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Abstract—A new algorithm for exploiting the nonlinear struc-
ture of hyperspectral imagery is developed and compared against
the de facto standard of linear mixing. This new approach seeks
a manifold coordinate system that preserves geodesic distances
in the high-dimensional hyperspectral data space. Algorithms
for deriving manifold coordinates, such as isometric mapping
(ISOMAP), have been developed for other applications. ISOMAP
guarantees a globally optimal solution, but is computationally
practical only for small datasets because of computational and
memory requirements. Here, we develop a hybrid technique to
circumvent ISOMAP’s computational cost. We divide the scene
into a set of smaller tiles. The manifolds derived from the indi-
vidual tiles are then aligned and stitched together to recomplete
the scene. Several alignment methods are discussed. This hybrid
approach exploits the fact that ISOMAP guarantees a globally
optimal solution for each tile and the presumed similarity of the
manifold structures derived from different tiles. Using land-cover
classification of hyperspectral imagery in the Virginia Coast Re-
serve as a test case, we show that the new manifold representation
provides better separation of spectrally similar classes than one of
the standard linear mixing models. Additionally, we demonstrate
that this technique provides a natural data compression scheme,
which dramatically reduces the number of components needed
to model hyperspectral data when compared with traditional
methods such as the minimum noise fraction transform.

Index Terms—Airborne Visible Imaging Spectrometer
(AVIRIS), bidirectional reflectance distribution function (BRDF),
compression, Cuprite, geodesic distance, hyperspectral, isometric
mapping (ISOMAP), land-cover classification, linear mixture,
local linear embedding (LLE), manifold coordinates, nonlinearity,
PROBE2, Virginia Coast Reserve.

I. BACKGROUND AND INTRODUCTION

FOR MANY years, linear mixing [10]–[15], [19], [29], [32],
[43], [46] and “best band” combinations have been de facto

standards in the analysis of spectral data, especially hyperspec-
tral. The “best band” approach relies on the presence of narrow-
band features that may be characteristic of a particular category
of interest [17], [18] or on known physical characteristics of
broad classes of data, e.g., vegetation indices [45]. On the other
hand, the underlying assumptions of linear mixing are that each
pixel in a scene may be decomposed into a finite number of con-
stituent endmembers, which represent the purest pixels in the
scene. A number of algorithms have been developed and have
become standards; these include the pixel purity index (PPI)
[12], ORASIS [13]–[15], [19], N-Finder [46], and iterative spec-
tral unmixing [43].
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Although the use of endmembers and indexes based on
narrowband features have yielded very useful results, these ap-
proaches largely ignore the inherent nonlinear characteristics of
hyperspectral data. There are multiple sources of nonlinearity.
One of the more significant sources, especially in land-cover
classification applications, stems from the nonlinear nature of
scattering as described in the bidirectional reflectance distri-
bution function (BRDF) [22], [37]. In land-cover applications,
BRDF effects lead to variations in the spectral reflectance of a
particular category as a function of position in the landscape,
depending on the local geometry. Factors that play a role in
determining BRDF effects include the optical characteristics
of the canopy, canopy gap function, leaf area index (LAI), and
leaf angle distribution (LAD) [37]. It also has been observed that
wavelengths with the smallest reflectance exhibit the largest non-
linear variations [37]. Another source of nonlinearity, especially
in coastal environments such as coastal wetlands, arises from
the variable presence of water in pixels as a function of position
in the landscape. Water is an inherently nonlinear attenuating
medium [30]. Other effects that contribute to nonlinearities in-
clude multiple scattering within a pixel and the heterogeneity
of subpixel constituents [26], [34]. In some instances, nonlinear
interactions have been modeled explicitly [24], [30], [31], [44].

