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Abstract

The use of frequent itemsets has been limited by the high computational cost as
well as the large number of resulting itemsets. In many real-world scenarios, however,
it is often sufficient to mine a small representative subset of frequent itemsets with
low computational cost. To that end, in this paper, we define a new problem of
finding the frequent itemsets with a maximum length and present a novel algorithm
to solve this problem. Indeed, maximum length frequent itemsets can be efficiently
identified in very large data sets and are useful in many application domains. Our
algorithm generates the maximum length frequent itemsets by adapting a pattern
fragment growth methodology based on the FP-tree structure. Also, a number of
optimization techniques have been exploited to prune the search space. Finally,
extensive experiments on real-world data sets validate the proposed algorithm.
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itemsets, FP-tree, Data mining

1 Introduction

In 1993, Agrawal et al. [2] first proposed the problem of finding frequent item-
sets in their association rule mining model. Indeed, finding frequent itemsets
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plays an important role in the field of data mining. Frequent itemsets are es-
sential for many data mining problems, such as the discovery of association
rules [3,12], data correlations [20,21], and sequential patterns [18,23].

The frequent itemset mining problem can be formally stated as follows: Let I
be a set of distinct items. Each transaction T in database D is a subset of I.
We call X ⊆ I an itemset. An itemset with k items is called a k-itemset. The
support of X, denoted by supp(X), is the number of transactions containing
X. If supp(X) is no less than a user-specified minimum support ε, X is called
a frequent itemset. Let FI denote the set of all frequent itemsets. X is closed
if it has no proper superset with the same support. Let FCI denote the set
of all frequent closed itemsets [16,25]. X is called a maximal frequent itemset
if it has no proper superset that is frequent. The set of all maximal frequent
itemsets is denoted by MFI [1,14,4,6,9,10]. X is a maximum length frequent
itemset if X contains a maximum number of items in FI. Formally, it can be
defined as follows: Let D be a transaction database over a set of distinct items
I. Given a user-specified minimum support ε, an itemset X is a maximum
length frequent itemset if supp(X) ≥ ε and for all itemset Y , if supp(Y ) ≥ ε
then |X| ≥ |Y |, where |Y | and |X| denote the number of items contained in
Y and X respectively.

Let LFI denote the set of all maximum length frequent itemsets. Apparently,
any maximum length frequent itemset is a maximal frequent itemset. Thus we
have the following relationship: LFI ⊆ MFI ⊆ FCI ⊆ FI.

In many real world applications, the use of FI, MFI, and FCI has been lim-
ited by the high computational cost as well as the large number of resulting
itemsets. Instead, it is often necessary to mine a small representative sub-
set of frequent itemsets, such as LFI. Let us consider a case where a travel
company is to propose a new tour package to some candidate places. The com-
pany conducts a survey of its customers to find their preferences among these
places, i.e., which places they want to visit. Suppose that the company wants
the package to satisfy the following requirements: a) the number of customers
taking this tour should be no less than a certain number, for instance, 20
(quantity requirement), and b) the profit per customer is maximized (quality
requirement). Here, we assume that the profit per customer is proportional to
the number of places in the package. In addition, a customer is assumed to
be low cost awareness, i.e., he/she will not pay for the package if the package
contains the places he/she does not want to visit. This problem can be solved
by finding LFI from the survey data having support no less than 20. Places in
a maximum length frequent itemset form a desired package.

There exist many analogous problems. For instance, an insurance company
may want to design an insurance package to attract a sufficient number of
customers and maximize the number of insured subjects. A supermarket may
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want to design a binding sales plan to maximize the number of items pur-
chased together by a sufficient number of customers. Similar problems also
occur in web access pattern mining, where access sessions (webpages clicked)
are modeled as transactions and webpages as items. Here maximum length
patterns refer to those maximum number of pages a user visits in the search
for the products. By studying these patterns, e.g., how many pages and which
kind of the last page a user is willing to try before running out of patience and
leaving the website, the company may better organize its website to facilitate
the online service to its potential customers.

Another application of LFI is transaction clustering. A frequent itemset rep-
resents something common to many transactions in a cluster. Therefore, it
is a natural way to use frequent itemsets for clustering. In [5,8] documents
covering the same frequent itemset were put into the same cluster. Note that
LFI is a special kind of frequent itemsets with maximum length. Intuitively,
transactions sharing more items have a larger likelihood of belonging to the
same cluster and hence it is reasonable to use LFI for transaction clustering.

