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Abstract—In recent publications, we have presented a data-
driven approach to representing the nonlinear structure of hyper-
spectral imagery using manifold coordinates. The approach
relies on graph methods to derive geodesic distances on the high-
dimensional hyperspectral data manifold. From these distances,
a set of intrinsic manifold coordinates that parameterizes the
data manifold is derived. Scaling the solution relied on divide-
conquer-and-merge strategies for the manifold coordinates be-
cause of the computational and memory scaling of the geodesic
coordinate calculations. In this paper, we improve the scaling
performance of isometric mapping (ISOMAP) and achieve full-
scene global manifold coordinates while removing artifacts gen-
erated by the original methods. The CPU time of the enhanced
ISOMAP approach scales as O(N log2(N)), where N is the
number of samples, while the memory requirement is bounded
by O(N log(N)). Full hyperspectral scenes of O(106) samples
or greater are obtained via a reconstruction algorithm, which
allows insertion of large numbers of samples into a representative
“backbone” manifold obtained for a smaller but representative set
of O(105) samples. We provide a classification example using a
coastal hyperspectral scene to illustrate the approach.

Index Terms—Automatic classification, hyperspectral imagery,
isometric mapping (ISOMAP), Jeffries-Matsushita distance, man-
ifold coordinates, manifold geodesics, manifold learning, multi-
dimensional scaling, nonlinear dimensionality reduction, tree
searching, trees (graphs), Vantage Point Forest, vantage point tree,
Virginia Coast Reserve.

I. INTRODUCTION AND BACKGROUND

A. Nonlinearity in Hyperspectral Imagery (HSI)

Nonlinearity in HSI is a significant source of estimation
errors in derived products. Sources of nonlinearity include
1) nonlinear variations in reflectance produced by variations
in sun-canopy-sensor geometry in the landscape [32], [49],
2) multipath scatter among subpixel constituents [44], [46],
violating the traditional linear mixing assumptions, and 3) the
variable presence of water, an attenuating medium [42] in the
scene. Some of the errors that we observed in land-cover classi-
fication products [6], [7] became the motivation for finding new
methods of modeling nonlinear structure in hyperspectral data
[8]. In the next two subsections, we give a brief overview of the
approach that we presented in [8] as a preamble to introducing
improvements.
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The introduction of manifold coordinate estimation algo-
rithms began in applications outside of the field of remote
sensing [47], [53], and since that time, a considerable number of
papers have begun to appear in these other application areas that
include, for example, face recognition, optical character recog-
nition, phoneme recognition, and computational chemistry [1],
[15], [34]. Before proceeding, we note that the use of methods
for the estimation of manifold coordinates is relatively new both
in remote sensing [2]–[4] and, in particular, in hyperspectral
remote sensing [8]–[12], [21], [29], [35].

B. Manifold Coordinate Representations

In [8], we described a new method for modeling the nonlin-
ear effects in HSI and demonstrated that it provided a better
means of discriminating land-cover types with a high degree of
spectral similarity. Using examples from AVIRIS and PROBE2
imagery, we also showed that our new approach provides
better compression of HSI data in both terrestrial and aquatic
imagery. This method involves a data-driven estimation of a set
of coordinates that parameterizes the high-dimensional hyper-
spectral data, directly modeling its nonlinear structure with a set
of intrinsic coordinates. The method proceeds by calculating
the local spectral neighborhood distances where linearity is
assumed to hold about each sample and then determining the
shortest nonlinear path (geodesic) distances to all other spectral
samples outside the spectral neighborhood. These geodesic
distances are then used to derive the manifold coordinate sys-
tem that parameterizes the high-dimensional hyperspectral data
using standard multidimensional scaling methods. In [8], we
also described methods for achieving computationally scalable
implementations of this approach. Fig. 1 provides a conceptual
representation of manifold coordinate estimation. Note that the
manifold coordinate system parameterizes the higher dimen-
sional (124 channels in this example) HSI data so that the linear
distance in the manifold coordinates corresponds to a nonlinear
distance over the surface of the original higher dimensional
data. In Section III, examples of this processing applied to
PROBE2 HSI from our Virginia Coast Reserve barrier islands
study site [5]–[8], [45], [54] are provided.

In [8], we proposed several strategies for computing the
global manifold coordinates. All of these strategies involved
partitioning the scene into subsets, solving for the optimal
manifold coordinates on these subsets, and either aligning or
merging subset coordinates to obtain a global manifold co-
ordinate system. Manifold coordinates on subsets were deter-
mined by using the optimal isometric mapping (ISOMAP) [53]
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Fig. 1. Conceptual view of the manifold coordinate system. (Left) PROBE2 image subset showing the source data of 124 spectral channels. (Center) RGB triplet
from wavelengths at 0.63, 1.29, and 2.22 µm for the subset over Smith Island, VA, October 18, 2001; shown: uplands, brackish and fresh water marshes, dunes,
beach, and surf zone. (Right, top) Corresponding scatterplot of the reflectance of these arbitrarily chosen channels reveals a highly nonlinear HSI data manifold.
(Right, bottom) Manifold coordinate system parameterizes the HSI spectral data (note that the manifold coordinates are a parameterization of the full spectral
data, not just the three arbitrary channels displayed). (Bottom, left) Geodesic distances estimated via the shortest path between neighbors common to overlapping
neighborhoods.

TABLE I
ISOMAP PROCESSING STEPS AND SCALING WITH NUMBER OF SAMPLES N

algorithm. In its original form (Table I), the ISOMAP portion of
the computations involves the following steps: 1) For a specific
metric such as Euclidean distance, spectral angle, or some
other appropriate choice, determine the local neighborhoods
(initial sparse neighborhood graph dG) of the input data space
where linearity holds, maintaining a list for each sample of
its neighbors and metric distances. 2) At each sample, for all
distances outside the neighborhood, estimate the geodesic dis-
tances using Floyd’s algorithm [37], a shortest path algorithm
that exhaustively relaxes all edges of the graph dG according to

dG(i, j) = min
k

(dG(i, j), dG(i, k) + dG(k, j)) . (1)

Floyd’s algorithm scales as O(N3); however, the scaling
was later improved [14] by replacing Floyd’s algorithm with
Dijkstra’s all shortest paths algorithm [24], [50], which scales

as O(N2 log(N)). Dijkstra’s algorithm uses the same “relax-
ation” rule for edges, but the choice of which edges are relaxed
at each iteration is controlled by a minimum priority queue
[22], [50]. Specifically, at each iteration, the closest edge not
already attached to the graph dG is extracted from the minimum
priority queue, and all edges leading from the newly attached
edge are relaxed according to (1) to compute the shortest
nonlinear path (geodesic) distance to all other samples (note
that this is a graph calculation and that the metric, therefore,
is only evaluated in step 1) inside the neighborhood). 3) With
the full N ×N (where N is the number of spectral samples)
geodesic distance matrix calculated in steps 1) and 2), compute
the second-order variation in the geodesic distances

τ = −1
2
HTSH (2)
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where

Sij = ((dG)ij)
2 (3)

Hij = δij − 1
N

(4)

is a centering matrix. 4) Extract s (s� N) manifold coordi-
nates from the most significant eigenvectors and eigenvalues of
theN ×N matrix τ with the ith manifold coordinate vector �mi

given by

�mi =
√
λi�vi. (5)

Note that the original ISOMAP algorithm did not suggest a self-
consistent means of dealing with isolated points at the conclu-
sion of the geodesic distance calculation. In [8], we presented
one means of doing this; however, the method that we pre-
sent in Section II-E is a simpler, although equivalent, method.

C. Scalable Algorithms

In [8], we addressed the computational and memory scal-
ing issues associated with manifold coordinate calculations at
remote-sensing scales whereO(106) –O(107) pixels in a single
hyperspectral scene are not uncommon. One of the principal
limiting factors in the original ISOMAP algorithm was mem-
ory, which scaled as O(N2) because of the need to store dG.
Computationally, Dijkstra’s algorithm with a minimum priority
queue implementation [50] ensures that the graph calculation
scales as O(N2 log(N)). Because of the computational and
memory requirements, we developed a scaling strategy [8] in
which large hyperspectral scenes are divided into a computa-
tionally tractable set of subsets or “tiles” for which manifold co-
ordinates can be optimally computed followed by an alignment
phase during which the embedded manifold coordinates for
each tile subset are aligned to a common manifold coordinate
system.