Recently, a number of papers that address the problem of
modeling nonlinear data structure have appeared in the statis-
tical pattern recognition literature [1], [2], [21], [33], [35], [36],
[42]. Each of these approaches represents an attempt to derive a
coordinate system that resides on (parameterizes) the nonlinear
data manifold itself. All of these approaches are data-driven al-
gorithms, not physical or phenomenological models. Neverthe-
less, they are a very powerful new class of algorithms that can
be brought to bear on many high-dimensional applications that
exhibit nonlinear structure, e.g., the analysis of remote sensing
imagery [3], [4]. One of the first of these approaches to ap-
pear—isometric mapping (ISOMAP) [42]—determines a glob-
ally optimal coordinate system for the nonlinear data manifold,
but it is only practical for small datasets because the dominant
computation is based on a determination of all pairwise dis-
tances and minimal path distances between all points, which
scales as , where is the number of data samples (in
our case, the number of pixels in a hyperspectral flight-line or
subset). A subsequent paper [8] showed that the computational
scaling can be improved to using Dijkstra’s al-
gorithm [20], [38]. Another significant computational challenge
is that ISOMAP memory requirements scale as , because
ISOMAP requires the extraction of dominant eigenvectors of an

geodesic distance matrix.
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An alternative approach, local linear embedding (LLE) [35],
[36] describes the manifold by modeling each data point as
a linear combination of its neighbors; this approach exploits
the fundamental property that a manifold is locally linear. Like
ISOMAP, it defines a neighborhood in terms of an absolute
distance scale, or in terms of number of neighbors, where lin-
earity is expected to be true. An embedding is determined by
noting that the same geometric properties of neighborhood re-
construction should apply equally well to an embeded lower
dimensional description up to an affine transformation (trans-
lation, rotation, and rescaling). Like the Dijkstra implementa-
tion of ISOMAP, the largest computational operations in LLE
also scale as ; however, LLE is not guaranteed
to discover the optimal global coordinate system and appears
to be more vulnerable to noise (see response of Tenenbaum, de
Silva, and Langford in [8]). The fastest available approach for
estimating manifold coordinates is stochastic proximity embed-
ding (SPE) [1], [2], [33] because its fundamental computational
burden scales as ; however, the simplifying assumptions
that appear in estimating geodesic distances and the embedded
approximation appear to be too weak and have lead to degen-
erate solutions when applied to hyperspectral data and even in
some very simple, artificial problems.

In order to derive manifold coordinate systems for hyper-
spectral imagery on a practical scale, where the number of
pixels in a typical flightline in our study area is or
greater, we adopt a divide, conquer, and merge strategy. Specif-
ically, we first divide the scene into a set of nonoverlapping
tiles where ISOMAP can derive an optimal coordinate system
in a relatively short time with modest memory requirements.
The global scene manifold is then obtained by merging the tile
manifolds. We discuss several methods of aligning manifolds
below. We also examine the relative merits of ISOMAP for both
compression and classification. The remainder of our paper is
organized as follows. In Section II, we first describe practical
examples that motivate us to look for manifold representations
and then describe the specific manifold algorithms on which
our approach is based. In Section III, we demonstrate that
ISOMAP provides a significantly more compact description
of hyperspectral data than the minimum noise fraction (MNF)
[23] transform, a widely used linear method for noise reduction
and compression of hyperspectral data. Section IV shows
that ISOMAP provides better discrimination than one of the
standard linear mixing models [13]–[15] for an example with
spectrally similar classes. In Section V, we describe ways to
scale these manifold algorithms to large remote sensing scenes
by aligning manifolds. Section VI shows the results of these
scaling efforts. In Section VII, we show one strategy for au-
tomating manifold alignment, and in Section VIII, we describe
the potential for parallel implementations of the new approach.
Finally, in Section IX, we summarize and draw conclusions.

II. MANIFOLD COORDINATE SYSTEMS AND

HYPERSPECTRAL DATA

A. Motivation for a Manifold Coordinate Sytem

In the introduction, we noted that it is the inherently nonlinear
characteristic of hyperspectral data that motivates us to consider
methods for identifying a set of coordinates that parameterize

