PERSPECTIVES

Kurt Geibs

Goethe University

Facing dynamic
modifications in
distributed system
technology, middleware
developers strive to
support applications
that meet the technical
challenges of ubiquitous
computing.

Computer

Middleware
Challenges
Abead

n the first attempts to define comprehensive software platforms for dis-

tributed applications 25 years ago, researchers created basic middle-

ware elements such as remote procedure call, file service, and directory

service based on dramatic advances in hardware technology and fast

networking and workstation systems. Today, the scope of middleware
is broader, and distributed system technology occupies a prominent place in
industrial and academic research and development.

The term middleware refers to the software layer between the operating sys-
tem—including the basic communication protocols—and the distributed appli-
cations that interact via the network. This software infrastructure facilitates the
interaction among distributed software modules. I avoid defining middleware
further because its definitions share a common problem: Depending on the appli-
cation environment, opinions differ as to which components comprise middle-
ware. General middleware systems support the interaction of arbitrary
application programs; specific functions such as remote database access, group-
ware support, and workflow systems require special middleware solutions.

A middleware layer seeks primarily to hide the underlying networked envi-
ronment’s complexity by insulating applications from explicit protocol handling,
disjoint memories, data replication, network faults, and parallelism. Further, mid-
dleware masks the heterogeneity of computer architectures, operating systems,
programming languages, and networking technologies to facilitate application
programming and management. Middleware design includes quality of service
(QoS) management and information security. Different middleware systems
address these issues in different ways. The “Two Decades of Middleware Develop-
ment” sidebar gives an overview of middleware history.

New application requirements challenge the established middleware design
principles. As the first phase of middleware evolution draws to a close, we are
poised to enter a major middleware design and development phase that requires
new insights into distributed system technology.

THE CHANGING ENVIRONMENT

The communication and computing world has changed dramatically since
the era in which early middleware developers worked in environments domi-
nated by locally connected Unix workstations.

Enterprise application integration
Today, large enterprises with potentially autonomous suborganizations face

a pressing requirement—integrating a multitude of applications and data sources

0018-9162/01/$10.00 © 2001 IEEE

within an enterprise and across enterprises. Formerly
independent applications must interact to access and
share functions and data stored in heterogeneous
databases. In a large bank, hundreds of application
subsystems must be integrated. These applications
access data sources ranging from relational databases
to external information providers. Further, collabo-
rations with other enterprises, mergers, acquisitions,
and the Internet—a totally unstructured data
source—complicate the integration task. Such an envi-
ronment’s dominating attributes—large-scale config-
uration, diverse interaction models, autonomous
interacting partners, and heterogeneous data views—
may render previously appropriate middleware prin-
ciples unsuitable.

Consider a travel reservation system with airline,
hotel, and rental car services. With remote procedure
call middleware, a reservation request for a trip leads
to a chain of consecutive RPCs (synchronous, tightly
coupled procedure invocations), for example, client
— airline — hotel — rental car, and back to the client
along the same sequence in reversed order. In RPC
middleware, invocation calls a procedure; in object-
oriented programming, invocation calls an object’s
method or a subroutine. With message-passing mid-
dleware, the interaction pattern is more flexible. The
services notify the client directly about the reserva-
tion’s progress. Generally, as the number of inde-
pendent service providers increases, a chain of
consecutive RPCs becomes too rigid. This requires a
loosely coupled interaction model that adequately
reflects the autonomy of the involved parties and pro-
vides the necessary spatial and temporal decoupling.

Two Decades of Middleware Development

The autonomy and decoupling aspects’ importance
increases with the size of the distributed system—an
essential issue in an open global-service market.

Internet applications

The Internet’s enormous success and growth have
created a distributed application environment that dif-
fers from typical enterprise application scenarios.
Web-based applications must cope with a variety of
performance issues.

¢ The number of users may fluctuate and be unpre-
dictable. If users can’t get short response times,
they tend to abort requests.

e The concept of a stateful user session is harder
to maintain. Keeping state information at the
server for user sessions and user profiles may be
infeasible given the potentially large numbers of
concurrent accesses.

e The interacting parties belong to independent,
autonomous organizations that do not necessar-
ily trust each other. Further, interaction takes
place over an insecure medium.

