SSE in more detail, and the
X - Pentium III instruction set
Execution unit 4 .
reference manual® contains a
SII\{IJE&FP g(l)cl)r?ttlﬂgl-t Integer Integer i'\r:lt:r:f]gc% - c‘omplete list of the instruc-
FPU) || (FPU) unit unit unit uons.
{ Y Y Implementing the SSE

Internal data-results buses

| Several of the processor’s

Figure 5. Functional block diagram of the Pentium Pro (P6) processor microarchitecture.

for general-purpose computing.

target multimedia applica-
tions are inherently parallel.
The SIMD feature of the
extensions required us to
implement support for parallel computation

[EEE MICRO

The complementary store instructions
MOVNTPS (packed single-precision float-
ing-point) and MOVNTQ (packed integer)
enable the programmer to perform nonallo-
cating (streaming) stores to prevent displace-
ment of needed data in the cache. The
lightweight SFENCE instruction facilitates

with wide and fast floating-point units. In
addition, the streaming nature of the exten-
sions (and the applications they support)
necessitated high memory throughput.

Execution enhancements
Figure 5 shows the basic execution pipeline

of the Pentium Pro processor series.” In the
Pentium III, we enhanced floating-point per-
formance by widening the Pentium IT’s float-
ing-point hardware and putting the available
resources to more effective use. Figure 6 shows
the processor’s dispatch/execute units with the
Pentium III’s new and modified units shaded.

The Pentium III implements each four-wide
(128-bit) SSE computational macroinstruction
as two, two-wide (64-bit) microinstructions.
Although this implementation improves use of
SIMD-FP hardware, it limits changes to the
processor’s front end. The instruction decoder
transforms each 128-bit micro-operation into
a pair of 64-bit internal micro-operations. Both
64-bit micro-operations are data independent
with the exception of retirement control and
are otherwise similar to the machine’s existing
64-bit micro-operations. This approach avoids
the massive and intrusive changes of adding
128-bit buses, 128-bit execution units, and reg-
ister renaming in both the in-order and out-of-
order portions of the machine. Such changes
would have severely compromised our sched-
ule, die size, and frequency goals.

Since the Pentium IIT is a superscalar imple-
mentation (that is, it has multiple execution
ports), it can perform four floating-point
operations every clock cycle. With this cost-
effective approach, applications can theoreti-
cally achieve fourfold performance gains. Of
course, a future 128-bit implementation will
deliver a higher level of performance scaling.

Two-wide, single-precision floating-point units.
The Pentium III floating-point units perform
two-wide, single-precision operations, increas-
ing their computation capability twofold over
the Pentium II.

Parallel adds and multiplies. The Pentium IIT’s
multiplier and adder reside on separate ports.
Hence, the processor supports parallel dis-
patch and execution of two-wide, packed,
single-precision multiplies and two-wide,
packed, single-precision adds. The multipli-
er resides on port 0 and is a modification of
the existing floating-point multiplier. How-
ever, it performs single-precision multiplica-
tion with a throughput of two single-precision
numbers each cycle and a latency of four
cycles. (X87 single-precision processing has
a throughput of one single-precision number

RS IEU
SIMD 0
To/from Port 0
instruction ———m|
pool (ROB) Shuffle
Port 1 Recip/
recipsqrt
Port2 [™ AGU |— Load
Port3,4 [AGU |—w Store
AGU Address generation unit
EU Execution unit
FEU Floating-point EU
IEU Integer EU
JEU Jump EU
PFADD SSE adder
Recip/recipsqrt SSE reciprocal
ROB Reorder buffer
RS Reservation station
Shuffle SSE shuffle unit
SIMD 0/1 MMX EU
WIRE Miscellaneous functions

Figure 6. Enhanced dispatch/execute units in the Pentium Ill. Compared to
the Pentium Il, shaded units are new or, in the case of the FEU, expanded.

every two cycles and a latency of five cycles.)
The adder resides on port 1. It operates on
two single-precision numbers with a
throughput of one cycle and a latency of three
cycles. (The adder also executes all compare,
subtract, min/max, and convert instructions
that are a part of the SSE.) This implemen-
tation provides a peak performance of 2.4

Gflops at 600 MHz.