the data manifold. We cited a number of sources of these non-
linearities: BRDF, nonlinear media such as water, multiple scat-
tering, and the heterogeneity of pixels. In a hyperspectral scene
containing natural vegetation, the nonlinear characteristics are
immediately apparent in many three-channel scatterplots. Fig. 1
illustrates this point, showing three-channel scatter plots from
two subsets of a 124-channel PROBE2 hyperspectral scene de-
scribed in greater detail in [5] and [7]. Choosing any three chan-
nels will provide a different view of the high-dimensional data
manifold. The goal is to derive a coordinate system that resides
on (parameterizes) the data manifold itself, following its intri-
cate and convoluted structure with the hope of achieving a better
data representation for classification and/or compression pur-
poses. Fig. 1 also illustates this. In particular, we replace a linear
notion of similarity, in which simple linear distance (e.g., linear
distance from an endmember) describes distances between all
pairs of sample points, with the concept of geodesic distance,
in which distance is measured by tracing the trajectory of the
data manifold. This is equivalent to finding a coordinate system
that resides on the manifold and measuring similarity by es-
timating geodesic distance along the manifold itself. A corol-
lary to this is that if we can discover such a manifold coordi-
nate system, then the geodesic distance along the manifold is
just the linear distance in the manifold coordinate system. In
what follows, we provide examples using both spectral angle
and Euclidean distance for the local metric, while past exposi-
tions of these algorithms have typically chosen only Euclidean
distance as the input distance metric. Nevertheless, the same
arguments apply. When estimating geodesic distances, the dis-
tance metric is only applied in a small, locally linear neighbor-
hood. Distances to samples outside the local neighborhood of
a particular sample are calculated by linking the shortest paths
through points common to more than one neighborhood. There-
fore, one other commonly used metric, the Mahalanobis dis-
tance, which is frequently applied in classification and detection
problems in hyperspectral imagery analysis [16], cannot be ap-
plied in the context that is often used. Because the Mahalanobis
distance implies the calculation of an associated scene covari-
ance matrix, its use would require aggregation of samples that
are not within the linear region of the manifold. The only way
to apply it within the context of geodesic distance estimation
would be to restrict the covariance matrix to those pixels lying
within the locally linear neighborhood of a given pixel and pro-
ducing a neighborhood covariance matrix for each point. While
this is possible, it is certainly more computationally expensive.
Since the distance metric is only evaluated locally, and far away
geodesic distances are calculated using graph algorithms, the
specific choice of local metric is less important. Regardless of
the choice of local distance metric, the remainder of the algo-
rithm as described here has the same form. Our purpose here is
not to decide which is the best choice of metric for locally linear
neighborhoods, but rather to present the general framework for
estimating geodesic distances over an inherently nonlinear data
manifold.

B. Manifolds: Formal Definitions

Either explicitly or implicitly, the most fundamental property
that is usually exploited in manifold algorithms is that locally a
manifold looks like a Euclidean space. This is essentially what
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Fig. 1. (Top left) Scatter plot of channels 14, 57, and 108 (0.6278, 1.2862, 2.2165 �m) from (top right) a subset (uplands, marshes, dunes, and beach) of a
124-channel PROBE2 airborne hyperspectral flightline over Smith Island, VA, October 18, 2001. The scatterplot reveals the nonlinear structure of the data manifold.
Note curves and significant gaps in the interior of the distribution. (Middle right) Conceptual view of a manifold coordinate system that resides on (parametrizes)
the manifold, so that distance is measured along the trajectory of the manifold rather than the “short-circuit” linear distance typically used to measure distance
and similarity. In contrast, also shown (middle left) are typical endmembers found by convex hull analysis, where linear proximity to each endmember determines
percentage of each constituent in the model. (Bottom left) Lagoonal region in same scene with subtidal flat outlined (channels 15, 9, 3 shown: 0.6278, 0.5528,
0.4704 �m). (Bottom middle) Enlargement of the subtidal zone and color-coded profile corresponding to (bottom right) scatterplot of channels 14, 29, 70 (0.6278,
0.8572, 1.4962 �m) showing distribution with curvature. The color-coded arc probably corresponds to depth in subtidal flat.
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is meant by the definition of a “ -dimensional topological man-
ifold,” where, formally, we require that for each point in the
manifold , there is an open subset with , for which
there exists a homeomorphic mapping that maps into a -di-
mensional open subset in a -dimensional Euclidean space

[41]

(1)

It is this open subset that we identify as the “neighborhood”
in algorithms included in this paper.