¢ The communication infrastructure does not pro-
vide QoS guarantees.

® Because of the inherently open environment,
exchanging information can require self-describ-
ing data and agreement on common ontologies.

e New Web-based applications must interoperate
seamlessly with existing legacy applications.

For existing middleware systems, this nonexhaus-
tive list of properties poses new demands. Developers

Early examples of distributed system platforms include Athena
at MIT,' ITC/ Andrew at CMU,” ANSAware,’ and DACNOS at
IBM and the University of Karlsruhe.* The DACNOS program-
ming model, developed in the second half of the 1980s, was built
on the elegant combination of an asynchronous communication
model and a simple shared object model.* Thereafter, the indus-
try consortia’s standardization activities resulted in specifications
for standard middleware architectures, such as DCE® and Corba.
The International Organization for Standardization and its related
standardization bodies provided a Reference Model for Open Dis-
tributed Processing that failed to make a significant impact in the
middleware evolution.

In today’s information technology environments, OMG Corba
and Microsoft’s Distributed Component Object Model/ COM+°
provide widely used, general-purpose middleware architectures
for distributed object computing. Lately, middleware approaches
such as remote method invocation, Jini, JavaSpaces, and Enter-
prise JavaBeans that depend on Java’s homogeneous program-

ming language environment have received widespread attention.
Other notable middleware products include message-based sys-
tems such as IBM’s MQS.

References

1. E.Balkovich, S. Lerman, and R. Parmelee, “Computing in Higher
Education: The Athena Experience,” CACM, vol. 28, no. 11,
1985, pp. 1214-1224.

2. J.H. Morris et al., “A Distributed Personal Computing Environ-
ment,” CACM, vol. 29, no. 3, 1986, pp. 184-201.

3. A.Herbert, “Key Architectural Concepts,” ANSA Project, report
no. AO-82-02, 1987.

4. K. Geihs and U. Hollberg, “A Retroperspective on DACNOS,”
CACM, vol. 33, no. 4, 1990, pp. 439-448.

5. W. Rosenberry, D. Kenney, and G. Fisher, Understanding DCE,
O’Reilly & Associates, Sebastopol, Calif., 1992.

6. D.S. Platt, Understanding COM+, Microsoft Press, Redmond,
Wash., July 1999.

June 2001

QoS management aims to
control attributes such
as response time,
availability, data
accuracy, consistency,
and security level.

must reevaluate architectures such as
Corba and the Distributed Component
Object Model from the Internet’s perspec-
tive. Internet middleware developers must
address issues such as autonomy, decen-
tralized authority, intermittent connectiv-
ity, continual evolution, and scalability.

Quality of service

Increasing concerns about service qual-
ity have led to several proposals that advo-
cate integrating QoS management into
networking and distribution infrastruc-
tures. QoS management at the middleware
and application levels aims to control
attributes such as response time, avail-
ability, data accuracy, consistency, and
security level. From the Internet perspec-
tive, QoS concerns seem to arise automat-
ically when commercial applications meet
a best-effort communication environment. When
clients must pay for a service, they are certainly con-
cerned about QoS, and they will expect to pay less for
lower quality.

For Corba middleware, the Object Management
Group recently proposed new messaging extensions
that support QoS guarantees such as message deliv-
ery and error handling. Research projects have pro-
duced specific Corba-based platforms for handling
individual Qo$ categories such as real time® or repli-
cation and fault tolerance.” Others have addressed
generic frameworks for generating and operating cus-
tomized systems for various QoS categories.”* Al-
though integrating QoS management into middleware
architectures is essential, a procedure for doing so has
yet to be agreed upon.