Indeed, in this paper, we address the problem of mining maximum length
frequent patterns (LFI). LFI can be efficiently identified even in very large
databases because the number of maximum length frequent itemsets is usu-
ally very small, and may even be 1. In practice, we have observed that the
FP-growth method [11] has advantages in mining long frequent itemsets. Since
our goal is to find maximum length frequent itemset, those shorter ones are not
of interest and need not be generated. Therefore, we developed two algorithms:
LFIMiner and LFIMiner ALL by adapting a pattern fragment growth method-
ology based on the FP-tree structure. For these two algorithms, LFIMiner
was designed for mining only one maximum length frequent itemset and
LFIMiner ALL was designed for mining all maximum length frequent item-
sets. A number of optimization techniques have also been exploited in our
algorithms to prune the search space. As demonstrate by our experimental
results on real-world data sets, LFIMiner and LFIMiner ALL are computa-
tionally efficient and are scalable with respect to the number of transactions.

Overview. The remainder of the paper is organized as follows. Section 2
introduces related work on frequent itemset mining. In Section 3, we first give
a brief introduction on the FP-tree structure and the FP-growth algorithm,
and then describe some variants of the FPMAX algorithm [10]. The LFIMiner
and LFIMiner ALL algorithms are presented at the end of this section. The
experimental results are reported in Section 4, which also includes an extensive
study of various components of LFIMiner and a comparison with the variants
of MAFIA [6] and FPMAX on real-world datasets. Section 5 concludes this
paper with a summary and a discussion of future work.
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Fig. 1. Subset lattice over four items for the given order of 1, 2, 3, 4.

2 Preliminaries and related work

In this section, we first describe the conceptual framework of the item subset
lattice on which many algorithms are based. Then we review some related
research on frequent itemset mining.

2.1 Preliminaries

Most of the algorithms for mining frequent itemsets can be described using the
item subset lattice framework [1,4,6,9]. This lattice shows how sets of items are
completely enumerated in a search space. Assume there is a total lexicographic
ordering ≤L of all items in the database. This ordering is used to enumerate
the item subset lattice (search space). A particular ordering affects the item
relationships in the lattice but not its completeness. Fig. 1 shows a sample
of a complete subset lattice for four items. The lattice can be traversed in a
breadth-first way, a depth-first way or some other way according to a heuristic.
The problem of finding the frequent itemsets in the database can be viewed
as finding a cut through this lattice so that all those tree nodes above the cut
are frequent itemsets, while all those below are infrequent.

2.2 Related work

The Apriori algorithm [2,3] is a classic algorithm for finding frequent itemsets
and most of algorithms are its variants. It uses frequent itemsets at level k to
explore those at level k + 1, which needs one scan of the database. Besides,
it employs the heuristic that all nonempty subsets of a frequent itemset must
also be frequent, which prunes unpromising candidates to narrow down the
search space.
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Apriori is based on the horizontal format of the database representation, in
which a transaction is represented as an item list. An alternative way is to
represent a database in vertical format, i.e., each item is associated with a set
of transaction identifiers (TIDs) that include the item. As a representative in
this group, VIPER [17] uses a vertical bit-vector with compression to store
intermediate data during execution and performs counting with a vertical
TID-list approach.

FP-growth [11] is a fundamentally different algorithm from the Apriori-like
algorithms. The efficiency of Apriori-like algorithms suffers from the exponen-
tial enumeration of candidate itemsets and repeated database scans at each
level for support check. To diminish these weaknesses, the FP-growth algo-
rithm finds frequent itemsets without candidate set generation and records the
database into a compact FP-tree structure to avoid repeated database scans.
Due to the savings of storing the database in main memory, the FP-growth
algorithm achieves great performance gains against Apriori-like algorithms.
However, it is not scalable to very large databases, due to the requirement
that the FP-trees fit in the main memory.

Representative breadth-first algorithms for mining MFI include Pincer-Search
[14] and Max-Miner [4]. The former combines both the bottom-up and top-
down searches. The latter uses lookahead to prune branches from the itemset
lattice by quickly identifying long frequent itemsets.