C. ISOMAP

Of the extant methods for estimating a global manifold coor-
dinate system, ISOMAP [42] is the only one for which a globally
optimal solution can be guaranteed. In the original ISOMAP,
all Euclidean distances between pairs of data sample points

and are calculated. Using the notation in [42], a con-
nected graph of distances is first determined. When-
ever samples and lie within a neighborhood defined by
an absolute distance scale (epsilon-ISOMAP) or by a set of

nearest neighbors (K-ISOMAP), ; initially,
all other are set to . As previously discussed, while
the original algorithm was introduced with a Euclidean distance
metric, there is no reason in principle that other distance metrics
cannot be applied. The distance metric could be any reasonable
choice appropriate to the application at hand. In hyperspectral
applications, we might choose the spectral angle, since this mit-
igates the effects of variable illumination [27]. Note that inside
the neighborhood, the graph and manifold distances
are the same [ ] using the fact that the man-
ifold is assumed to be linear within a neighborhood. Once the
graph has been initialized in this manner, the remaining esti-
mated manifold distances outside of the neighborhood
are computed. An exhaustive iterative method known as Floyd’s
algorithm [28], which scales as , is optimal for dense
graphs. For sparse initial graphs, often the situation in many
practical applications, the scaling can be improved by using
Dijkstra’s algorithm [8]. The term sparse means that the number
of edges (number of edges initially ) between pairs of
samples is small compared to the square of the number of graph
vertices , which is also the square of the number of sam-
ples, . The edges of the sparse initial graph are the distances
to those points that lie within a neighborhood of each other. If
the neighborhood is chosen to be small, a desirable feature to
ensure local linearity, then the initial graph will be sparse and
Dijkstra’s algorithm is the better choice. The improvement in
scaling can be quantified by considering a result found in [38]:
for the all-pairs shortest path problem using Dijkstra’s algorithm
with a minimum priority queue implemented with a -way heap,
the processing time scales as with ,
when .1 Since, , and , where is
the mean number of neighbors,2 we obtain the
scaling quoted earlier. Note that this is a worst case upper bound,
and in practice, we have found that choosing a somewhat wider
heap with may sometimes yield improved run times.

1For E=V < 2, d = 2, and the scaling is O(V log (V )).
2The factor of two arises because each edge appears twice between each pair

in the calculation of m.

In the Floyd implementation, the following update rule is
used for all samples:

(2)

The Dijkstra algorithm uses the same “relaxation” rule for
edges, but the choice of which edges are relaxed at each it-
eration is controlled by a minimum priority queue [38], [39].
Because of the sorting that takes place in the queue, many un-
necessary comparisons that are made in the Floyd algorithm are
omitted by Dijkstra, and for sparse initial graphs, this provides
the speed up in processing time. On the other
hand, if the graph is initially dense, the sorting actually results
in longer processing times for the Dijkstra algorithm compared
to the Floyd algorithm. For the applications we consider here,
the density of the graph is controlled by the neighborhood size
set by the user (the in -ISOMAP or the number of neighbors
K in K-ISOMAP), and in practice a sparse graph is obtained.

When all points have been exhausted, will con-
tain the shortest distances along the manifold between any
two points and and will be the best estimate of the
true manifold distances for a particular choice of
neighborhood size. Note that (2) and the initialization phase
described above take advantage of the local properties of the
neighborhood and the triangle inequality to determine the
shortest path distances on the manifold. In [42], it is pointed
out that one or more pockets of points may be isolated from
the main distribution, in which case some distances remain
infinite at the termination of the geodesic distance estimation.
These disconnected points can either be omitted as outliers or
attached in some self-consistent manner. In our implementation
of ISOMAP, we handle disconnected pairs of points by looking
for the closest disconnected pair of points (closest in the sense
of the distance metric); the pair is reconnected to the graph
using this distance, and then an attempt is made to attach the
remaining set of disconnected pairs through the reconnected
pair. This is self-consistent because an isolated pocket of points
may have been fully connected within the pocket but not to the
main distribution, so establishing the closest link to the main
distribution allows known geodesic distances in the main distri-
bution and in the pocket to be connected, while preserving the
internal geodesic structure of each. If there are more than two
disconnected pockets, the process is repeated until all points
are reconnected. This process generates the minimum spanning
tree that connects the isolated pockets of points. We use this
approach because it ensures that no data are excluded from the
analysis, and because it maintains the principle of minimum
path geodesic distance between pockets of disconnected points.