Nomadic mobhility

Nomadic users in a highly mobile society enthusi-
astically take their “computing environment” every-
where—for business or private use.” New wireless
communication technologies provide connectivity for
laptop computers and personal digital assistants,
phone organizers offer the processing power, and
application-level protocols such as the wireless appli-
cation protocol—a tiny first step—allow convenient
applications to run on these devices. Undoubtedly,
these developments point toward the widely expressed
goal of accessing and processing information almost
“anywhere and any time.” Independent of our cur-
rent location, we can already use voice communica-
tion via mobile phones almost anywhere, and we have
worldwide access to personal e-mail, bank accounts,
and home-country news over the Web.

Mobility introduces a key technical challenge
because the available resources vary widely and unpre-

Computer

dictably. Communication bandwidth and error rates
change dynamically in wireless communication net-
works, a mobile system’s battery power decreases,
portable devices can be temporarily switched off or
unreachable because of network partitions, and the
monetary cost of communication can vary signifi-
cantly. Envisaging a middleware system that makes
these dynamics transparent is difficult; we anticipate
that middleware must support the applications to
explicitly accommodate these changes. Another
mobile-computing issue, location awareness, demands
that mobile-computer applications know their oper-
ating environment for context-dependent activities,
such as giving directions or employing more or less
stringent security mechanisms.

Ubiquitous computing

The ubiquitous or pervasive computing vision
assumes that future computing environments will
comprise diverse computing devices ranging from
large computers to microscopic, invisible processing
units contained in objects we use in activities of daily
life.® We may, for example, wear “personal area net-
works” powered through motion energy. These com-
puting devices will communicate with one another
over a wireless network. Mobility and dynamic recon-
figuration will be inherent features in this environ-
ment. Devices will automatically detect other devices,
forming ad hoc agglomerations spontaneously. The
middleware must withstand these dynamic challenges.

Addressing and naming the multitude of computing
devices cannot be done with current technology. Even
if we assume that the new IPv6 provides a sufficiently
large IP address space, we must question whether every
supermarket product’s smart label, for example, should
obtain its own IP address because losing such an
address with the product’s sale would be wasteful.

Although a low-end computing device possesses
limited resources, it has stringent security require-
ments. Imagine remotely monitoring and controlling
a heart monitor. Interrupted communication and secu-
rity context changes at runtime make the security
problem a critical issue.

PROGRAMMING MODELS

Since the dawn of the computer age, computer sci-
entists have sought to determine the appropriate pro-
gramming abstractions, particularly for distributed
processing and middleware.

Client-server

The client-server model has been the predominant
abstraction for building distributed software systems.
The client, which binds to a server, initiates the inter-
action, sends a request, and awaits the answer. In prin-
ciple, this is a sequential pull model with a single

logical control thread. The server stores long-term
state information related to particular client-server
associations. The term client-server is generally syn-
onymous with distributed processing. However,
increasingly important new application scenarios fit
poorly with the client-server interaction model, denot-
ing the end of this model’s dominance.

Information dissemination uses a push model in
which the information source sends information to a
group of receivers who have registered their interest in
a particular subject. Such publish/subscribe systems
do not request information explicitly. Most workflow
systems are not strictly client-server—rather, a task
moves from station to station, and each station per-
forms activities on a joint task. By receiving and
forwarding tasks, each station participates simulta-
neously as client and server. The Web provides another
example of storing long-term state information in the
client’s file system—in this case as cookies. Scalability
problems prohibit keeping the state entirely at the
server. Dealing with state in this way requires a par-
ticular programming style, which is different from
conventional client-server programming.

Lately, peer-to-peer interaction models in the
Internet have attracted a lot of attention. Their server-
less file sharing effectively makes every computer client
and server at the same time.

Thus, using the client-server model is not only inap-
propriate in many interaction scenarios, it also can be
misleading to software developers and management.
New application scenarios require another model and
more adequate terminology.

Asynchronous interaction

Independent from any particular communication
style, distributed programming models such as RPC
and the later remote object invocation (ROI) are nat-
ural companions for client-server applications. These
programming models introduce a synchronous, block-
ing interaction style in which a server object remains
passive until it receives a request, and the system
blocks the client’s execution until the server response
arrives. Distributed programming models hide distri-
bution because the transaction looks like a local pro-
cedure call, and they elegantly handle the implicit
synchronization. RPC and ROI remain middleware’s
most popular communication models.