The DepthProject algorithm [1] searches the itemset lattice in a depth-first
manner to find MFI. To reduce search space, it also uses dynamic reordering of
children nodes, superset pruning, an improved counting method and a projec-
tion mechanism. MAFIA [6] uses a vertical format to represent the database,
which allows efficient support counting and is said to enhance the effect of
lookahead pruning in general. Unlike DepthProject and MAFIA, GenMax [9]
returns the exact MFI. It utilizes a backtracking search for efficiently enumer-
ating all maximal patterns. Besides, it represents the database in a vertical
TIDset format like Viper and uses diffset [24] propagation to perform fast
support counting. FPMAX [10], as an extension of the FP-growth algorithm,
utilizes a novel Maximal Frequent Itemset tree (MFI-tree) structure to keep
track of all maximal frequent itemsets. Experimental results showed that FP-
MAX has comparable performance with MAFIA and GenMax.

3 Mining LFI with FP-tree

In this section, we first introduce the FP-tree structure and the FP-growth
algorithm, which are the bases of our algorithm. Then we describe our variant
of the FPMAX algorithm. After discussing the methods to prune the search
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space, we present the LFIMiner algorithm, which integrates these methods to
realize performance gains. The LFIMiner ALL algorithm is presented at the
end of this section.

3.1 FP-tree and the FP-growth algorithm

FP-tree is a compact data structure used by FP-growth to store the infor-
mation about frequent itemsets in a database. The frequent items of each
transaction are inserted into the tree in their frequency descending order.
Compression is achieved by building the tree in such a way that overlapping
transactions are represented by sharing common prefixes of the corresponding
branches. A header table is associated with the FP-tree for facilitating tree
traversal. Items are sorted in the header table in frequency descending order.
Each row in the header table represents a frequent item, containing a head of
node-link that links all the corresponding nodes in the tree.

Unlike Apriori-like algorithms which need several database scans, the FP-
growth algorithm needs only two database scans. The first scan collects the set
of frequent items. The second scan constructs the initial FP-tree, which records
the information of the original database. For the example database in Fig. 2, af-
ter the first scan, the set of frequent items, {(b : 6), (c : 6), (a : 4), (e : 4), (d : 2)}
(sorted in frequency descending order, minimum support is 2), is derived. In
the second scan, each transaction is inserted into the tree. The scan of the
first two transactions extracts their frequent items and constructs the first
two branches of the tree: {(c : 1), (e : 1)} and {(b : 1), (c : 1), (a : 1), (e : 1)}.
For the third transaction, since its frequent item list {b, c, e, d} shares a com-
mon prefix {b, c} with the existing path {b, c, a, e}, the count of each node
along the prefix is incremented by 1, and one new node (e : 1) is created and
linked as a child of node (c : 2) and another new node (d : 1) is created and
linked as a child of node (e : 1). Fig. 2 shows the initial FP-tree constructed
after scanning all the transactions.

The FP-growth algorithm is based on the following principle: Let X and Y
be two itemsets in database D, B be the set of transactions in D containing
X. Then the support of X ∪ Y in D is equivalent to the support of Y in B.
B is called the conditional pattern base of X. Given an item in the header
table, the FP-growth algorithm constructs a new FP-tree according to its
conditional pattern base, and mines this FP-tree recursively. Let us examine
the mining process based on the FP-tree shown in Fig. 2. We start from the
bottom of the header table. For item d, it derives a frequent itemset (d : 2)
and two paths in the FP-tree: {(b : 1), (c : 1), (e : 1)} and {(c : 1), (a : 1)},
which constitute d’s conditional pattern base. An FP-tree constructed from
this conditional pattern base, called d’s conditional FP-tree, has only one
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Fig. 2. FP-tree for the example database.

branch {(c : 2)}. Therefore only one frequent itemset (cd : 2) is derived. The
exploration for frequent itemsets associated with item d is terminated. Then
one can continue to explore item e. For more information about the FP-tree
and FP-growth algorithm, readers are referred to [11].

3.2 The FPMAX LO algorithm

Based on the FP-growth algorithm, one can find all frequent itemsets. In order
to solve our problem, however, some modifications are required to guarantee
that the frequent itemset generated by our algorithm has the maximum length.
We constructed a simple algorithm named FPMAX LO (Longest Only) by
extending either the FP-growth or the FPMAX algorithm. FPMAX LO is
shown in Fig. 3. Like FP-growth, FPMAX LO is recursive. The initial FP-tree
constructed from the two scans of the database is passed on as the parameter
of the first call of the algorithm. The item list Head, initialized to be empty,
contains the items whose conditional FP-tree will be constructed from its
conditional pattern base and will then be mined recursively. Before recursive
call to FPMAX LO, we already know that the combination set of Head and
the items in the FP-tree is longer than the longest frequent itemset found so
far (guaranteed by line (7)). Thus if there is only one single path in the FP-
tree, the items in this path, together with Head, constitute a longer frequent
itemset. If the FP-tree is not a single-path tree, then for each item in the header
table, append the item to Head, construct the conditional pattern base of the
new Head, and check in line (7) whether the combination set of Head with all
frequent items Tail in the conditional pattern base is longer than the longest
frequent itemset so far. If yes, we construct the conditional FP-tree based on
the conditional pattern base and explore this tree recursively.
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Fig. 3. The FPMAX LO algorithm.