Hardware support of data reorganization. Bet-
ter support of data reorganization improves
floating-point hardware use by speeding data
manipulation. The new shuffle/logical unit
on port 1 executes the unpack high and low,
as well as the move and logical micro-opera-
tions. The unit performs the 128-bit shuffle
operation through three micro-operations. It

JULY—AUGUST 2000

PENTIUM Il SSE

Retirement stall

(a)

Mo

(b)

More instructions

Pipeline stall

Decode/
rename/dispatch
re instructions [Execute
-- M Retire

Figure 7. Difference in behavior of a load (a) and a prefetch (b).

[EEE MICRO

also executes packed integer shuffle, PINSRW,
and PEXTRW instructions.

Faster data copying. The IA-32 instruction set
overwrites one of the operands of an instruc-
tion. For example, if the processor is adding
operands Xand Y] the result overwrites one of
them (say, X). If subsequent computations
require X, the software should copy Xto a dif-
ferent register before the addition. This feature
increases the need for move instructions in the
code. By supporting move instructions on both
ports of the Pentium III, we increased the move
throughput and reduced the need for fine-
grained scheduling of move instructions.

Exception handling. The cost-effective support
of 128-bit processing with two 64-bit micro-
operations makes an exception possible on
either of the two independent micro-operations.
For instance, if the first micro-operation retires
while the second causes an exception, the archi-
tecturally visible 128-bit register will be updat-
ed only partially, resulting in an inconsistent
architectural machine state. To continue sup-
porting the IA-32 precise-exception-handling
feature, we implemented the Check Next
Micro-operation (CNM) mechanism. This
mechanism, which ensures architectural con-
sistency, works as follows: The first in a pair of
two micro-operations, which must be treated
as an atomic operation (and/or data type), is

marked with the CNM flow marker. The

CNM-tagged micro-operation’s retirement is
delayed until the second micro-operation is also
guaranteed to retire without exception.

Since this mechanism throttles retirement,
we also implemented the following optimiza-
tion: In the case that all exceptions are
masked, each micro-operation can retire indi-
vidually. Since multimedia software usually
masks exceptions to improve performance,
there is no loss of computational throughput
in most applications.

To further maintain high computational
throughput, the Pentium III processes excep-
tions such as overflow, divide-by-zero, and
flush-to-zero underflow in hardware rather
than using microcode. The hardware handles
these exceptions, which routinely occur dur-
ing execution of multimedia algorithms,
through modifications of the rounder/write-
back multiplexers.

Memory and bus enhancements

The typical working-set size of multimedia
applications such as 3D and video is fairly
large. The cache(s) cannot contain all the data,
which typically end up in memory. We devel-
oped the streaming instructions (such as
Prefetcch, MASKMOVQ) specifically to
address these needs. We paid special attention
to the problem of supporting prefetches,
streaming stores, byte-masked writes, and
store-fencing operations.

Prefetch support. Figure 7a shows the execu-
tion of a typical load instruction that misses
the cache, causing a pipeline stall. Instructions
subsequent to this load instruction can exe-
cute, but they cannot retire from the pipeline
until the data return from memory for the
load. These instructions accumulate in the
pipeline until resource limitations, such as
ROB (reorder buffer) entries, cause a stall.

Our prefetch implementation (Figure 7b)
addresses this bottleneck, providing greater
concurrency between execution and data
prefetch. We accomplished this by allowing
the prefetch instruction(s) to retire much ear-
lier in the pipeline. Even in the case of a cache
miss, the prefetch instruction retires almost
immediately, and no stalls occur due to mem-
ory access latency.