Obvious drawbacks occur if the client uses the net-
work environment’s inherent parallelism, for exam-
ple, to send a search request in parallel to several
directory services. RPC-style communications offer
two choices: Either use multithreading and spawn a
separate thread per request or use a modified non-
blocking RPC facility. The RPC system’s inherently
sequential interaction style has received some criti-
cism.” Only lately has the need for scalability, flexi-

bility, and decoupling in large-enterprise
and Internet applications caused a strong
general trend toward asynchronous, mes-
sage-based communication in middleware
systems.

Corba’s latest release offers more asyn-
chronous invocation mechanisms than
previously available.® In addition to the

existing deferred invocation and one-way Large-scale, widely
operations, Corba messaging defines an distributed systems
mher‘ently asynchronous interaction style require decoupled,
and includes selectable QoS guarantees

such as message priorities, request time asynchronous
limits, and queuing strategies. Further, two interaction.

programming models—polling and call-
back—ensure that the client program can
deal appropriately with asynchronous re-
sponses.

For Internet applications, the simple object access
protocol defines a mechanism for transporting invo-
cations between peers using HTTP or other protocols
and XML as the interface description and encoding
language. SOAP does not prescribe any particular pro-
gramming model. SOAP implements patterns such as
request-response pairs as one-way transmissions from
a sender to a receiver. Developers designed SOAP to
correspond with the Internet’s need for a lightweight,
open, and flexible mechanism for linking arbitrary
applications and services.

Event-based middleware architectures address the
requirement for decoupled, asynchronous interaction
in large-scale, widely distributed systems. Using events
as the primary means of interaction allows asynchro-
nous, peer-to-peer notifications between objects and
provides flexible pattern-based event filtering and for-
warding options.”

Message passing accommodates peer-to-peer inter-
action because it has weaker coupling and better scal-
ability. However, in terms of programming ab-
stractions, this low-level paradigm makes program-
ming potentially more error-prone and more difficult
to test and debug for elaborate communication pat-
terns. Thus, we can view message passing as a back-
ward step in middleware evolution that illustrates the
design trade-off between degree of abstraction and
practical requirements.

Shared memory

A continuous and lively debate focuses on invoca-
tion-oriented versus shared-memory cooperation
models for distributed processing. The interaction
among the distributed shared-memory model’s re-
mote processes occurs primarily by accessing shared
information items such as shared objects or shared in-
formation spaces. The middleware provides the illu-
sion of a shared memory.

June 2001

For example, developers have widely
cited the Linda tuple space approach'® as
an elegant, flexible base for distributed
applications. Although not widely used
commercially, Linda offers an option when
distribution is an issue. Recently, JavaSpaces
revived the Linda idea. A JavaSpace is a
shared space containing Java objects that
supports an associative, Linda-style object
matching.

Other projects like PerDiS!'! have shown
that the shared-memory paradigm can be
attractive for data-intensive cooperative

Large-scale applications. However, in its pure form, it
heterogeneous systems lacks responsiveness. Because objects are
with many autonomous passive, asynchronous events require addi-

entities and parallel
activities require new
programming models.

tional event-notification mechanisms.

The distributed shared-memory para-
digm raises interesting middleware re-
search questions in mobile-computing
environments in which temporary discon-
nections occur. For example, to control
access to replicate shared data, conven-
tional pessimistic locking and concurrency control
mechanisms restrict mobile systems too tightly.
Depending on the application scenario, data usage
pattern, and networking situation, the middleware
should adopt optimistic concurrency control schemes
to provide higher-degree data availability and appli-
cation flexibility. An optimistic approach accepts
updates on replicated shared objects provisionally and
stores them in an update log. When the disconnected
system reconnects, reconciliation takes place based on
the update logs."?