3.3 Pruning the search space

FPMAX LO runs without any pruning. To realize better performance, we
added pruning. It has three main operations: construct the conditional pattern
base, find all frequent items in the conditional pattern base, and construct the
conditional FP-tree. For the first operation, conditional transactions that are
not long enough cannot be useful for generating a longer frequent itemset
and should be removed. For the second operation, conditional transactions
without enough frequent items cannot contribute to forming a longer frequent
itemset and should be trimmed. For the last one, we can reorder items by
descending order of frequency in each FP-tree, which often makes the FP-
trees more compact and thus prunes the search space. We will elaborate on
each of these pruning strategies in the following paragraphs.

3.3.1 Conditional pattern base pruning

Conditional Pattern base Pruning (CPP), as presented in Fig. 5, is applied dur-
ing construction of the conditional pattern base. It prunes conditional trans-
actions, and at the same time tries to find a frequent itemset longer than
the longest frequent itemset found so far (referred to as lf i below). Straight-
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Fig. 4. An example of the conditional pattern base pruning.

Fig. 5. Construction of conditional pattern base.

forwardly, any conditional transaction t belonging to the conditional pattern
base should satisfy Head∪ t is longer than lf i; otherwise it should be pruned
because it cannot contribute to forming a longer itemset. This strategy has
been discussed in [19]. For instance, in Fig. 4, suppose that the length of lf i
is 3 and Head is {e, d}. We are currently looking for a frequent itemset longer
than 3. With FPMAX LO, two conditional transactions {(a : 2), (b : 2)} and
{(a : 1)} constitute the conditional pattern base of Head. However, the con-
ditional transaction {(a : 1)} cannot contribute to forming a frequent itemset
longer than 3 because the length of {e, d} ∪ {a} is only 3. CPP cuts such
not-long-enough conditional transactions as {(a : 1)}. If a conditional trans-
action t has a sufficient length and, moreover, t is frequent, a longer frequent
itemset Head∪ t is discovered. Let us examine Fig. 4 again and suppose that
the minimum support is 2. The conditional transaction {(a : 2), (b : 2)} is fre-
quent, so we obtain a longer frequent itemset {e, d, a, b} immediately. Due to
its larger length than previous lf i, {e, d, a, b} is expected to be able to prune
more not-long-enough conditional transactions.
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3.3.2 Frequent item pruning

Frequent Item Pruning (FIP), as described in Fig. 6, is applied during the
“finding all frequent items in the conditional pattern base” phase. It is based
on the observation that any conditional transaction that contains insufficient
frequent items cannot contribute to generating a longer frequent itemset and
should be trimmed. It imposes a stricter condition on the screening of con-
ditional transactions than CPP. An example is given in Fig. 7(a) with three
conditional transactions in the conditional pattern base. Suppose that Head
is {g, f}, the minimum support is 2, and the length of the longest frequent
itemset found so far is 4. In the conditional pattern base, e is not a frequent
item, so conditional transaction 300 could be considered as {(b : 1), (d : 1)},
which is non-contributing because {g, f} ∪ {b, d} is no longer than 4. Thus,
transaction 300 is eliminated from the conditional pattern base, as shown
in Fig. 7(b). Since some transactions have been removed from the conditional
pattern base, some previously frequent items may become infrequent, and thus
some other transactions may become non-contributing. We recursively call the
procedure to trim more transactions. Let us continue with this example. In
Fig. 7(b), b and d become infrequent this time. As above, transaction 100 and
200 are removed. Then the conditional pattern base is empty, i.e., we can stop
exploring with Head = {g, f}.