Once the graph has been determined, the new coordinate
system is determined by applying a multidimensional scaling
algorithm to determine eigenvectors in the embedded linear
space characterized by . Specifically, let and be the th
eigenvector and eigenvalue of the transformed distance graph
matrix

(3)

where is defined by

(4)
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and is a “centering matrix,” given by

(5)

where is the Kronecker delta function. Then, the matrix
measures the second-order variation in the geodesic distance be-
tween a pairs of sample vectors, and the final embedded mani-
fold coordinates are given by

(6)

Note that the eigenvectors diagonalize the matrix ,
so these vectors are -dimensional, where is the number of
pixels in the dataset, and there are at most such vectors. Typ-
ically, however, we will be interested in a substantially smaller
number of components. From the eigenspectrum of the matrix

, we will find that the intrinsic manifold dimension of our hy-
perspectral datasets is substantially smaller than the input di-
mensionality (number of samples ). Iterative eigensolvers are
appropriate for large matrices, when only a small subset of the
eigenvectors is actually required. We use the Jacobi–Davidson
QR (JDQR) [9], [40] iterative eigensolver because it is consid-
ered to be among the more reliable methods.

D. Local Linear Embedding

Local linear embedding (LLE) was first proposed in [35]. The
basic idea is to construct a locally linear model for each sample
vector in terms of its neighbors. On the data manifold, any suf-
ficiently small region will be locally linear, so we can expect to
be able to reconstruct any point within a neighborhood from the
set of other points within that neighborhood. For sample vector

(using the notation found in [35]), the reconstruction of
is a simple linear combination of neighboring points

(7)

where

(8)

if and are not neighbors. Roweis and Saul note that this form
is invariant to any neighborhood-preserving transformation ac-
complished by rotation, translation, or rescaling. The funda-
mental concept is that if the manifold is lower dimensional than
the original data space, then this same reconstruction should
hold within the neighborhood, either in the original coordinates
or the reduced manifold coordinate system. Thus, if is the
manifold coordinate representation for sample vector , then we
also have

(9)

Once the weights in (7) are found by a least squares minimiza-
tion proceedure, these same weights are used to solve for the
manifold coordinates in (9). Additional constraints are added
that ensure that the covariance matrix of the embedding vec-
tors is normalized to unity to prevent degeneracies and that

the manifold coordinates are centered about the origin. The re-
constuction error in the manifold coordinate system, which is
minimized to obtain the coordinates , has the form

(10)

With the additional constraints, this can be written as

(11)

Like the Dijkstra implementation of ISOMAP, the scaling of
LLE computationally is only , but this is still
large when is the number of pixels in, for example, a large
hyperspectral scene.

E. Summary

Of the main approaches to modeling manifolds, the only ap-
proach that yields a globally optimal solution is ISOMAP. Nev-
ertheless, since its dominant computational burden scales as

and memory requirement scales as , it
is not a practical solution in its present form for typical remote
sensing data, only for very small subsets. In Section V, we de-
velop a new approach based on ISOMAP that is scalable to large
remote sensing scenes. As a prelude, in Section III we com-
pare ISOMAP with MNF, a widely used standard for removing
noise and compressing data in hyperspectral datasets [23], and
in Section IV, we compare the relative effectiveness of ISOMAP
and one of the standard linear mixing models in distinguishing
spectrally similar classes.

III. RESULTS FOR HYPERSPECTRAL DATA COMPRESSION:
MANIFOLD COORDINATES VERSUS MNF

In [42], improved data compression of ISOMAP over tradi-
tional linear approaches based on principal component analysis
(PCA) and multidimensional scaling (MDS) was demonstrated
for several applications, including hand-written character recog-
nition and face recognition under variable pose and illumination
conditions. The principal reason for improved compression is
that, by deriving an embedded coordinate system, the under-
lying nonlinear characteristics of the data manifold are more
naturally and compactly represented by ISOMAP than by linear
approaches. We have obtained similar results for hyperspectral
data as we now illustrate.