Mobile code and mobile agents

Mobile code and mobile agents enhance the flexi-
bility and adaptability of distributed applications at
runtime. They also provide performance advantages
in situations in which shipping small amounts of code
to the nodes where the data originates is advisable
instead of wasting transmission bandwidth for trans-
ferring large data quantities with low information con-
tent. Sending code rather than an invocation introduces
a novel programming paradigm that is more general
than the conventional request-response or distributed
shared-memory models. The interaction of auton-
omous agents cannot be classified generally as client-
server or publish/subscribe. Agents are peer entities
that interact at their own will. Mobile agents not only
need a new programming model but also require new
typing concepts'>!* and security provisions. "

Mobile agent-based middleware suffers from the
obvious shortcoming of requiring a homogeneous pro-
gramming language environment, which creates a
rather strong assumption in an inherently heteroge-

Computer

neous network environment. This trade-off between
generality in the programming model and homo-
geneity in the programming language requires further
exploration.

The inherent diversity of interaction styles in large-
scale heterogeneous systems with many autonomous
entities and parallel activities requires new program-
ming models. Whether we will live with a multitude
of different models or develop a unified middleware
programming model that supports decoupled, flexi-
ble, and scalable interaction remains to be seen.

ARCHITEGTURE

In light of new technological advances, established
middleware architecture elements merit reconsideration.

Distribution transparency

Creating transparency to hide the complexity and
isolate applications from the underlying hardware and
software details forms a cornerstone of all system soft-
ware, especially for middleware systems. Conse-
quently, the definition and discussion of distribution
transparencies played a major role in the International
Organization for Standardization’s Reference Model
for Open Distributed Processing. Distribution trans-
parency is beneficial and necessary for programming
distributed applications. However, distribution trans-
parency cannot be the foremost goal in nomadic com-
puting and context-aware applications.'® For ex-
ample, mobile users want to know about the security
guarantees their current environment provides.

Context-aware applications need selective trans-
parency features. The open research questions involve
how to expose network imperfections at the right level
of granularity and abstraction and how applications
on top of the middleware deal with a selectable degree
of transparency.

Increasing awareness of QoS requires making cer-
tain effects of distribution explicit. For example, cus-
tomers who are charged for a certain level of
communication service want to know about band-
width variations or bad transmission quality because
they expect to pay less for lower quality. Complete
distribution transparency is inappropriate when com-
puting applications must adapt to fluctuations in
resource supply such as variations in communication
bandwidth and fading battery power. However, we do
not currently have middleware facilities to control the
degree of transparency.

Layering

Since the implementation of the Open Systems Inter-
connection ISO 7498 standard, layering has served as
the structuring principle for communication proto-
cols. OST’s seven-layered architecture supports sepa-
ration of concerns, modularity, extensibility, flexibility,

and so forth. Although later proposals did not always
agree with some OSI layers—the need for a separate
session layer is not obvious in Internet applications,
for example—new application requirements make it
necessary to renounce the strict layering principle in
middleware systems and support a direct interaction
between nonadjacent layers. This development corre-
sponds with the need for selective distribution trans-
parencies. Several issues are of concern:

e Context-aware applications may need the IP
address or the geographical location to make
location-dependent decisions.

examples of how QoS frameworks can
help build customized platforms using
enhanced interface specifications and addi-
tional QoS management services. Al-
though developers recognize that frame-
works are the main architectural technique
for supporting flexibility and reusability,
few in the middleware arena use them.
Moreover, frameworks typically exploit
software design patterns. We need more
research to find the specific patterns that
middleware frameworks require and to
explore the adaptability and flexibility lim-

e The application may need authentication infor- its of reflexive middleware architectures.'® Future computing
mation, such as an encryption key, in the secure Finally, we must understand how to . . :
\ A . . environments will require
sockets layer protocol’s transport layer for access- introduce composability and customiza-
control decisions, whereas the middleware itself tion into middleware systems in response software systems that
is not interested in this information. to QoS and ubiquitous computing de- support customization
e An application may require a customized trans- mands. Rather than relinquish our estab- and adaptation

port protocol to perform a multimedia transfer
that directly influences a nonadjacent layer’s con-
figuration.