In [8], several strategies for alignment were proposed. These
included 1) splicing a set of common samples onto each tile
that could serve as guide posts for manifold alignment; 2) par-
titioning the scene into tiles by random or active sampling, and
computing optimal manifold coordinates for each tile followed
by an alignment stage; and 3) a direct reconstruction technique
in which, following partitioning and optimization of manifold
coordinates for each tile, a subset of full spectral samples from
one tile (derived from the original scene or a decimated subset)
was reconstructed in the spectral space of another tile. For
3), using the locally linear property of the manifold, these same
weights were applied to transform the corresponding manifold
coordinates of the samples. By reconstructing enough samples
where there is sufficient data in each tile for accurate recon-
struction, a linear coordinate transformation can be derived.
We used the optimal least-squares coordinate transformation for
which the matrix solution is the pseudoinverse [26], [30], i.e.,

P =
(
MT

i Mi

)−1
MT

i M
∗
j (6)

where Mi is the matrix of the manifold coordinate sample
vectors (columns defined by (5) from tile Ti), and M ∗

j is the

corresponding set of coordinates reconstructed in the manifold
coordinate system of tile Tj . When no sufficiently accurate
reconstruction was possible to a prechosen target tile, a series of
alignment hops was used between intermediate tiles possessing
common features of source and target tiles. Another alternative
strategy that we also proposed in [8] included the use of a
“backbone” in which random samples were drawn from within
the tiles comprising the scene, and then the manifold coordi-
nates for each tile were aligned to the backbone manifold by a
change of coordinates of the form in (6). Note that in one way or
another, all of the methods that we previously suggested in [8]
ultimately built up enough mapping pairs between coordinate
systems of subsets so that a suitable pseudoinverse transforma-
tion of the form in (6) could be defined.

In [8], the reconstruction method was determined to be the
most effective of the manifold alignment strategies. The other
methods we proposed, such as the variation involving a back-
bone manifold described above, were considered to be less use-
ful primarily because of sampling limitations that resulted from
restrictions on tile size imposed by memory and computational
scaling of the original ISOMAP algorithm. In all of the methods
we proposed earlier, the alignment errors that appeared were
the result of incomplete constraints on the manifold coordinate
transformation between tiles. The latter stemmed from the
limited number of samples available in each tile. Additionally,
with the earlier approach, there is always the risk that lower
order manifold coordinates might not be adequately sampled in
the set of points entering the pseudoinverse mapping, especially
when these lower order dimensions are primarily spanned by
more sparsely populated categories. Likewise, variations in the
eigenspectra between small subsets can lead to a torquing of the
final manifold coordinates of subsets, no matter what method
of subset partitioning is used. For contiguous tiles, the resulting
artifacts will be seams, while for random sampling, the artifacts
will appear as graininess.

In the sections that follow, however, we incorporate several
new improvements to ISOMAP that allow us to work with
significantly larger subsets. One of these improvements allows
the N ×N matrix dG to be replaced by a significantly smaller
but representative matrix that mitigates the memory burden
and some of the computational burden. In addition to lower
memory requirements, the method described in the next sec-
tion also streamlines other computational issues such as the
eigensolution of τ , eliminating iterative eigensolvers in favor
of more reliable exact solvers appropriate for smaller matrices
[31], and also requires fewer geodesic distance calculations.
The O(N2 log(N)) Dijkstra calculation is now replaced with
an O(LN log(N)) calculation with L� N . We also over-
come another significant bottleneck that arises both in the
calculation of manifold coordinates using ISOMAP and in the
reconstruction step, namely the calculation of neighborhood
lists and distances. The naive approach to calculating neighbor-
hoods, which is usually employed, scales as O(N2 log(N)). In
Section II-B2, we describe a way to streamline the calculation
of the neighborhoods to improve the scaling to O(N log2(N)),
which is nearly linear for the range of Ns that we consider.
With the new methods described in the next sections, all of the
methods previously described in [8] will yield better overall
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TABLE II
ENH-ISOMAP PROCESSING STEPS AND SCALING WITH NUMBER OF SAMPLES N

products because we can process larger more representative
subsets before a coordinate alignment or reconstruction must
occur. These steps will help mitigate alignment errors that
appeared originally in [8].

In this paper, we propose a modified version of the backbone
method that eliminates the artifacts that appeared in our previ-
ous approach [8]. The modified version will take advantage of
several specific improvements from other researchers as well
as our own improvements to ISOMAP. The new approach is
applicable to significantly larger data sets and, in particular,
allows a vastly larger backbone manifold to be constructed.
Likewise, the new approach eliminates the pseudoinverse in
favor of direct insertion of all points into the final manifold
via reconstruction. The reconstruction step takes advantage of
a new fast neighborhood calculation algorithm that we develop
in this paper. We also incorporate the fast neighborhood cal-
culation into our enhanced version of the ISOMAP algorithm,
which is used to compute the backbone manifold coordinates.
With local reconstruction of samples in the backbone manifold
coordinate system, we eliminate torquing artifacts and provide
a more stable self-consistent description because only one
eigenspectrum is computed. The result is that if errors do occur,
they will be localized. The other consequence is that as more
samples are added to the backbone, the quality of the manifold
coordinates improves.

The remainder of this paper is structured as follows: In
Section II, we first introduce the enhanced ISOMAP (ENH-
ISOMAP) algorithm that will be the cornerstone of the overall
improved method that we present in this paper. Our ENH-
ISOMAP algorithm incorporates several new features such as
1) a very fast neighborhood construction, using a new algo-
rithm, Vantage Point Forests, and which scales nearly linearly
with N and is based on Vantage Point Trees (VP-Trees) [55];
2) a new patching algorithm to ensure all points separated
from the main distribution by more than a neighborhood ra-
dius are included in a self-consistent manner in the geodesic
distance calculation; 3) an approximation [23] that streamlines
the geodesic distance calculation, improving scaling of both
computational and memory requirements for geodesic distance
calculations; and 4) a more flexible neighborhood definition
than that previously used in the original ISOMAP algorithm.
The flexible neighborhood is significant because it better ac-
commodates differences in the scale of intersample spacing
that naturally arise, for example, when land and water regions

appear in the same scene, as they do in coastal environments.
In Section II-G, we discuss the effect of noisy data on manifold
coordinate optimization and propose at least one solution. In
Section II-H, we develop a new solution to estimating the global
manifold for large hyperspectral scenes. This solution incor-
porates ENH-ISOMAP and a reconstruction principle made
faster also by using Vantage Point Forests. We call this new
approach the “Modified Backbone” method because it is an
improved version of one of the manifold coordinate approaches
that we initially developed in [8]. In Section III, we present
results of the Modified Backbone approach, showing a seamless
set of manifold coordinates for a coastal hyperspectral scene
with nearly two million pixels. In Section III-A, we show
quantitatively enhanced land-cover category separability in a
coastal HSI scene, contrasting the traditional minimum noise
fraction (MNF) preprocessing used in the PPI end-member
selection algorithm with manifold coordinates derived from
the MNF representation. Finally, in Section IV, we provide a
summary and draw conclusions.

II. ENH-ISOMAP

A. Overview of ENH-ISOMAP

Even with the use of Dijkstra’s shortest path algorithm, the
O(N2) memory and O(N2 log(N)) computational demands
that it imposes still limit the size of scene subsets that can be
effectively processed. In addition, as the size of the data set
increases, the computational demands of calculating neighbor-
hoods quickly become a principle bottleneck since the scaling
of this critical step is O(N2 log(N)). To improve solutions for
the global manifold coordinates over those methods that we
originally developed in [8], we will need to increase the size
of data subsets for which we can achieve an optimal or near-
optimal manifold coordinate solution. A cornerstone of this is
the improvement of the original ISOMAP algorithm.