Write throughput enbancements. Multimedia

Dead clock

CLK | |

TRDY# :

DRDY# o4 / |

DBSY#

(@)

cl c4

cl

c2

(b)

Figure 8. Write cycle dead clock removal: Pentium Il (a); Pentium Il (b). The Pentium Il bus cluster supports a special optimiza-
tion allowing TRDY# to be sampled early. Functional requirement: TRDY# must remain active in all cases after being asserted,
until DBSY# is sampled as deasserted. Performance requirement: TRDY# must be asserted, at the latest, one clock before the

DBSY# deassertion.

applications with large working sets demand
as high a bandwidth for writes as for reads.
On the Pentium III, we enhanced the write
bandwidth and also improved the allocation
and eviction policies for write-combining
(WC) writes, which are most commonly used
by multimedia applications. We improved the
bus write bandwidth for these writes by 20%.
The processor can saturate a 100-MHz bus
with an 800-Mbyte/s write throughput. To
make this improvement, we removed the dead
cycle between back-to-back WC writes that
had existed on the Pentium II (Figure 8).
The Pentium II’s design aimed at the effi-
cient execution of scalar applications. The
average bandwidth requirements of these
applications were comparatively small—
approximatelyl00 Mbytes/s. Buffers on the
processor supported the high instantaneous
throughput needed to support a burst of miss-
es in such scalar applications. The SSE, on the
other hand, enables the execution of vector
algorithms, which demand a high average
throughput. Through simulations, we found
that to sustain the cumulative read and write
throughput of SSE applications, we could
reuse buffers that existed in the Pentium II.
Therefore, we modified buffer allocation and
eviction policies to improve their use. For
instance, while the Pentium II allows only one
buffer to act as a WC buffer, the Pentium III
allows all four buffers to support WC writes.
We also provided for fast draining (eviction)

of these buffers to reduce the average occu-
pancy time. Thus, in addition to the Pentium
IT’s eviction conditions, the Pentium III sup-
ports several new ones. For example, the
processor marks a buffer for eviction when all
bytes are written (dirty), rather than waiting
for a subsequent WC write to evict the buffer.

Cost-effective, scalable implementation

To remain within tight die size constraints
and to attain frequency goals, we made sever-
al design trade-offs on the Pentium III. A full
128-bit instruction implementation would
have had advantages—reduction of decoder
bandwidth, less pressure on scheduling and
retirement resources—and would have pro-
vided headroom for future implementations.
However, we found that even with the 64-bit
implementation, the computation bandwidch
was balanced with the available memory
bandwidth for most algorithms of interest.
Providing more computation bandwidth
without providing more memory bandwidth
would not help in most cases.

For example, during the Pentium III
processor’s existence in the market, the code
for the 3D-geometry kernel (a multimedia
application with high computation and mem-
ory-bandwidth requirements) would process
about 10 million vertices per second. Given a
standard 32-byte vertex format, the instanta-
neous bandwidth required to sustain this rate
is 640 Mbytes/s (one 32-byte read plus one

JULY—AUGUST 2000

i

PENTIUM Il SSE

[EEE MICRO

32-byte write per vertex). This requirement
closely matches the peak bandwidth of an
800-Mbyte/s system bus (with some loss in
efficiency due to bus and memory conflicts).
We expect this balance to continue as proces-
sor frequency and system frequency scale.

Using the CNM approach described earli-
er, and making several other changes, we con-
tained area growth and frequency impact
while reaching a high and balanced compu-
tation throughput. One change was the
widening of the port 1 write-back bus to 79
bits to accommodate the new floating-point
units we were adding on the port.

Another change was the merger of the X87
multiplier with the packed-FP multiplier.
This helped us attain significant die area sav-
ings while minimizing loading on the ports.
Minimizing the load on the write-back buses
was an important factor in achieving fre-
quency goals; these buses had proven to be
speed limiters in past implementations. We
also evaluated merging the X87 adder with
the FP adder, but did not follow through on
this idea for schedule considerations.