Middleware could offer appropriate programming
interface elements to the applications and pass infor-
mation to and from the lower layers. Why should the
middleware bother with handling information of no
concern to itself just because of the layering princi-
ple? The conventional layering principle can also be
violated in the other direction, bottom-up: The mid-
dleware may need runtime information via a call
back to the applications to request handling deci-
sions that relate, for example, to the caller’s security
credentials.

Monolithic architectures

To date, middleware products have been monolithic
software systems that do not support customization
and adaptation. Such products cannot satisfy the
needs of future computing environments. Mobile
ubiquitous computing devices have few resources
compared with their stationary counterparts. Thus,
current middleware platforms such as Corba or
COM+ are too bloated to be loaded into a resource-
scarce mobile device. A Corba platform must be
stripped down to fit its basic client functionality into
a PalmPilot PDA with 2-MByte memory. Developers
have criticized the inefficiency of existing object mid-
dleware in application scenarios involving conven-
tional desktop computers. Occasionally, customized,
low-overhead-interaction support mechanisms have
replaced this middleware.'”

Likewise, QoS management demands customizable
middleware architectures. Diverse application require-
ments make it impossible to construct a ready-made
platform for all QoS needs. MAQS® and QuO* are

lished architectural design principles, we
must accept the challenge of amplifying
these principles to accommodate new re-
quirements.

DYNAMIC CONFIGURATION

Dynamic changes in system configuration and oper-
ating context at runtime will be inherent characteris-
tics of future computing environments. Middleware
design and development must readily meet these chal-
lenges.

Disconnected operation

Mobile computing invalidates some implicit
assumptions in current middleware platforms. For
example, the Corba interoperability protocol assumes
a permanent transport connection between the client
and the object implementation. In contrast, PDAs
automatically switch themselves off to save battery
power. This requires buffering replies to client requests
on the server side if the client is unreachable. How
long should the server wait and keep the interaction’s
state? Can we view these situations as faults and han-
dle them by applying conventional fault-tolerance
mechanisms? Reconnection also poses a severe secu-
rity problem, requiring mutual reauthentication
within a client-server association’s lifetime.

On the client side, receiving and reacting correctly
to incoming replies requires facilities that uniquely
identify and restore the state of earlier server associ-
ations. Web applications encode such state informa-
tion in the URL or store it in cookies at the client’s
end, but Corba middleware, for example, currently
cannot handle this operation in a systematic, archi-
tected way. Traditionally, we assumed that applica-
tion entities would be permanently available during
some application association. In modern networking

June 2001

The middleware must
monitor the resource
supply and demand,
compute adaptation
decisions, and notify
applications if they
require adaptation.

environments, this assumption is no longer
valid, although message-based, store-and-
forward communication mechanisms offer
one solution. The upcoming minimum
Corba specification, part of Corba 3.0, will
include enhanced messaging facilities,
although whether this provides a viable
practical solution remains to be seen.

Adaptive applications

Mobile-computing applications must
cope with a dynamically varying resource
supply. The underlying middleware can-
not completely mask these fluctuations. A
similar situation arises for QoS-aware
applications in a best-effort networking
environment such as the Internet. In the
absence of resource guarantees, applica-
tions must adapt to the prevailing operat-
ing conditions. For example, if communi-
cation bandwidth becomes scarce, a tourist
information application on a mobile com-
puter with a wireless connection can dis-
play text and low-resolution pictures instead of video
clips. Thus, the middleware must monitor the resource
supply and demand, compute adaptation decisions,
and notify applications if they require adaptation.

Although researchers have studied the viability
of application adaptation in mobile systems, strate-
gies for making adaptation decisions also require
exploration. Currently, work is under way on a
model that captures the essence of these decisions
and allows comparison of different strategy per-
formances.