3.3.3 Dynamic reordering

As stated in [11], sorting the items in the header table by descending order
of frequency will often increase the compression rate for an FP-tree compared
with its corresponding database. The items in transactions will be inserted
into FP-tree in their order in the header table, and a sorted header table will
keep the nodes of more frequent items closer to the root, which usually enables
more sharing of paths and produces higher compression. However, FP-growth
and FPMAX only reorder the items in the header table of the initial FP-tree
and follow this order to construct header tables of conditional FP-trees. We
call this ordering method “static ordering”.

In our algorithm, we apply the reordering process to the header tables of
all FP-trees. We expect that the dynamic reordering process can make the
FP-trees more compact. We dynamically sort items in the header table in de-
scending order of frequency before generating each FP-tree. This “Dynamic
Reordering” (DR) is also addressed in [7]. Generally, it will improve the per-
formance in both space (less memory with smaller FP-trees) and time (fewer
recursions). Let us study the following example. We refer to the example
database and its corresponding initial FP-tree in Fig. 2. For item e, there
are four conditional transactions, {(a : 1), (c : 1), (b : 1)}, {(c : 1), (b : 1)},
{(a : 1), (c : 1)} and {(c : 1)}. FP-growth generates the header table as
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Fig. 6. Getting frequent items in conditional pattern base.

Fig. 7. An example of the frequent item pruning.

{b : 2, c : 4, a : 2} from top to bottom following the item order in the
header table of the initial FP-tree. The corresponding conditional FP-tree
is shown in Fig. 8(a). In contrast, our algorithm organizes the header table as
{c : 4, a : 2, b : 2} from top to bottom after dynamic reordering and constructs
the conditional FP-tree in Fig. 8(b). There are five nodes in the conditional
FP-tree in Fig. 8(a), but only four nodes in Fig. 8(b), which demonstrates the
contribution of dynamic reordering in this case.
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Fig. 8. An example of dynamic reordering.

Fig. 9. The LFIMiner algorithm.

3.4 The LFIMiner algorithm

The LFIMiner algorithm, which incorporates CPP, FIP and DR, is shown in
Fig. 9. The differences from FPMAX LO are highlighted by underlining.

3.5 The LFIMiner ALL algorithm

To find all the maximum length frequent itemsets in a database, we modified
LFIMiner a little. Usually, the LFI set is orders of magnitude smaller than the
MFI set. Thus the LFI mining process should be quick. The LFIMiner ALL al-
gorithm is presented in Fig. 10, with the following notations: CPB-conditional
pattern base; Head-a list of items; Tail-the set of frequent items in CPB;
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Fig. 10. The LFIMiner ALL algorithm.

Fig. 11. Changed CPP (left) and FIP (right) pruning.

LFIList-the set of maximum length frequent itemsets; LFILen-the length of
longest frequent itemsets. The differences from LFIMiner are highlighted by
underlining. Lines (2)-(7) insert a newly found longest frequent itemset into
the LFI set. Note the difference between line (12) in Fig. 10 and line (7) in
Fig. 9. Unlike LFIMiner, in LFIMiner ALL, we cannot ignore the cases where
the combination set of Head with all frequent items Tail in Head’s condi-
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Table 1
Some characteristics of real-world data sets.

Dataset File Size(KB) #Trans #Items Avg Trans Len

Mushroom 558 8,124 119 23

Chess 335 3,196 76 37

Connect4 9,039 67,557 129 43

Pumsb* 11,028 49,046 7,117 50

tional pattern base has equal length with the longest frequent itemsets found
so far. The CPP and FIP pruning methods were modified accordingly, which
are shown in Fig. 11.

For performance comparison, we also constructed modified versions of MAFIA LO
and FPMAX LO that find all the maximum itemsets. They are named MAFIA LO ALL
and FPMAX LO ALL respectively. Their details are given in Appendix A. The
major difference from the original versions is that the current candidate under
examination is required to be no shorter than the longest frequent itemset
found so far.

4 Experimental evaluation

In this section, we present the experimental results for our algorithms. First,
we describe an in-depth study on the performance effect of each optimization
component. Then we compare LFIMiner with MAFIA LO and FPMAX LO
on some real datasets. Finally we present the results concerning the algorithms
that find all the maximum length frequent itemsets.