To achieve this, we have combined several new algorithms
in a new computational framework (Table II). The approach
incorporates a new Vantage Point Forest algorithm for improv-
ing the speed of the neighborhood calculation, a more flexible
neighborhood definition, an improved patching algorithm to
ensure that points separated from the main distribution by
more than a neighborhood are incorporated self-consistently
in the graph calculation, and finally the use of Landmarks
ISOMAP [23], an approximation to improve the computational
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scaling and memory requirements of the geodesic graph calcu-
lation. We term the amalgamation of these improvements ENH-
ISOMAP. Another refinement in ENH-ISOMAP is a more
judicious landmark selection algorithm that ensures that the
geometric structure of the manifold will be more completely
represented than would be the case with random sampling.
Table II details the fundamental processing steps that we have
defined. Comparing it to the original ISOMAP implementation
(Table I) with the underlying Dijkstra shortest path calculation
(Fig. 1), we can see that the overall flow of processing has been
modified significantly, resulting in dramatically better scaling.
In the following subsections, we detail the processing in each
of the steps in Table II.

B. Improved Scaling of Manifold Neighborhood Construction
With Vantage Point Forests

1) Neighborhood Scaling Problem: Although the use of
Landmarks processing described in Section II-C solves two
important bottlenecks in the required memory and the calcu-
lation of geodesic distances, it does not solve another funda-
mental scaling problem that arises as the tile or subset size
increases. This emergent scaling issue is the computational
time needed to calculate the neighborhood lists and neighbor
distances of each point in the manifold. This is a critical step
in the initialization of the sparse graph used in calculating
the manifold geodesic distances. To date, the algorithms that
have been presented surrounding ISOMAP and its variants
have not explicitly addressed this key issue. For each sample,
the exhaustive approach employed in past implementations of
ISOMAP requires calculation of all metric distances to all other
samples and the determination of which ones lie within the
required neighborhood distance or K-limit depending on which
form of ISOMAP is used. The exhaustive approach, therefore,
scales as O(N2 log(N)), which quickly becomes impractical
for the scale of typical remote-sensing data sets that contain
O(106) – O(107) pixels or more in a scene. Therefore, once
landmarks are employed as per the above discussion, the use of
the exhaustive approach to establish the neighborhoods quickly
becomes the dominant computational burden even at O(105)
pixels. Another important point to emphasize here is that for
two of the divide-conquer-and-merge strategies [8] for com-
puting global manifolds, neighbors of samples from one subset
must be found in another subset in the full manifold coordinate
space. These were required to produce a coordinate transfor-
mation that applies equally in the full spectral space as well as
the manifold coordinate space to be aligned. While this step is
not O(N2 log(N)), it is nevertheless quite time consuming if
distances must be calculated to all possible samples in the other
subset, as they would be in the exhaustive approach. Vantage
Point Forests, therefore, also alleviate this burden downstream
when optimized manifold coordinate subsets are to be merged
or samples are to be inserted in a representative “backbone”
manifold coordinate representation, as we do in the present
work (Section II-H).
2) Fast Neighborhood Calculation Using Vantage Point

Forests: Here, we develop a solution to the problem of neigh-
borhood calculation that does not require us to examine all

possible distances from each sample to all others. The latter
exhaustive approach scales asO(N2 log(N)), whereas we seek
an algorithm that scales as close as possible to O(N). Note
that in what follows, we develop an approach to finding exact
neighbors, not approximate neighbors. The importance of this
lies in the fact that if approximate geodesic distances are
used, these inaccuracies may distort classification results when
classes of interest are only subtly different.

The typical extant approaches to fast neighbor search algo-
rithms in the literature proceed by partitioning the input data
space but, to our knowledge, have not been previously applied
to the construction of manifold neighborhoods. These fast
search algorithms produce a tree-like structure with successive
partitioning proceeding iteratively until all points are exhausted.
The beauty of such an approach is that, at each sample, it
eliminates the necessity of examining all other samples to
determine the neighborhood. In particular, it eventually focuses
the search on a narrow subset of end “leaves” in the tree
where possible neighbors could exist. One other limitation of
previous approaches using VP-Trees is that at the top level
of the tree search, where the first set of comparisons are made,
the search does not eliminate as many possibilities as it might.
The solution that we develop overcomes this limitation by
constructing a Vantage Point Forest, which tends to focus the
search in a narrower portion of the high-dimensional space at
the beginning of the search process.

A significant amount of research has been published on
the subject of calculating neighborhoods [55] and approximate
neighborhoods, although not per se in the context of manifold
algorithms. Extraction of appropriate samples of the full data
set is critical to all approximate methods. Many discuss the
“curse of dimensionality” to highlight the poor scaling with
D, which is the dimensionality of the data. Generally, the
sampling should represent/cover the entire data set at sufficient
resolution to allow accurate construction of the manifold co-
ordinates. Most nearest-neighbors theorems and computational
experiments were originally based on uniformly or Gaussian-
distributed data in RD. Several papers compare various
methods and make recommendations based on internal data
structure, tradeoffs between the costs of searching, and generat-
ing and storing tree structures [38], [41]. Specific tree structures
have been proposed, e.g., K-Dimensional Tree (KD-Tree) [28],
Sphere/Rectangle Tree (SR-Tree) [40], VP-Tree [55], Principal
Axis Tree (PA-Tree) [41], and improved upon [19]. General
schemes to efficiently search tree structures in logarithmic time
have also been proposed [36], [38]. In [41] and [55], it is
observed that the VP-Tree is more adaptable than the KD-Tree
when the data distribution is unknown in advance. The
PA-Tree proposed in [41] optimizes the data partitioning by
recursively partitioning the data along the (local) principal
axis. The multi-VP-Tree [19] was developed specifically to
address high-dimensional data spaces (D > 20). This approach
is related to our m-way VP-Tree structure (Vantage Point
Forest). In contrast, the original VP-Tree recursively splits the
pixels into two equal-numbered groups producing a “binary”
VP-Tree. Based on the above considerations, we chose the
VP-Tree structure as the basis for developing an algorithm
that would be suitable for hyperspectral applications since it
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is among the set of better extant algorithms. The absolute best
choice of algorithm appears to be data dependent [38].

Our use of a forest of VP-Trees helps with two aspects
of nearest-neighbors searches in high-dimensional (D > 100)
hyperspectral data sets. First, the general VP-Tree depends
upon the choice of vantage points, a.k.a. pivots. Good pivots
can be hard to find, and at least one qualitative analysis suggests
that the pivots should be well spaced [20]. Various authors
employ random pivot selection, at least as a test case. However,
hyperspectral data of large littoral scenes display a wide range
of pixel density in spectral space. For instance, land areas tend
to tight clumps or bands, while water is generally more diffuse.
At the same time, in the transition zone (tidal zone or transition
into the marsh in lagoonal areas), the pixel density may be
sparse. Selecting a single random set of pivots across the scene
would concentrate too many on the land and essentially none in
the land–water transition region. In a Vantage Point Forest, trees
are well spaced. Each tree is centered on a data pixel and covers
a local region of the spectral space: trees do not overlap, and
enough are generated to cover the data set. No (computational)
time or trees are wasted in empty parts of the spectral space.
The forest adapts to the data and provides an efficient nearest-
neighbors search structure.

The second advantage is harder to quantify and, while
present, may not always provide much savings in computational
time. The complexity of nearest-neighbors searches depends
strongly (exponentially) on the dimensionality of the data. The
various tree structures aim to reduce this dependency; however,
it remains at some level. Each individual tree in the forest sees
only the local dimensionality that can be significantly less than
D, i.e., the full dimensionality. If the local dimensionality varies
across the data set, then each tree in the forest-of-trees approach
will adapt to the local dimensionality and thereby speed-up
the nearest-neighbors calculations as appropriate. In contrast,
traversing branches of a single tree will proceed at various rates
that depend on the branch’s local dimensionality. This may off-
set some of the forest’s advantage. However, one poorly placed
vantage point, or branch, in a single tree, i.e., in the middle of
a high-dimensional pocket of data, could significantly slow the
entire nearest-neighbors search. In contrast, a poorly placed tree
in a Vantage Point Forest only affects that tree and its immediate
neighbors, not the entire nearest-neighbors search. The Forest
approach appears to minimize the computational time of the
worst case, rather than an average runtime, although the scaling
of the Vantage Point Forest is not appreciably different from
the scaling laws obtained for those that minimize the average
runtime but ignore worst-case scenarios.