MNF [23] has become a de-facto standard for reduction of
noise and redundancy in hyperspectral and other remote sensing
data sources and appears as a standard option in commercial
global information system packages. MNF, a linear transform
method, calculates a set of ordered principal axes, which are
ranked by signal-to-noise ratio (image quality); it can be viewed
as a noise-whitened PCA analysis. In Fig. 2, we compare eigen-
spectra normalized by the first eigenvalue for three image
subsets, contrasting MNF with ISOMAP. The examples in the
figure are derived for: [Fig. 2(a)] a vegetated land-cover tile (an
upland and marsh zone) from the PROBE2 scene previously
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Fig. 2. Normalized eigenspectra (log scale) � =� comparing classical MNF approach to ISOMAP manifold coordinates for two different neighborhood radii
of 0.02 and 0.04 rad (neighborhood distance metric was spectral angle). ISOMAP curves show dramatically larger compression rates for (left) a tile with upland
and marsh land-cover and (middle) a turbid water tile with submerged clam nets (middle) from PROBE2 scene with 124 spectral channels (114 channels used in
analysis). (Right) The same comparison for a tile from a 1997 AVIRIS scene of Cuprite, NV (using 192 of 224 spectral channels in the analysis). (Photo insets)
RGB of channels 15–9-3 (0.646, 0.553, 0.460 �m) for PROBE2 and channels 28–19-10 (0.636, 0.547, 0.458 �m) for AVIRIS.

described, [Fig. 2(b)] a shallow water region containing sus-
pended clam nets from the same scene, and [Fig. 2(c)] a non-
vegetated region in a 1997 Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) scene of Cuprite, NV. In all cases, the
eigenspectra show that the vast majority of the variation in the
data is captured in the first 5–15 ISOMAP components, while
to achieve the same level of accuracy, the vast majority of the
MNF components must be retained.

IV. MANIFOLD REPRESENTATIONS OF

HYPERSPECTRAL SCENE TILES

In this section, we turn our attention to the effectiveness of
the manifold coordinate representation in separating spectrally
similar classes and compare it with one of the standard linear
mixing models [13]–[15], [32]. The example that we use here is
the separation of spectrally similar vegetation in coastal vegeta-
tion mapping; however, as the previous section on compression
demonstrated, the range of potential applications is diverse.

In earlier papers, we have described different approaches
to classifying barrier island land-cover from airborne hyper-
spectral data emphasizing machine learning approaches and
multiclassifier fusion concepts [5]–[7] on a large scale. One
source of errors in these models stems from the confusion of
spectrally similar vegetation such as Phragmites australis, an
invasive wetland reed, and Scirpus spp., a sedge. Although the
two plants are not similar morphologically, during the fall when
the PROBE2 scene described in Fig. 1 was acquired, the brown
tassle of Phragmites and brown seed pods of Scirpus combine
with the stalk vegetation and partially exposed subcanopy to
produce a spectrally similar return (Fig. 3). A conjecture was
that this might be resolved using a more traditional linear

mixing approach, but this has not proved to be the case. We
compared the ISOMAP algorithm with linear mixing for this
problem. In Fig. 3, we show a 100 100 pixel section of the
scene with superimposed differential GPS (DGPS) ground truth
survey data for known locations of Phragmites and Scirpus. In
the same figure, we show the result of classifying the second,
third, and fourth components of both a linear mixing approach
(ORASIS [13]–[15], [32]) and ISOMAP. Note that the term
“component” in the case of linear mixing refers to an ordering
of the demixed endmembers in terms of the degree of data vari-
ability in the direction of the endmember. We examine these
components because the compression results of Section III
suggest that the manifold representation may be more compact
than linear methods, so we look for separation of spectrally
similar classes in some of the most significant components.
The classification proceeded using spectra at known locations
from the DGPS survey as seeds. In each representation, we
proceeded conservatively, choosing only the areas where the
category seeds were isolated from each other in the linear mix-
ture or ISOMAP representations. Adjacent points were then
assigned to the class of the closest seed. The resulting classifi-
cation is shown in Fig. 3. For both the ORASIS and ISOMAP
representation, we chose the set of three components in which
the best separation between Phragmites and Scirpus data
samples was observed. The results show that adjacent points
in the ISOMAP representation map directly to other points of
the same category; however, the linear mixing case produces
false alarms in the backdune, in a swale entirely dominated by
Scirpus in the top of the 100 100 subset, and in the bottom left
corner of the subset near one of the seed zones. We emphasize
that although both ORASIS and ISOMAP scatter plots had
regions where the ground truth spectra partially overlapped, the
classification proceeded from seeds where there was
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Fig. 3. Comparison of the ORASIS linear mixture model and ISOMAP for spectrally similar vegetation classes Phragmites australis and Scirpus spp. for
representative hyperspectral scene tile with (top left) DGPS survey zones of (yellow lines) Phragmites australis and (white lines) Scirpus spp. superimposed.
(Top right) Mean and mean plus or minus standard deviation curves for one of the seed regions for each class: (red) Phragmites and (blue) Scirpus. (Middle row)
Scatterplots of components 2-3-4 for each representation with (red) Phragmites seed regions and (cyan) Scirpus seed regions. These zones were used as seed
samples for classification of the linear mixture representation and an ISOMAP coordinate representation of the tile. Using the DGPS circumscribed pixels as seeds,
the representations were classified only in areas where the two distributions were disjoint. Shown: intermediate stage of classification with outlines indicating
subregions where points will be assigned to enclosed seed category. (Bottom row) The results were redisplayed on the original tile, showing three distinct regions
with Phragmites false alarms generated by the linear mixing model in the upper left corner of the image in a Scirpus-dominated swale, in the backdune and beach
(lower right corner of image), and adjacent to the seed Phragmites pixels in the lower left. ISOMAP eliminates these errors.
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TABLE I
SCALING OF �-ISOMAP, PENTIUM IV PROCESSOR, 3.06 GHz