4.1 The experimental setup

All experiments were conducted on a PC with a 2.4 GHz Intel Pentium 4
processor and 512 MB main memory, running Microsoft Windows XP Profes-
sional. All codes were compiled using Microsoft Visual C++ 6.0. MAFIA LO
and MAFIA LO ALL were created by modifying the original source file of
MAFIA provided by its authors. FPMAX LO and FPMAX LO ALL were
implemented by ourselves. All timing results in the figures are averages of
five runs. We tested the algorithms on the Mushroom, Chess, Connect4 and
Pumsb* datasets. Mushroom is a benchmark dataset widely used in trans-
action clustering. As described in Section 1, LFI can be used for transaction
clustering, so we chose Mushroom into the test. We also used Chess, Connect4
and Pumsb*, which contain longer patterns than Mushroom to test the effi-
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ciency of the algorithms. These datasets have been widely used in frequent
itemset mining. Mushroom, Chess and Connect4 are available from the UCI
Machine Learning Repository [15]. Pumsb* is census data from PUMS (Public
Use Microdata Sample). In general, at the higher levels of minimum support,
the longest pattern length in these datasets varies between 5-14 items, while
for some lower levels of minimum support, the longest patterns have over 20 or
even 30-40 items. Some characteristics of these real-world data sets are shown
in Table 1.

4.2 Algorithmic component analysis

First, we present a complete analysis of component effects on LFIMiner. The
three main components in our algorithm are: a) CPP, b) FIP and c) DR. CPP
and FIP reduce the size of the FP-tree by pruning some non-contributing
conditional transactions. DR reduces the size of the FP-tree by keeping more
frequent items closer to the root to enable more sharing of paths.

The results with different components combination on different datasets are
presented in Fig. 12. The components of the algorithm are represented in a
lattice format, in which the running time is shown. We denote FPMAX LO by
“NONE”, and FPMAX LO with each separate component by “FIP”, “CPP”
and “DR”, respectively. “FIP+CPP” denotes the use of both FIP and CPP.
Finally, LFIMiner is denoted by “ALL”. The results consistently show that
each component improves performance, and the best results are achieved by
combining them together. FIP has the biggest impact among the three com-
ponents, since it is most likely to trim a large number of candidate transac-
tions by its recursive pruning process. In the presence of FIP, the addition of
CPP does not make much a difference, either from FIP to FIP+CPP or from
FIP+DR to ALL. Since FIP and CPP both trim conditional transactions, it is
not surprising that their efficacy overlaps to some extent. On the other hand,
DR also achieves significant savings.

4.3 A comparison with MAFIA LO and FPMAX LO

Bayardo described in [4] that he implemented a version of Max-Miner that
finds the maximum length frequent itemsets. To our knowledge, there are no
other existing algorithms to mine maximum itemsets. Many algorithms exist
for mining MFI. Agarwal et al. [1] showed that DepthProject runs more than
an order of magnitude faster than Max-Miner. Burdick et al. [6] showed that
MAFIA outperforms DepthProject by a factor of three to five. Grahne and
Zhu [10] showed that FPMAX achieves comparable performance with MAFIA
and GenMax. For performance comparison, we modified the efficient MAFIA
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Fig. 12. Impact comparison of the three components.

and FPMAX algorithms a little to mine the maximum length frequent item-
set. Why did we select these two algorithms? In fact, DepthProject, MAFIA
and GenMax share a lot in common: Search the item subset lattice (or lex-
icographic tree) in a depth-first way, apply lookahead pruning and dynamic
reordering to reduce the search space, use a compression technique for fast
support counting. Thus we picked out MAFIA as the representative of the
three algorithms. FPMAX is fundamentally different from the above three
and resembles our algorithm, because it not only employs the same FP-tree
structure but also extends the same FP-growth algorithm. Thus we also chose
FPMAX as a competitor.

Fig. 13 illustrates the comparison results of these three algorithms for Mush-
room, Chess, Connect4 and Pumsb*, respectively. The left column shows the
running time of the three algorithms. The x-axis is the user-specified minimum
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Fig. 13. Performance comparison for mining one LFI.
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Fig. 14. Scaleup on Connect4 for mining one LFI (left) and all LFI (right).

Fig. 15. LFIMiner on Chess.

support, expressed as a percentage, while the y-axis shows the running time
in seconds. The middle column compares the number of itemsets processed
by FPMAX LO and LFIMiner. The x-axis is the minimum support, and the
y-axis shows the number. The right column compares the number of FP-tree
nodes created by FPMAX LO and LFIMiner. The x-axis is the minimum sup-
port, and the y-axis shows the number.