We make one additional note concerning PA-Trees [41].
The PA-Tree is probably preferred whenever the actual data
dimensionality is much less than the spectral dimensional-
ity and the principal axis analysis is meaningful. In those
cases, PA-Trees should also provide a good covering of the
data set. If, however, the local dimensionality is low, but
the data are embedded nontrivially (nonlinearly) in the high-
dimensional spectral space, then the PA-Tree approach loses
effectiveness. A forest of PA-Trees may recover some of the
performance lost due to nonlinearly embedded data. We have
not yet experimented with a forest of PA-Trees on hyperspectral

Fig. 2. (Top left) Schematic diagram of Vantage Point Forest concept showing
top-level vantage points denoted by stars and associated hyperspherical shells
and subvantage points (squares, circles, and triangles) at the next level in the
forest; for some of these, we indicate the associated rings constrained to the
shell. (Bottom, left) One of the VP-Trees in the forest overlapped by a query
sample. (Right) Scaling of Vantage Point Forests algorithm for calculating
neighborhoods versus sample size compared to exhaustive search.

data, but we can expect that the large N scaling will remain
O(N log(N)).

Below, we develop a new process for determining the neigh-
borhoods that scales, at worst, as O(N log2(N)). Note that
over the range of N that we will consider here, this is nearly
linear and significantly better than the exhaustive neighborhood
search that occurs in the original ISOMAP algorithm and scales
as O(N2 log(N)).

Construction of the Vantage Point Forest (Fig. 2) consists of
a set of iterative steps. In each iteration, the first step is to pick
the top-level vantage points that form the tops of the trees in
the Vantage Point Forest. We have implemented the selection
of tree tops in more than one way. Obviously, this can be done
at random, but a more appropriate way from the standpoint of
covering the varying structure and local dimensionality of the
data may be to “skeletonize” the data. We describe the process
of “skeletonization” at greater length in Section II-D.

The iterative construction process proceeds as follows: As-
sume that r is the characteristic radius within which the mani-
fold is locally linear, and pick a maximum quantization radius
rmaxquant for each tree. A value of two to five times r has
worked well in the hyperspectral data sets that we have consid-
ered thus far. Also note that, ultimately, rmaxquant determines
the maximum number of rings present in each tree. The next
step is to select the first top-level (forest-level) vantage point
(the first tree), compute all distances to all other samples (note
that the only time we make this kind of O(N) exhaustive
calculation is for a small set of samples that form the top-level
vantage points of each Tree in the Forest), and then, using a
heap, sort them in increasing distance out to rmaxquant. For
v VP-Trees, this latter step computes in O(N log(N)) time,
so it is a very fast calculation. Note that v is a function of
the underlying neighborhood radius assumed and the maximum
quantization radius v = v(r, rmaxquant). Those samples within
rmaxquant are removed from the available sample list for all
other trees that are subsequently generated at this level of the
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Forest to ensure an exclusive quantization with each sample be-
longing to only one tree. The sorted lists of distances from each
top-level vantage point are divided into a set of hyperspherical
shells or “rings” of radius r, 2r, . . . , rmaxquant. Within each tree
and within each of these shells, the same set of steps is repeated
with subvantage points (branches) being selected at random;
however, this time, the distances must only be calculated to
the samples available at this sublevel of the tree, i.e., to those
samples in the shell; as before, these are sorted out to rmaxquant.
The process proceeds in this manner, iteratively stopping when
all samples are within r of the parent tree or branch.

Fig. 2 shows a schematic view of the top level of a portion of
a Vantage Point Forest. In this example, there are three top-
level trees in the Forest. The centers of these trees are the
vantage points indicated by stars. The center neighborhood of
the vantage point and a set of “rings” (hyperspherical shells)
of thickness r are indicated at radii r, 2r, . . . , rmaxquant; recall
from the above description that sorted lists of these distances
at each level of each tree in the Forest are maintained. For two
of the trees in the example, the data occur in only the first two
rings, while for the third, the data appear in all of the rings.
Subvantage points in the rings are indicated symbolically by
triangles in the first rings, by circles in the second ring, and by
squares in the third rings. These subvantage points also quantize
their respective shells from r, 2r, . . . , rmaxquant or less if the
size of the ring is smaller. We have indicated only some of these
within-shell quantizations at the next level down to avoid an
excessively crowded figure. At each level, quantization within a
shell by a subvantage point removes its associated data from the
list of available samples within the shell so that when additional
vantage points are added to the shell, they must only quantize
and sort the residual points in the shell. As indicated above,
this process iterates so that each shell is eventually divided into
subshells until all data resides within r of a subvantage point. In
an average sense, we can expect that there will be O(log(N))
levels in a typical tree in the Forest.

Once a Vantage Point Forest is constructed, the query to
find the neighbors of a sample vector first identifies which
hyperspherical shells of the top-level trees in the Vantage Point
Forest could be overlapped by a hypersphere of radius r about
the query sample (Fig. 2). For example, Fig. 2 shows an
enlargement of one of the top-level trees and its associated
rings. For this tree, a query denoted by an X is shown along
with its associated hyperspherical neighborhood radius. From
the figure, we can see that the neighborhood ofX overlaps three
of the first-level rings of a tree. Within these shells, the query
then iteratively determines which overlapped shells are within
less than r of their corresponding subvantage point. For those
that are, the query determines which subset is actually within
r of the query sample using the distance metric. Otherwise,
for shells that are overlapped and are further than r away
from the corresponding subvantage point, the query determines
which sub-subvantage points are overlapped at the next sublevel
down. Thus, gathering of the samples in the neighborhood
of the query sample occurs at each ending branch, wherein
only samples within r of the subvantage point reside and are
potentially overlapped with a small number of comparisons to
actually be made between the samples in these shells and the

query sample. In Fig. 2, at the next level down, note that there
are eight subvantage point overlapped regions. Of these, only
one contains points all within r of their respective subvantage
points, so seven of these regions will have to be explored
recursively. In summary, all overlapped rings must be explored
recursively through the forest until all overlapped regions are
within r of their respective subvantage points.

Fig. 2 shows the typical scaling of this Vantage Point
Forest algorithm as the number of samples N in the hyper-
spectral subset is varied. For comparison, Fig. 2 also shows
the O(N2 log(N)) behavior of the previously used exhaustive
search algorithm that compares each query sample with all
other samples to determine which are within the neighborhood
of the query sample. Note that r and rmaxquant were held fixed
for all points on the curve in Fig. 2. Thus, for the Vantage Point
Forests, the number of top-level trees varied with the particular
random samples used to choose source nodes for each tree in the
forest and with the density of points that changed as the data set
size grew. The variation of the number of trees in the forest was
not over a large scale. Fig. 2 shows that the Vantage Point Forest
scales nearly linearly for most of its range. Curves are derived
from subsets of a PROBE2 HSI scene of Smith Island, VA, on
October 18, 2001, using 114 of 124 bands in the analysis with
r = 0.02 and rmaxquant = 0.08. Timing results were obtained
on an Athlon64 3000 + 2.0-GHz processor.