Reusing the multiplier’s Wallace tree to sup-
port the PSAD instruction was another cre-
ative way to achieve die efficiency. The PSAD
instruction, which computes the absolute dif-
ference of packed integer values, uses three
micro-operations: computation of difference,
computation of absolute value, and sum of
absolutes. To compute the sum of absolutes,
we feed the bytes that must be added into the
multiplier’s Wallace tree, which normally
sums the partial products of the multiplica-
tion. By reusing existing logic, we imple-
mented the instruction with a very small die
and frequency impact. Alternatives for exe-
cuting this instruction with reasonable per-
formance were significantly more expensive.

Implementation summary

The implementation of a 128-bit instruc-
tion set architecture based on a 64-bit data
path makes a good trade-off between die size
and performance. We implemented a four-
wide ISA through two-wide execution units.
The parallel two-wide adder and multiplier
and improved methods of using peak floating-
point performance allowed us to satisfy the
computation throughput requirements of
demanding and rich visualization applications.

Our motivation for implementing the
streaming architecture was to meet the
requirements of demanding multimedia
applications by providing concurrent data-
stream processing. From the hardware imple-
mentation standpoint, this means the
processor should support concurrent execu-
tion of the computational stream and the
memory access stream. We accomplished this
by decoupling memory prefetch from the
retirement of subsequent instructions. Decou-
pling removes the dependency between the
two streams so that each stream’s throughput
can almost reach the theoretical maximum
possible for a given task. Hence, the Pentium
III's maximum achievable throughput for a
given task equals the task’s maximum memo-
ry throughput or its maximum computation-
al throughput, whichever is lower.

Optimizing for the Pentium Ill

To ensure optimum use of the Pentium I1I’s
SSE and design features, we categorized multi-
media applications into three classes and devel-
oped programming recommendations for each.

Computation-hound applications

The increased throughput of the Pentium
I1I’s SIMD floating-point units fully supports
computation-bound applications such as AC3
audio, which require small memory band-
width but large computation throughput. The
optimization manual describes the techniques
we developed to best utilize the Pentium IIIs
computational power.”

Memory-hound applications

This category includes 3D processing and
imaging applications and several enterprise-
class applications. Their distinct feature is a
large working set. Their data usually reside in
memory, and the cache is not as effective as it
is for computation-bound applications.

A typical 3D application consists of a stack
of building blocks® (Figure 9, next page). The
3D-model database supplies the data for pro-
cessing. The scene manager places objects in
the scene, performs other manipulations of
objects, and submits objects to the 3D library.
The 3D-library dispatcher determines the type
of objects and calls for transformation or light-
ing functions to perform further processing.
The geometry engine performs the requested

processing and generates commands to the
graphics hardware. The graphics card (GC)
driver sends these commands to the hardware.

An obvious SSE application is the accelera-
tion of the geometry engine. Reprogramming
the geometry engine to use the extensions can
substantially boost performance. However, the
application will benefit much more from a sys-
temic software optimization approach. This
does not mean reprogramming every building
block in the stack. Rather, it means paying par-
ticular attention to the application’s key input
and output data streams. Programming these
streams to make balanced use of the Pentium
III’s computational (SIMD-FP) and memory
throughput (prefetch, streaming stores) capa-
bilities enables the application to achieve sig-
nificant performance gains.

For example, Figure 10a shows the traditional
approach to programming the interaction of
the geometry engine and GC driver. The geom-
etry engine processes vertices and stores com-
mands in an intermediate buffer. The driver
then reads these commands and writes them to
the graphics device—for example, to AGP
(Advanced Graphics Port) memory. As a result
of this sequential operation, the processor can-
not execute the write stream (from the driver)
concurrently with the data computation stream

3D
Q‘ / model
Transform/
light
(geometry
engine) \
* Driver
Q Store / buffer
(driver)

N

Total time

in the geometry engine. This approach leads to
underuse of SIMD-FP and memory through-
put and waste of memory throughput due to
write-back of dirty data.
Removing this bottleneck
entails removing the interme-
diate buffer and writing the
commands to AGP memory
immediately after generation
by the geometry engine, as in
Figure 10b. This change sig-
nificantly improves SIMD-FP

e T Portion
and memory pipeline utiliza- benefiting
tion and minimizes dirty from

ite-backs I . SSE
write-backs, resulting in a optimization

speedup of about 20% at the
application level.”