In general, LFIMiner runs consistently faster than MAFIA LO and FPMAX LO,
especially when the database is large and the transactions in the database are
large (Connect4 and Pumsb*). For high levels of support, FPMAX LO works
better than MAFIA LO, while for low levels of support, MAFIA LO is more ef-
ficient than FPMAX LO. This can be explained as follows: MAFIA LO needs
a fixed time to convert the database into its vertical format, no matter what
the support is. When the support is high, for FPMAX LO, it will result in a
small FP-tree, and thus mining is fast. MAFIA LO also mines fast, but the
time for database conversion cannot be overlooked. This is reflected in the
figures that the time taken by MAFIA LO for high levels of support changes
slightly. A majority of the time is used for database conversion. In contrast,
when the support is low, without effective pruning, FPMAX LO spends con-
siderable time in constructing bushy FP-trees. This largely slows down the
processing. MAFIA LO, on the other hand, is not influenced so much, due to
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its effective pruning and fast support counting with projected bitmap repre-
sentation of the database.

Because the results on all the datasets are similar, we only explain Fig. 13 for
Mushroom. LFIMiner runs faster than MAFIA LO and FPMAX LO. MAFIA LO
performs better than FPMAX LO, as the support varies from 1% downwards.
As shown in Fig. 13(b) and (c), when the support decreases, the number of
itemsets processed by FPMAX LO increases dramatically. This consequently
leads to the great increase in the number of created tree nodes. On the other
hand, for LFIMiner, the number increases slowly due to effective pruning. For
example, at support 0.1%, the itemsets processed by LFIMiner are only 8%
of those processed by FPMAX LO.

To test the scalability, we ran the three programs on the Connect4 dataset,
which was vertically enlarged by adding transactions into the original dataset.
We created new transactions by modeling the distribution of the values of
each categorical attribute in the original dataset. In contrast to the vertical
scaling used in [6], which scaled the dataset by duplicating the transactions,
we created similar but not duplicated transactions. This is a more realistic
way of enlarging the dataset than simply duplicating the dataset.

With support fixed at 30%, the results are shown in Fig. 14. All algorithms
scale almost linearly with database size. But MAFIA LO shows a steeper
increase than LFIMiner and FPMAX LO. This is not accidental. As the num-
ber of transactions increases, we can expect more similar transactions. For
LFIMiner and FPMAX LO, adding similar transactions to the existing ones
will not increase the size of the FP-tree much. For MAFIA LO, however, it in-
creases the cost for support counting more significantly because the bitmaps
become long. In addition, because of effective pruning, LFIMiner increases
much more slowly than FPMAX LO. In conclusion, we can say that LFIMiner
scales well with database size.

There is something interesting here which deserves our attention. Fig. 15(a)
shows the running time of LFIMiner on Chess with different levels of support.
As the support decreases, the time does not increase monotonically; instead it
first increases, then decreases, and finally keeps steady. Fig. 15(b) reflects the
variation of number of itemsets processed and tree nodes created by LFIMiner.
We can see that it is consistent with the time variation in Fig. 15(a). Appar-
ently, as the support decreases, the number of candidate itemsets increases,
but at the same time the frequent itemset discovered grows longer, which al-
lows more candidate itemsets to be trimmed. In the first phase, the speed of
candidate itemset generation exceeds that of candidate itemset reduction, so
the running time increases. In the second phase, the speed of candidate item-
set reduction exceeds that of candidate itemset generation, so the running
time decreases. In the final phase, the absolute support actually reduces to 1,
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Fig. 16. Performance comparison for mining all LFI.

i.e., every transaction is a frequent itemset. In this extreme case, no candidate
itemset is generated and thus the running time keeps steady. Similar results
were found on Mushroom, Connect4 and Pumsb* as well.
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Table 2
Maximum length frequent itemsets for Mushroom at support 10%.

S = { class=edible, bruises=true, odor=none, gill-spacing=close, gill-size=broad,

stalk-shape=tapering, stalk-root=bulbous, stalk-surface-above-ring=smooth,

stalk-surface-below-ring=smooth, veil-type=partial, veil-color=white,

ring-number=one, ring-type=pendant, spore-print-color=black, habitat=woods }
P1 = S ∪ {spore-print-color=black}, P2 = S ∪ {population=several},
P3 = S ∪ {spore-print-color=brown}, P4 = S ∪ {cap-surface=scaly },
P5 = S ∪ {cap-shape=flat }, P6 = S ∪ {cap-surface=fibrous },
P7 = S ∪ {population=solitary }, P8 = S ∪ {cap-shape=convex }