Ad hoc organization

Ubiquitous computing requires enormously diverse
computing devices, many of which are mobile and use
wireless communications. Based on lower-layer dis-
covery protocols, these devices automatically detect
others and spontaneously form ad hoc agglomera-
tions. Existing middleware platforms do not scale to
the device diversity, population size, and runtime
dynamics that ubiquitous computing requires. Static
configuration assumptions about what infrastructure
services are accessible in a computing environment are
no longer sufficient. Self-organization, extensive infor-
mation caching, and delegation of activities are impor-
tant requirements.

The Java-based Jini system appears to anticipate
these requirements. Jini defines a middleware infra-
structure for spontaneous networking in which Java
objects can discover, join, and interact with commu-
nities of objects. Whether the Jini approach will scale
to the requirements of ubiquitous computing, how-
ever, remains unclear.

Computer

Intermediaries

The diversity and heterogeneity of distributed sys-
tems increase the need for intermediaries. For example,
a low-end device may be incapable of hosting the com-
plete middleware software in a ubiquitous computing
environment. Therefore, a low-end device requires sup-
port from an intermediary on a more powerful com-
puter. Then the intermediary translates and forwards
external communication requests to the low-end device
and manages agglomerations of low-end devices.
Connecting heterogeneous middleware domains—for
example, bridging COM+ to a message-queuing sys-
tem—or separating authoritative domains—for exam-
ple, to protect a corporate network with a firewall—
also requires an intermediary. Developers also use inter-
mediaries to transform ordinary information streams
to enhance the information’s quality.'’

Developers have provided pragmatic solutions for
various intermediary functions, but comprehensive
general principles are missing. We must address not
only intermediaries’ functionality, but also the inte-
gration of issues like security, transactions, conversion
overhead, and reliability. For example, using an inter-
mediary to act as a representative for other devices
requires sound security concepts for delegating
authority. Although a few individual solutions are
available such as the largely unexplored Corba secu-
rity specification for delegation, how mature these
concepts are remains unclear.

iddleware research and development has

reached the end of its first major phase, and

new requirements are arising that are so fun-
damentally different that they will lead to new-gen-
eration middleware systems. This transition poses a
number of questions:

e What is the most appropriate programming
model for the diverse application scenarios?

¢ Does a single distributed programming model fit
all applications?

e Can we build customizable, configurable, and
flexible middleware frameworks for inherently
heterogeneous environments?

¢ What middleware features and infrastructure ser-
vices will the dynamics and ad hoc nature of
mobile-ubiquitous computing require?

These issues are the top challenges for future mid-
dleware research, generating open research problems
that require building applications atop new middle-
ware prototypes. Therefore, we have no reason to
resign ourselves to believing Pike’s provocative state-
ment that “systems software research is irrelevant.”*°
Many exciting and challenging questions await reso-
lution. %*

Acknowledgments

I thank Anne-Marie Kermarrec, Ant Rowstron, and
Marc Shapiro for their technical contributions and
constructive comments.

References

1. D.C. Schmidt, D.L. Levine, and S. Mungee, “The Design
of the TAO Real-Time Object Request Broker,” Com-
puter Comm.]., vol. 21, no. 4, 1998, pp. 294-324.

2. S. Maffeis, “The Object Group Design Pattern,” Proc.
Conf. Object-Oriented Technologies and Systems
(COOTS 96), Usenix, Berkeley, Calif., 1996, pp. 294-303.

3. C. Becker and K. Geihs, “Generic QoS Support for
Corba,” Proc. Int’l Symp. Computers and Communi-
cation (ISCC 2000), IEEE CS Press, Los Alamitos, Calif.,
2000, pp. 60-65.

4. R. Vanegas et al., “QuO’s Runtime Support for Quality
of Service in Distributed Objects,” Proc. IFIP Int’l Conf.
Distributed System Platforms and Open Distributed Pro-
cessing, Springer-Verlag, New York, 1998, pp. 207-223.

5. L.Kleinrock, “Nomadic Computing,” Proc. [FIP/ICCC
Int’l Conf. Information Network and Data Communi-
cation, Chapman & Hall, London, 1996, pp. 223-233.