Multiple-working-set
applications

Some applications, such as
video encoding, work with
multiple working sets of data,
some of which fit in the cache
and some of which do not.
For these applications, it is
important to separate fre-
quently reused from infre-
quently reused data and to

3D model

Scene
manager

Y
3D-library
dispatcher

Geometry
engine

Y

Graphics
card driver

'

Rendering
on graphics card

Figure 9. Stack of building blocks in a typical
3D application.

3D
model

7

light

and sto

Q"I'ransform/

(geometry
engine)

(driver)

re

N

Dirty WB

To AGP memory

i}

-

SIMD-FP pipeline Transform/light |

Idle SIMD-FP pipeline

Memory/bus pipeline

Prefetch | Idle |Store

Memory/bus pipeline

(@

(b)

To AGP memory

Less total time

Transform/light

Prefetch Store

Figure 10. Improving 3D geometry engine throughput: conventional approach using offline driver (a); balanced approach using

online driver (b).

JULY—AUGUST 2000

[EEE MICRO

PENTIUM Il SSE

Memory
Captured
Saved 1B
Saved IB VQPOIIution
] \
L2 cache
Captured
Saved IB
Saved IB

] O

L1 cache /

(@)

Memory

Captured

Saved IB
Saved B

 Streaming L2 cache

store
Saved |

] O

Captured

Saved IB
Saved B

Prefetch

Y

L1 cache

(b)

Color data
Brightness data
[0 Down-sampled brightness data

Captured Video-capture-device data input
| Intrinsic-frame data
B Bidirectionally predicted frame data
IB Intrinsic- and bidirectionally predicted frame data

Figure 11. Encoder speedup via smart caching: uncontrolled caching (a); controlled caching (b).

build a caching strategy based on the fre-
quency of reuse. The selective caching capa-
bility that the SSE makes available to the
programmer is highly useful in building this
strategy.

The Pentium III processor’s cache control
mechanism allows the programmer to explic-
itly control the location of data in different
levels of the cache hierarchy. A typical video
encoder application processes input color and
brightness data and generates down-sampled
data to speed the matching process. The appli-
cation reuses some of these data—for exam-
ple, intrinsic-frame brightness data and
down-sampled data—much more often than
the rest of the data. The programmer can use
this reuse pattern as the basis for a caching
strategy that keeps the intrinsic-frame bright-
ness and down-sampled data in the cache and
the rest in memory.

Figure 11a illustrates the data placement
that results when the software does not take
advantage of the Pentium IIl’s selective caching
capability. The major problem here is that
cache pollution prevents the application from
accessing frequently used data in the cache,
resulting in cache misses. Figure 11b illustrates

the use of the prefetch and streaming store
instructions to follow a selective caching strat-
egy. The result is that frequently used data are
available in the cache, readily accessible for
computations, and the miss penalty is signifi-
cantly less. Following this approach on a video
encoder application enabled us to support full
MPEG-2 software real-time encoding with
audio at 30 frames per second.

Performance

Two benchmarks illustrate the Pentium III’s
target application performance. The 3D Win-
bench 99 benchmark measures system-level
3D performance, including that of the proces-
sor and the graphics subsystem. To focus
specifically on the processor’s 3D performance,
the benchmark suite includes the 3D lighting
and transform test, which measures the CPU-
intensive portion of the 3D-graphics pipeline.
On this test, the Pentium III is faster than the
Pentium IT by 62% at the same frequency (450
MHpz), and the performance scales almost lin-
early with further frequency increases.