The following scaling argument suggests why the Vantage
Point Forest scales nearly linearly. We choose rmaxquant rel-
ative to a given r such that v � N , but not so small that
v ∼ 1. If necessary, we can also control v to make sure that
it is independent of N by adjusting rmaxquant. The algorithm
is constructive at each level, so for instance, for the first tree at
the top level of the forest, we can expect to do the sorting in
O(N log(N)) time. For the next top-level tree, we are left with,
on average, O(N −N/v) points, so the sorting takes O((N −
N/v) log(N −N/v)) time. Likewise, for the third tree at the
top level of the forest, the time is O((N − 2(N/v)) log(N −
2(N/v))), and so forth. Therefore, taken together, the process-
ing time for the v trees at the top level of the forest is, on
average, O(N log(N)) time since N/v � N . At the next level
down, i.e., for each of the trees in each ring (shell), we have only
N/v2 samples in each ring on average. Across the forest, we
assume that each of the v vantage points at this level across all
of the trees will each have in turn v sub-VP-Trees, although in
practice the further down we go in the Forest levels, the number
of subvantage points will eventually die out as we reach the
bottom of the Forest and exhaust all points. Nevertheless, in an
average sense, at the second level of the forest, we can expect
O(v2) trees; therefore, repeating the same argument used at
the first level, we would expect to be able to sort all of these
second-level trees in the rings in O(v2(N/v2) log(N/v2)) ∼
O(N log(N)). At the next level down, repeating the same
argument, we find O(v3) trees each with O(N/v3) samples in
each, so we can expect to sort at this third level of the forest in
O(v3(N/v3) log(N/v3)) ∼ O(N log(N)) time, and so forth.
As noted earlier, we can expect that the number of levels in
the Forest will be nlevels ∼ O(log(N)); therefore, the total
computational time will be O(N log2(N)). For the range of
samples that we will need to process, which will be of O(105)
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in the “modified backbone” presented in Section II-H, we find
O(N log2(N)) ≈ O(N), as shown in the curve in Fig. 2. We
note that the nearest-neighbors search of the Vantage Point
Forest is exact. The time saving arises from the tree structure
that rapidly excludes distant pixels from further consideration.

C. Improved Scaling of Geodesic Distance
Graph Calculations

An improvement to the processing speed and memory
requirements associated with ISOMAP was described in
[23]. The improved method chooses a set of “landmarks”
(L-ISOMAP) from which all of the manifold geodesic distances
dG are calculated. This forms an L×N geodesic distance
matrix with L� N . The symmetric submatrix dL of distances
between landmarks is an L× L matrix whose eigenvalues and
eigenvectors form the basis of the embedding of the manifold
coordinates. Note that so long as the sampled landmarks span
the space of the embedded manifold coordinates, the landmark
distances are sufficient to calculate the manifold coordinate
system. Note also that the eigenvector and eigenvalue problem
of a large N ×N matrix has been replaced by a smaller
L× L problem. As before, the second-order variation in dL is
computed according to

τL = −1
2
HTSLH (7)

where (SL)ij = ((dL)ij)2. Once the most significant eigenval-
ues and eigenvectors of τL have been determined, the manifold
coordinates of the remaining nonlandmark samples can be com-
puted by a simple linear transformation since their distances to
the landmark positions are all known, i.e.,

Mi(�x) = PL ∗ (∆̄i − ∆i) (8)

where Mi(�x) is the embedded manifold coordinate of the
spectral sample �x, P is a matrix whose ith row is

(PL)i =
(�vL)i√
(λL)i

(9)

where (�vL)i and (λL)i are the ith eigenvector and eigenvalue of
τL, ∆̄i = ELj

(((dL)LiLj
)2) is the mean squared distance from

the ith landmark to all other landmarks, and ∆ij = ((dG)Lij)
2

is the squared distance from sample j to the ith landmark.
The Landmarks approach allows two major simplifications

of ISOMAP: First, the N ×N distance matrix is reduced to an
L×N distance matrix with the number of landmarks L� N .
Memory usage now scales as O(LN) rather than O(N2), and
CPU time scales asO(LN log(N)) rather thanO(N2 log(N)).
Second, the iterative eigensolver is replaced by a more stable
“exact” eigensolver [31]. CPU time to extract the manifold co-
ordinates drops from O(N2) to O(LN + L3), where L� N .
Therefore, considerable (CPU) time and effort can be put into

finding appropriate landmarks without significantly affecting
the total CPU time or memory storage requirements. Several
landmark selection algorithms were compared [20] and were
implemented within our data structure.

D. New Landmark Selection Criteria: Skeletonization

The selection of landmarks becomes a critical problem in
large remote-sensing scenes. In previous publications related
to other applications [23], the selection of landmarks is done
randomly. There is potentially a fundamental difficulty with
this approach because it implies that high-density regions will
be predominant when a small landmark set is chosen. It is,
after all, the goal to use as few landmarks as possible from
both computational and memory storage perspectives. In HSI,
such as in the examples presented in this paper, there are large
variations in the local density of points. This is particularly true
for instances when terrestrial and water samples are compared.
In some HSIs with which we have experimented, we have found
local spectral densities that vary by as much as an order of
magnitude in spectral angle. From first principles, the manifold
coordinate system should cover the geometric form of the data
rather than its local density. Otherwise, low-density dimensions
may be missed, and these may contain important information
for classification purposes.

One way to achieve this is to choose landmarks in such a way
that they cover this geometric structure in a spatially uniform
way. We call this approach “skeletonization” and implement it
by constructing a list of all samples, then iteratively selecting
a random point from the data set, finding all neighbors from
within a prespecified radius, and removing these neighbors
from the list. As before, note that we can achieve this quickly in
O(LN log(N)) time for the L landmarks by constructing and
querying a Vantage Point Forest.

Another risk of using a random selection criterion is that
sparse regions of the data space may be unsampled or un-
dersampled and therefore not spanned in the final manifold
coordinate system obtained. The process of skeletonization
overcomes this by ensuring that even sparsely populated mani-
fold coordinate dimensions will be spanned. Another advantage
of the skeletonization method of selecting landmarks is that
anomalous spectra will tend to be spread further away precisely
because the full convoluted structure of the manifold will be
found. Likewise, dissimilar spectra will be farther apart, and
there is less risk of the so-called “short circuits” in which a
portion of the manifold folds on itself due to inaccurate path
estimation.

Note that there are some other potential ways to implement
skeletonization. In particular, we have also used a density-based
approach in which at each step we remove up to a maximum
number of samples from the list at each iteration. By setting
r sufficiently large in the Vantage Point Forest, we can ensure
that each landmark will have constant density around it. Note
that this uses a concept similar to what is found in conformal
ISOMAP [23], where the distance metric is replaced by a
conformal definition that assumes the distribution has constant
density in the transformed data prior to further processing
by ISOMAP. The uniform assumption may be too restrictive
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in some applications, and it is unclear whether it is justified
for HSI imagery. Nevertheless, it is a way to address data sets
such as HSI in which there can be large variations in local
spectral density.

E. FASTPATCH: New Method for Patching Isolated Samples
in Geodesic Distance Calculations of ISOMAP and Variants

The original ISOMAP method had no self-consistent way of
dealing with samples that remain disconnected from the geo-
desic distance graph after the Dijkstra algorithm has completed,
except possibly to ignore these samples altogether. This is not
an option for remote-sensing applications that demand that
the whole scene be processed. We have developed a patching
algorithm that ensures that all points will be self-consistently
connected to the geodesic distance graph. The method con-
sists of inserting a step prior to the general geodesic distance
calculation. All samples are self-consistently attached to the
first sample (the choice of source point is arbitrary). In this
method, we recursively connect the closest disconnected point
not on the graph via one or more links and then call the Dijkstra
shortest paths algorithm. We repeat this process until all points
are connected to the first sample via shortest paths. We call
this patching algorithm FASTPATCH. Note that in the ENH-
ISOMAP method description, we can choose the first landmark
to be the source point. This procedure augments the sparse
neighborhood graph dG by a minimal set of new connections
sufficient to interconnect the full set of N samples.