6. M. Weiser, “Some Computer Science Issues in Ubiqui-
tous Computing,” CACM, July 1993, pp. 75-84.

7. A.S. Tanenbaum and R. Van Renesse, “A Critique of the
Remote Procedure Call Paradigm,” Proc. European
Teleinformatics Conf. (EUTECO 88), North-Holland,
Amsterdam, 1988, pp. 775-783.

8. J. Siegel, “An Overview of Corba 3,” Proc. 2nd IFIP
Int’l Working Conf. Distributed Applications and Inter-
operable Systems (DAIS 99), Kluwer, Boston, 1999, pp.
119-132.

9. J. Bacon et al., “Generic Support for Distributed Appli-
cations,” Computer, Mar. 2000, pp. 68-76.

10. N. Carriero and D. Gelernter, “Linda in Context,”
CACM, Apr. 1989, pp. 444-458.

11. P. Ferreira et al., “PerDiS: Design, Implementation, and
Use of a Persistent Distributed Store,” Recent Advances
in Distributed Systems, Springer-Verlag, New York,
2000, pp. 427-452.

12. M. Shapiro, A. Rowstron, and A-M. Kermarrec, “Appli-
cation-Independent Reconciliation for Nomadic Appli-
cations,” Proc. 9th ACM SIGOPS European Workshop,
ACM Press, New York, 2000, pp. 1-6.

13. N. Minar et al., “Hive: Distributed Agents for Net-
working Things,” Proc. 1st Int’l Symp. Agent Systems
and Applications and 3rd Int’l Symp. Mobile Agents,
IEEE CS Press, Los Alamitos, Calif., 1999, pp. 118-129.

14. M. Zapf and K. Geihs, “What Type Is It? A Type Sys-
tem for Mobile Agents,” Proc. 15th European Meeting
on Cybernetics and Systems Research (EMCSR 2000),
Austrian Soc. for Cybernetic Studies, Vienna, 2000, pp.
585-590.

15. M. Zapf, H. Miiller, and K. Geihs, “Security Require-
ments for Mobile Agents in Electronic Markets,” Proc.

Int’l Working Conf. Trends in Distributed Systems for
Electronic Commerce (TrEC 98), Lecture Notes in Com-
puter Science, Springer-Verlag, New York, 1998, pp.
205-214.

16. P.J. Brown,].D. Bovey, and X. Chen, “Context-Aware
Applications: From the Laboratory to the Marketplace,”
IEEE Personal Comm., vol. 4, no. 5, 1997, pp. 58-64.

17. T. Weis and K. Geihs, “Components on the Desktop,”
Proc. Technology of Object-Oriented Languages and
Systems (TOOLS Europe 2000), IEEE CS Press, Los
Alamitos, Calif., 2000, pp. 250-261.

18. F. Costa, G. Blair, and G. Coulson, “Experiments with
Reflective Middleware,” Proc. ECOOP 98 Workshop
Reflective Object-Oriented Programming and Systems,
Springer-Verlag, New York, 1998, pp. 390-393.

19. R. Barrett and P. Maglio, “Intermediaries: An Approach
to Manipulating Information Streams,” IBM Systems
J., vol. 38, no. 4, 1999, pp. 629-641.

20. R. Pike, “Systems Software Research Is Irrelevant,”
http://cm.bell-labs.com/who/rob/utah2000.ps.

Kurt Geibs is a professor of computer science at
Goethe University, Frankfurt, Germany. His research
interests include distributed systems, operating sys-
tems, networks, and software technology. Current
projects focus on quality-of-service management in
Corba, component-based software, and mobile
agents. Geibs received a PhD in computer science
from the Technical University in Aachen, Germany.
Contact him at geihs@informatik.uni-frankfurt.de.

HEACH
HIGHER

Advancing in the IEEE Computer Society
can elevate your standing in the profession.

Application to Senior-grade membership recognizes

v/ ten years or more of professional expertise

Nomination to Fellow-grade membership recognizes

v/ exemplary accomplishments in
computer engineering

GIVE YOUR CAREER A BOOST
UPGRADE YOUR MEMBERSHIP
computer.org/join/grades.htm