4.4 Finding all maximum length frequent itemsets

Here we compare the results of LFIMiner ALL with MAFIA LO ALL and FP-
MAX LO ALL for finding all maximum length frequent itemsets in Fig. 16.
The left column shows the running time, the second column shows the num-
ber of itemsets processed by FPMAX LO ALL and LFIMiner ALL, the third
column shows the number of FP-tree nodes created by FPMAX LO ALL and
LFIMiner ALL, and the right column shows the number of maximum length
frequent itemsets found. Compared with Fig. 13, similar results were found
as before, though the time required for mining is longer. From the right col-
umn, we can see that in general the number of maximum itemsets is under
several hundred, which is orders of magnitude smaller than the number of
maximal frequent itemsets. For example, at support 10%, the number of MFI
is 547 for Mushroom, 2,339,525 for Chess, 130,986 for Connect4, and 16,437
for Pumsb*, while the number of LFI is 8, 65, 2 and 1 respectively. Fig. 14
demonstrates the scalability of the three algorithms. This result is similar to
the results presented in previous sections.

For illustration, sample sets of LFI are shown in Tables 2 and 3 for datasets
Mushroom and Connect4, respectively. For Mushroom, at support 10%, eight
LFI of 16 items are mined, which share a common subset of 15 items. They all
describe the connection of key mushroom attributes to edibility. For Connect4,
at support 20%, there is exactly one LFI of 27 items. Being all blank “b”, they
specify a common board position in the game of connect-4.
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Table 3
Maximum length frequent itemset for Connect4 at support 20%.

6 b b b b b b b

5 b b b b b b b

4 b b b b b b b

3 b b b b b

2 b

1

a b c d e f g

5 Conclusions and future work

In this paper, we introduced the problem of finding maximum length frequent
itemset and identified some real world applications for the proposed problem.
We proposed an efficient algorithm, LFIMiner, which is built on top of the
pattern fragment growth method and makes use of the FP-tree structure. The
FP-tree structure stores compressed information about frequent itemsets in
a database and the pattern growth method avoids the costly candidate set
generation and test. In addition, a number of optimization techniques, such as
CPP, FIP and DR, have been exploited in our algorithm for effectively pruning
the search space. CPP and FIP pruning schemes help LFIMiner reduce the
search space dramatically by removing non-contributing conditional itemsets
and in turn narrowing the conditional FP-trees. DR reduces the size of an
FP-tree by keeping more frequent items closer to the root in the FP-tree.

In comparison with MAFIA LO and FPMAX LO, our experimental results
showed that LFIMiner is a faster method for mining maximum length fre-
quent itemset. A detailed component analysis highlighted FIP’s effectiveness
in reducing the search space due to its recursive process. LFIMiner also ex-
hibits a good scalability. Besides, a variant of this algorithm, LFIMiner ALL,
was also developed for efficiently mining all maximum length frequent item-
sets.

As for future work, we plan to apply the proposed technique to a variety
of large data sets where the maximum length itemsets are of interest. The
benchmark datasets used in our experiments may not be representative of the
particular type of data sets where users want to find the maximum length fre-
quent itemsets. Also, other requirements may be added in the mining process
for the longest patterns, such as those in correlation [21], data stream [22] and
temporal pattern [13] mining. Finally, since LFI has a potential to be an in-
teresting pattern to preserve during clustering, another direction is to exploit
LFI for transaction clustering.
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Fig. A.1. The MAFIA LO algorithm.

A The modified MAFIA and FPMAX algorithms

The modified MAFIA algorithms are given in Figs. A.1 and A.2 respectively
for mining one/all maximum length frequent itemsets. Fig. A.3 illustrates the
FPMAX LO ALL algorithm for mining all maximum length frequent itemsets.
In the MAFIA LO algorithm, differences from the original MAFIA algorithm
are highlighted by underlining. Line (2) modifies the original HUTMFI pruning
(original statement is “IF HUT is in MFI”). If a node C’s HUT (head union
tail) is discovered to be no longer than the longest frequent itemset found
so far, we never need to explore any subset of the HUT, and thus we can
prune the entire subtree rooted at node C. Lines (13) and (14) find a longer
frequent itemset and perform the updating, while the original statements [6]
are “IF (C is a leaf and C.head is not in MFI) THEN Add C.head to MFI” .
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Fig. A.2. The MAFIA LO ALL algorithm.
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Fig. A.3. The FPMAX LO ALL algorithm.
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