F. More Flexible Neighborhood Definition

In HSI, variations in density naturally arise, leading to larger
intersample spacings for some categories than for others. This
occurs in our coastal HSI, where, for instance, the spectral
separation between pairs of water samples is, on average, larger
than for many land categories. A logical objective, therefore, is
to establish a more flexible definition of the neighborhood. One
solution is a conformal version of ISOMAP described in [23].
On the other hand, a simple alternative consists of combining
the absolute-r and k-neighbor limits first specified in [53]. A
hybrid neighborhood definition (Table II) that we have used
successfully to accommodate these variations in coastal HSI is
defined as follows: Define a nominal search radius r, usually
close to the radius of the smallest neighborhoods (i.e., cate-
gories for which spectral separation is small) to avoid losing
detail. To accommodate data categories where there is high
density, limit the number of neighbors to the kmax closest.
Likewise, for low-density areas, if necessary, expand the neigh-
borhood radius definition to encompass at least kmin neighbors.
Note that to implement the latter, we can create several Vantage
Point Forests at different radii, e.g., r, 2r, 3r, . . ., etc. If no
matches are found within the nominal Vantage Point Forest at
radius r, try the next Forest at radius 2r, and so forth. If none
of the Forests returns at least kmin neighbors, then, as a last
resort, perform an exhaustive search for that sample. Although
this falls short of a precise estimate of the true size of the
linear region about each point (neighborhood definition), it is
nonetheless an improvement.

G. Variation: Accounting for Noisy Data

Noisy data pose a risk to any methodology involving mul-
tidimensional scaling, which, of course, is at the heart of
ISOMAP and its variants. In HSI imagery, sensor noise can
degrade performance, especially when landmarks are used in
the estimation of the manifold coordinates. In linear mixing, it
is common to use some methodology to reduce noise prior to
estimating end-members. For example, as implemented in the
commercial software package ENVI/IDL [48], the pixel purity
index method of identifying end-members [16]–[18] is usually
preceded by the application of the MNF [33] transformation of
the data cube. Naturally, with the use of landmarks in ENH-
ISOMAP and the extension to full scenes presented later in
this paper, we are led to consider the utility of preceding the
manifold calculation by some means of smoothing. Although
not the only method available, one possibility is to use the
MNF transform and then calculate the manifold coordinates of
the MNF-transformed data using ENH-ISOMAP. A question
that naturally arises is: given that MNF reduces the noise and
achieves a certain level of separability of data categories, does
the hybrid approach yield a better level of separation of the
data? We address this in Section III-A. We note that smoothing
prior to applying the manifold estimation algorithm has been
considered in other applications such as face recognition using
another estimation technique similar to ISOMAP, known as the
Laplacian Eigenmap [34].

H. Estimating the Global Manifold: Modified Backbone
Method of Scaling and Merging Manifold Coordinates

Although the pseudoinverse procedure described in [8] pro-
duces a practical solution to the problem of scaling manifold
coordinate representations to the required scale of O(106)
pixels or greater, it does sometimes produce artifacts ([8, Fig. 6]
and Fig. 3 of this paper), such as visible seams or slight tonal
shifts between merged tiles. There are several causes of these
artifacts in the “pseudoinverse reconstruction” method.

For example, the subsets to be merged may have slightly
different underlying manifold embedding eigenspectra, even
for subsets constructed with random sampling. The effect of
this is the potential for a small but visually apparent torquing
of the manifold sheets from the two different subsets, which
appears as a seam if the subsets are contiguous tiles [8], or as
graininess if random sampling is used. Another problem with
the pseudoinverse method is that it relies on a smaller subset of
points to be mapped from one subset to the other. For sparsely
populated dimensions, this is a potential problem because lower
order manifold coordinates will have more artifacts, a feature
that we have observed. Although these problems can be mit-
igated somewhat with larger data sets, a better solution exists
that overcomes these artifacts. The solution is the modified
backbone method that we now describe.

The modified backbone method involves first obtaining a
sufficiently large subset of the data that represents the typical
spectral variation present in the data set. This can be obtained
by random sampling, decimation, active sampling, or simply by
manually extracting representative scene subsets. In practice,
we find that between 10% and 33% of the hyperspectral scene
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Fig. 3. (Bottom) Manifold coordinates for a subset of (top) a PROBE2 hyperspectral scene of Hog Island, VA, on October 18, 2001, revealing
details about species-level spatial distributions. Shown: manifold coordinates 10-11-12. Manifold coordinates were optimized using Landmarks ISOMAP for
two tiles, which were rows of size 75 × 825 and 75 × 750 pixels (only the land subset of these tiles is shown here). The manifold coordinates were aligned
using the pseudoinverse method described in [8]. Note the presence of small horizontal seams at the boundary between the two tiles in the middle of manifold
coordinates 10-11-12 toward the edge of the scene.

may be sufficient to produce a usable product; it depends
on the scene complexity and the level of detail required by
the application. The next step is to obtain a set of manifold
coordinates for the backbone subset using ENH-ISOMAP and
then insert the remaining data into the backbone manifold
coordinate system using a reconstruction principle similar to
one used in local linear embedding (LLE) [47]. The difference
here is that we insert into a globally optimized manifold co-
ordinate system derived from a large representative backbone.
The reconstruction principle uses the fact that the manifold is
locally linear so that, for sample vectorXi not in the backbone,
its reconstruction, denoted X ′

i in the original full hyperspectral
input data space, is a simple linear combination of neighboring
points in the backbone, denoted Bj , i.e.,

X ′
i =

∑
neighbors j

WijBj . (10)

The same transformation set of weights must apply in the
reduced manifold coordinates

m′(Xi) =
∑

neighbors j

Wijm(Bj). (11)

In (10), we use the fast Vantage Point Forest method that we
also incorporated into ENH-ISOMAP.

We obtain the reconstruction weights W in a different man-
ner than that originally described in [47]. In our approach, we
directly obtain the weightsW by inverting (10) using the eigen-
vectors and eigenvalues of the covariance matrix formed from

the difference vectors between the sample to be reconstructed
and its neighbors, i.e.,

�dj = �Xi − �Bj . (12)

With this definition, the covariance matrix of interest is

Cjk = �dj ∗ �dk (13)

for which the solution to the reconstruction weights is

Wi =
∑

k C
−1
ik∑

j

∑
k C

−1
jk

(14)

with

C−1
jk = V QV T (15)

where V is a matrix whose columns are the eigenvectors of the
matrix C, and Q is a matrix that is zero on the off diagonal,
with diagonal entries equal to the inverse of the eigenvalues

Qii =
1
λi

and Qij = 0 for i �= j. (16)

The solution to (12)–(16) can be obtained from a variety
of standard numerical methods for determining eigenvalues,
eigenvectors, and inverse matrices, e.g., singular value decom-
position, QR decomposition, or LU decomposition.

We term the above method, in which a large representa-
tive backbone manifold coordinate is obtained using ENH-
ISOMAP, and all other points are inserted into the backbone via
reconstruction, the modified backbone method. Note that with
the modified backbone approach, only a single eigenspectrum

Authorized licensed use limited to: Univ of Puerto Rico Mayaguez - Library. Downloaded on January 27, 2009 at 11:07 from IEEE Xplore.  Restrictions apply.



2796 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 10, OCTOBER 2006

Fig. 4. Our “modified backbone” approach incorporating ENH-ISOMAP.

is computed, so statistical variations in sample-to-sample eigen-
spectra are eliminated as a potential source of artifacts in the
global manifold product. Also, by reconstructing all remaining
points via neighbors in the backbone, errors, if they do occur,
will be localized rather than producing global seams, as seen
in the pseudoinverse approach. With the reconstruction-based
modified backbone, the overall quality of the global manifold
improves as the sample size of the backbone increases.

We have now defined the critical steps necessary to achieve
a solution to the problem of constructing the manifold coordi-
nates for large hyperspectral scenes of O(106) or greater. The
approach is the modified backbone algorithm described above
and shown schematically in Fig. 4. There are three critical steps,
namely 1) extraction of a sufficiently representative subset of
the data (in practice 10%–33% is sufficient), which can be quite
large (∼100 000–300 000 or greater); 2) the use of our new
ENH-ISOMAP method to optimize the manifold coordinates
rapidly and without exhausting typical computer memory; and
3) the insertion of the samples not in the backbone into the
backbone manifold coordinate system using the reconstruction
principle first described in (10) and (11). To obtain the recon-
struction weights, we construct the inverse of (10) by inverting
the covariance matrix from its eigenvalues and eigenvectors [as
described in (12)–(16)].