The MultimediaMark 99 benchmark appli-
cation suite from Futuremark Corporation
tests multimedia performance of a modern PC

in a real-world environment. The suite
includes MPEG-1 video encoding, MPEG-1
video playback, image processing, and audio
effects. On this benchmark, the Pentium II1 is
faster than the Pentium IT by 29% at the same
frequency (450 MHz), and again its perfor-
mance scales almost linearly with frequency.
More details on the Pentium IIT’s perfor-
mance are available at http://developer.intel.
com/procs/perf/PentiumIIl/index.htm.

he Pentium III processor was introduced

in 1999 at frequencies up to 600 MHz.
The product has been in production for more
than a year and continues to exhibit excellent
scaling in its operation frequency—quickly
reaching and exceeding 1 GHz—and perfor-
mance characteristics. Adding the 70 new SSE
instructions resulted in only a small increase
in die size (approximately 10%), while boost-
ing operation frequency significantly beyond
that of the Pentium II. The SSE features
enable the processor to provide superior mul-
timedia performance and a rich visualization
experience for the end user. MR

Acknowledgments

This article represents the work of a large
number of people at Intel. We thank Bob Col-
well, Glenn Hinton, Dave Papworth, Ticky
Thakkar, and Tom Huff for their input dur-
ing definition and development of the prod-
uct and the SSE definition team for their
quick and diligent definition of the exten-
sions. We also thank the entire Pentium III
development team for their commitment and
effort. A special thanks to the MPG-FM
Architecture Group for making the product
development journey an enriching experience.

1. T. Thakkar et al., “The Internet Streaming
SIMD Extensions,” Intel Tech. J., Q2, 1999;
also available at http://developer.intel.com/
technology/itj/q21999/pdf/simd_ext.pdf.

2. Intel Architecture Optimization Reference
Manual, 1999, http://developer.intel.com/
design/pentiumii/manuals/245127.htm.

3. D.B. Papworth, “Tuning the Pentium Pro
Microarchitecture,” IEEE Micro, Vol. 16, No.
2, Apr. 1996, pp. 8-15.

4. Intel Architecutre Software Developer’s
Manual, Vol. 2: Instruction Set Reference

Manual, 1999, http://developer.intel.
com/design/pentiumii/manuals/243191.htm.
5. V. Pentkovski et al., "Architecture of a 3D
Software Stack for Peak Pentium Il
Processor Performance,” Intel Tech. J., Q2,
1999, http://developer.intel.com/technology/

itj/q21999/pdf/3d_stack.pdf.

Srinivas K. Raman is a project manager with
Intel’s Microprocessor Products Group, where
he has contributed to the definition and devel-
opment of Pentium II and Pentium III micro-
processor products. Earlier, he defined
processor upgrade products as an architect in
the End-User Components Division. He orig-
inally joined Intel’s ASIC core group in Chan-
dler, Ariz., where he designed and developed
modular microcontroller cores and core-based
products. Raman has an MS in electrical engi-
neering from Pennsylvania State University.

Vladimir Pentkovski is a principal engineer in
Intel’s Microprocessor Products Group. He led
the development of the Pentium III processor
architecture and was an architect on the team
that defined the streaming SIMD extensions.
Previously, he led the development of compil-
ers, software, and programming languages for
Elbrus multiprocessor computers in Russia.
Pentkovski holds an MS in computer engi-
neering from the Moscow Institute of Physics
and Technology and a PhD and Doctor of Sci-
ence from the Institute of Precise Mechanics
and Computer Technology of the Russian
Academy of Sciences. He is a member of the

IEEE Computer Society and the ACM.

Jagannath Keshava works in Intel's MPG-Fol-
som Architecture Group on the definition of
future microprocessor products. He led the
Pentium III definition and microarchitecture
validation teams. Earlier, he helped direct
design, microarchitecture, and validation in
the Pentium II and 1960 microprocessor
groups. Keshava has an MS in computer engi-
neering from the University of Texas, Austin.

Send questions and comments about this
article to Srinivas K. Raman, Intel Corp.,
EM5-162, 1900 Prairie City Rd., Folsom, CA

95630; srinivas.k.raman@intel.com.

JULY—AUGUST 2000

]