III. RESULTS

A. Example: Classification of Coastal Land-Cover

In [8], we demonstrated that the original ISOMAP algo-
rithm could be used to separate two spectrally similar cate-
gories (Scirpus spp. and Phragmites australis, an invasive plant
species) in HSI imagery of Smith Island, VA. The problem
of choosing the best classifier has also been addressed with
the original ISOMAP algorithm in [21] in Hyperion imagery
and in other application areas such as phoneme recognition,
handwritten text recognition, and text classification [15]. As
noted earlier, none of these previous works address the issue
of scaling to large sample scenes, which is the subject of
this paper.

In this section, we return to a PROBE2 hyperspectral scene
of Smith Island, VA, from October 18, 2001, and ground truth
that we obtained through extensive field validation [5]–[7].
This data set was the basis of results we obtained for the classi-
fication of coastal land-cover using machine learning methods.
To evaluate ENH-ISOMAP, this time, we used a larger set
of surveyed categories than in [8]. In what follows, we have
chosen a large set of regions of interest (ROIs) determined from
the differential GPS (DGPS) survey data. In this first example,
we focus on the southern end of the island, where a large
portion of the ground truth was obtained. Of the 19 categories
used in our earlier classification experiments [5]–[7], 18 are re-
presented in our survey data for the southern end of the island.
In addition, subsequent survey efforts that we have made have
allowed us to divide one of the previous categories into two sep-
arate ones in the upland (Pine versus Pine/Hardwood complex).
One additional category was identified in a follow-up survey
and is included in the classification experiment of this subsec-
tion. The 20 categories used in our test are shown in Table III.

We compared the separability of the surveyed regions of
the first 19 categories (the original categories described in
earlier publications) in Table III for MNF, ENH-ISOMAP, and
an MNF/ENH-ISOMAP hybrid. The hybrid was used to first
reduce noise before optimizing the data manifold coordinates.
For the MNF case, 30 components were extracted, and for
the MNF/ENH-ISOMAP hybrid, 30 MNF components were
extracted and then used as the basis for constructing a set of
30 manifold coordinates. In [8], we used small data subsets,
roughly 10 000 samples, with the original ISOMAP algorithm
to show the potential for improved data compression over MNF.
In contrast, in this paper, we extracted manifold coordinates for
the entire southern end of the island (excluding the lagoon and
ocean), a total of 261 000 samples.

The separability measure chosen was the Jeffries–Matsushita
(JM) distance [43], [52] between the set of surveyed regions of
each category treated as group and the group of ROIs for each
of the other categories. The JM distance between two classes is
given by

Jij =
√

2(1 − e−α) (17)
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TABLE III
TERRESTRIAL CATEGORIES FOR PROBE2 HSI IMAGERY TESTS, SMITH ISLAND, VA, OCTOBER 18, 2001. BASED ON GPS AND

DGPS SURVEYS. FORMAT: LATIN NAME, COMMON NAME, NUMBER OF SPECTRAL SAMPLES IN TESTS

with

α=
1
8
(µi − µj)T

(
Ci+Cj

2

)−1

(µi−µj)+
1
2

ln

(
|Ci+Cj |

2
√|Ci||Cj |

)
(18)

where Ci is the covariance matrix of category i, |Ci| is its
determinant, and µi is its associated mean vector.

We consider here the question of what happens once the
manifold coordinates are applied to an MNF-transformed HSI
data. For the present example of 261 000 samples, we ob-
tained a rank graph from worst to best separation for the
first three components of the MNF representation and of the
ENH-ISOMAP manifold coordinates when the data had been
presmoothed by MNF. Fig. 5 shows the rank graphs using the
JM distance measure for the first three components of MNF
and the MNF/ENH-ISOMAP hybrid. Note that the ∼60 least
separable pairs of categories are more separable under this
measure for MNF/ENH-ISOMAP than for MNF alone when
three components are retained. MNF/ENH-ISOMAP always
achieves better separation of the categories than MNF alone,
and the effect is larger when fewer components are retained.
This is an important benefit in cases where compression of data
may be a consideration. We performed a set of simple clas-
sification experiments with a maximum-likelihood classifier
for both MNF and MNF/ENH-ISOMAP representations for all
20 categories in Table III. The number of retained components
was varied, and trials were formed by constructing a 50%
stratified random sample across the 20 categories; we made
two exceptions to the percentages due to smaller sample size
in two of the categories. The choice of classifier was made
for the sake of simplicity, not through an exhaustive search of
possibilities. There are some potential limitations of this choice.
For instance, we implicitly assume that the individual cate-
gory representations do not contain disjoint subdistributions or
multiple modes. Nevertheless, we can use this widely accepted
method to indicate some general trends in the representation.

We found that when fewer components were retained (the
dominant components in each representation), the MNF/ENH-
ISOMAP hybrid correctly identified a significantly larger
fraction of pixels. For example, with just three components
retained, the fraction of pixels correctly classified was 56.15%
± 0.41% for the hybrid compared with 46.68% ± 0.40% for
MNF. This is consistent with the earlier observations made
about category separability in the dominant components for the
JM distance measures used earlier. Likewise, it is consistent

with our earlier observations about the potential for hyper-
spectral data compression with the original ISOMAP algorithm
[8], [11], and [12]. As the number of components increased,
the average performance of the two methods begin to merge.
At the other end of the continuum, for 30 components, the
MNF result is slightly higher than the hybrid: 88.88% ± 0.31%
(MNF) versus 85.39% ± 0.34% (MNF/ENH-ISOMAP). The
smaller loss in performance for a larger number of components
in the hybrid is probably due to three factors. The first is
the approximation of geodesic distances using landmarks. The
second is the relatively simple assumption about neighborhood
size that exists within all ISOMAP implementations, including
ENH-ISOMAP. Both of these factors contribute to inaccuracies
in our estimate of the true curvature of the geodesic surfaces of
the original data space. The approximation errors are smaller
effects, so they are more likely to appear in the lower order
components. The third factor is the choice of classifier and
is related to the fact that some distributions may appear with
multiple modes.

B. Global Manifold Products

An example of the modified backbone approach applied to
the full PROBE2 airborne hyperspectral scene [5], [7] of a
barrier island on Virginia’s eastern shore is shown in Fig. 6.
A subset of this scene was used in the previous feature analysis
and classification results.

The full input hyperspectral scene contained 124 spec-
tral channels, and there were ∼1.8 × 106 spectral samples.
Examples of RGB plots of combinations of the 20 manifold
coordinates extracted in this example are shown in Fig. 6 for
the full scene. In this case, the backbone manifold coordinates
were constructed from a subset containing roughly 12% of
the scene. There were 219 357 spectral sample vectors each of
124 dimensions in the backbone, and using ENH-ISOMAP on
an Athlon64 3000+ 2.2-GHz processor, the time to calculate
the manifold coordinates was 40.4 min, roughly two-thirds of
an hour. The time to insert the samples not in the backbone
into the backbone by deriving their manifold coordinates via
reconstruction was 3.75 h, again on the same computer. Thus,
the total processing time on a single CPU in this example
was 4.4 h.1

1In the examples presented here, we also reconstructed the original back-
bone, which added roughly an additional 17 min of processing time
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Fig. 5. Rank graphs of JM distances for category pairs in Table III using surveyed regions from PROBE2 HSI scene. Along x axis: worst to best separable
pair. (Top) First 130 ranked of pairs of 171 possible pairs, MNF versus MNF/ENH-ISOMAP hybrid for the first three components. Scatterplots: corresponding
separation of one of the pairs, Pine/Hardwood Complex (red) versus Myrica cerifera shrub (cyan). (Bottom, left) MNF, JM distance = 0.539. (Bottom, right)
MNF/ENH-ISOMAP Hybrid, JM distance = 1.387.

Note that in a parallel processing implementation, the time
to insert the samples into the backbone, i.e., to derive their
coordinates in the backbone manifold coordinate system, would
scale as ∼ 1/NCPUs since the backbone itself is not mod-
ified during the reconstruction. This would be achieved by
sending copies of the backbone full spectral cube, its asso-
ciated Vantage Point Forests, and its corresponding manifold
coordinates to each processor. From the portion of the data
not already calculated in the backbone, each processor would
also receive only one subset of the full spectral data of the
scene, disjoint from the other full spectral subsets received
by the other CPUs. Each CPU would be responsible for re-
constructing just that single subset in the backbone manifold
coordinate system. Thus, for example, the 3.75 h that it took
to complete the calculation of the manifold coordinates of
the nonbackbone samples on a single CPU computer would

take approximately 3.5 min on a 64-processor multiprocessor
system with the same CPU speed. This estimate assumes that
all CPUs were used and ignores the overhead needed to send
copies of the various subsets to each processor and retrieve
the results.

A detail from some of these manifold coordinate combina-
tions is shown in Figs. 7 and 8, which depict, respectively,
coordinates 1-2-3 and 7-8-9 for both the manifold coordinate
representation and the MNF representation. Note that unlike
the earlier classification example that dealt with only the ter-
restrial portion of the data, the manifold in this example was
not preprocessed by MNF. Figs. 7 and 8 show the RGBs
of these coordinate representations for a subset of the full
scene near a delta at the inlet to a tidal creek, as well as
the surrounding marsh, dunes, grasslands, beach, and ocean
and lagoonal waters. Figs. 6–8 show the highly significant
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Fig. 6. Full-scene manifold coordinates derived using the modified backbone approach. (Top, left) RGB from PROBE2 scene of Smith Island, VA, October 18,
2001. (Top, right) Manifold coordinates 1-2-3. (Bottom, left) Manifold coordinates 7-8-9. (Bottom, right) Manifold coordinates 13-14-15.

structure revealed in the water, land, and land/water margin by
the manifold coordinate representations. Note the rich detail
in the water column, which may be related to both bathymet-
ric structure as well as in-water constituents [12], [13]. Note
that the manifold coordinates provide greater detail, especially
in the delta, the shallow waters near the lagoonal shore, and
in the adjacent tidal creeks. This is consistent with similar
results that we have obtained with PHILLS [25] HSI in the
Indian River Lagoon, FL [12]. In that study, we showed that
significantly greater detail could be found with the manifold
coordinate representation when compared with MNF, and the
resulting coordinates strongly correlated with the in-water
properties such as bathymetry. Subsequently, we have shown
that parameterization and prediction of bathymetry [13] with
global manifold products can be obtained with good accu-
racy. Indeed, in the present example, it appears likely that
bathymetric structure, bottom type, and in-water constituents
may all be represented in the manifold coordinates. The land

portion of the manifold coordinates also provides a particularly
detailed delineation of marsh, dune, scrub–shrub, and grassland
structure.

IV. CONCLUSION AND SUMMARY

Our prior efforts [8] to develop a global manifold for hyper-
spectral scenes of sizeO(106) −O(107) pixels contained some
fundamental limitations due to both scaling and sampling. We
had relied primarily on a pseudoinverse reconstruction tech-
nique that aligned the estimated manifold coordinate systems
from small subsets. Although feasible, the approach produced
some artifacts, which motivated us to develop the improved
methodology described in this paper. In this paper, we took
a number of specific steps that included improving the scal-
ing of the ISOMAP algorithm itself by incorporating a new
method, i.e., Vantage Point Forests, for the rapid initialization
of sparse graph neighborhoods used in the geodesic distance
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Fig. 7. (Top) Detail from Fig. 6 showing manifold coordinates 1-2-3 in the vicinity of a mid-island delta near tidal creek, beach, dunes, scrub–shrub, grassland
vegetation, lagoonal waters, and ocean. (Bottom) Linear MNF coordinates 1-2-3 for the same region.

calculation. This guarantees computational scaling no worse
than O(N log2(N)), but in practice, in many instances, it
achieves nearly linear scaling behavior. The improvements
also incorporated previous efforts described in [23], where
an approximate means of circumventing the high compu-
tational and memory cost of calculating all N ×N geo-
desic distances was described. The latter replaced the full
N ×N geodesic distance problem with a smaller embed-
ded problem of finding all geodesic distances to a set of
“landmarks.” Our ENH-ISOMAP algorithm incorporated our
Vantage Point Forests algorithm, landmarks ISOMAP, and
other modifications. One of these was related to patching iso-
lated points, our FASTPATCH algorithm, in a self-consistent
manner prior to undertaking the geodesic distance calcula-

tion, and a more flexible neighborhood definition that incor-
porated aspects of the absolute radius and K-neighbor defini-
tions previously used in [53]. Likewise, we have also described
an improved landmark selection process, i.e., skeletonization.
With ENH-ISOMAP, it is now possible to calculate manifold
coordinates for subsets with O(105) samples, which is an im-
provement of an order of magnitude. With the backbone recon-
struction (modified backbone algorithm) that we also developed
in this paper, this solution for O(105) samples can readily be
extended to usual scene sizes of O(106) samples or greater.

One potential drawback to our overall solution is the use
of landmarks, which may not fully span the original space if
too few landmarks are used. This is again a sampling issue
because for the landmarks approximation to work, we must be
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Fig. 8. (Top) Detail from Fig. 6 showing manifold coordinates 7-8-9 in the vicinity of a mid-island delta near tidal creek, beach, dunes, scrub–shrub, grassland
vegetation, lagoonal waters, and ocean. (Bottom) Linear MNF coordinates 7-8-9 for the same region.

able to guarantee that even sparsely populated dimensions will
be fully spanned by the landmarks in the manifold coordinate
space. Failure to span these dimensions properly will result in
poor performance of subdominant categories in classification
experiments. It also suggests a strategy for the future, which
is to define a method for landmark selection that results in a
guarantee that all dimensions in the linear embedding space
are fully spanned. The skeletonization procedure described in

this paper is one such landmark selection approach, but there
may be ways to improve it. Another potential drawback is the
sampling associated with the backbone. In the examples that
we have provided, a reasonable result was produced, but the
degree of accuracy required in the reconstruction process may
depend on the downstream use of the manifold product. Never-
theless, the concrete results that we have produced for full scene
manifolds of size O(106) suggest the tremendous potential of
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our new method now that it can be applied effectively to these
scales and larger.

Our specific examples demonstrated that the manifold coor-
dinate system provides a very powerful delineation of in-scene
constituents. Of particular note was the fact that the shallow wa-
ters in our coastal scene example were much more effectively
delineated when compared with traditional linear processing
such as MNF [33], revealing greater information potentially
related to bathymetric structure and in-water constituents. The
latter is not surprising given the results that we have previously
described in relation to the improved compression capabilities
of manifold coordinate representations over that of traditional
linear methods [8], [12]. The approach to developing full scene
manifolds presented in this paper has also been used as the basis
of estimating bathymetry from HSI imagery [13].

In this paper, we also described the results of some simple
land-cover classification experiments from coastal HSI imagery
using maximum likelihood. We found that when only the domi-
nant features of the ENH-ISOMAP representation were used,
significantly better classification performance was achieved
compared with MNF. For experiments retaining a larger number
of components, MNF was only slightly better. The latter was
probably principally the result of 1) the approximation errors
introduced by the use of landmarks, 2) the imperfect estimate
of local neighborhood size present in all ISOMAP variants, and
3) possibly the choice of classifier and the assumption of uni-
modal category distributions. The improved results with ENH-
ISOMAP for fewer components also served to further illustrate
the potential for better compression that we first addressed in
[8] with the original ISOMAP algorithm.

Calculation of a manifold coordinate system from the geo-
desic distances between pixels of the underlying nonlinear
hyperspectral data manifold provides a compact representa-
tion of the hyperspectral information. These new coordinates
inherently incorporate the correlations between the various
hyperspectral channels and, therefore, provide an efficient and
convenient set of coordinates for image classification and target
and anomaly detection.
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