no overlap between the two categories. Thus, the false alarms in
classifying the ORASIS representation occur because adjacent
pixels from other land-cover types are immediately adjacent to
the seed pixels, while in the ISOMAP representation, the pixels
immediately adjacent belonged to the same class. Therefore, the
ISOMAP classification did not have the same problem with false
alarms. This implies that nonlinear correlations between spec-
tral channels exist and are better separated by a representation
that directly parameterizes these nonlinearities. While this ex-
ample can hardly be deemed a complete proof that one repre-
sentation is better than another, solving a previously unsolved
problem on a small scale suggests that the goal of scaling a man-
ifold representation up to the level of the scene is worthy of in-
vestigation. In Section V, we turn our attention to the problem
of scaling the manifold representation to scales that are practical
for remote sensing applications.

V. SCALING TO LARGE-SCALE REMOTE SENSING DATASETS

It is scaling that prevents the direct application of the
globally optimal ISOMAP algorithm to large remote sensing

datasets. We want the optimal coordinates of ISOMAP but not
its computational complexity and especially not its memory
requirements, which make direct application impractical for
scenes of even modest size. Table I gives some typical times
and memory requirements for the dominant calculations in
the ISOMAP approach for two hyperspectral tiles decribed in
Section III, the vegetated land tile derived from the PROBE2
scene, and the nonvegetated tile from the 1997 AVIRIS Cuprite
scene. The strategy that we adopt here is one of dividing,
conquering, and merging. ISOMAP can be applied readily
to small tiles within a scene to achieve a globally optimal
coordinate system within each tile. The challenge, however,
is to derive a globally consistent manifold coordinate system,
so that manifold distances from points in one tile to points in
another disjoint tile will be accurate.

One approach would be to augment each tile with a small
common set of data tie-points. These tie-points would then
allow the manifold from one tile to be transformed into the
manifold coordinate system of any other tile. Let be the
matrix of coordinates of the tie-points in the th tile mani-
fold, and let be their coordinates in the th tile manifold.
Then, the coordinate transformation from the th tile to the
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th tile coordinate system can be rapidly estimated using the
pseudoinverse [25]

(12)

Note that the size of both matrices is , where is the
dimensionality of the derived manifold coordinate system. If an
offset is allowed, then the matrices are .

A second approach might be to define a small decimated data
cube from the original scene by random sampling. The hope is
that such an approach would provide enough samples that rep-
resent the global space of possible spectral samples, so that the
tile manifolds could be spliced onto this “backbone.” By design,
we can insist that the backbone input data cube be formed by ob-
taining a fixed number of random samples from each tile. The
common points then act as guideposts that will allow a change
of coordinates from the local tile manifold to the globally co-
ordinated backbone manifold. Let be the coordinates of the
th tile manifold, and let be the coordinates of the same points

in the backbone manifold. Then, the coordinate transformation
from the tile manifold coordinate system to the backbone mani-
fold coordinate system, can be rapidly estimated using the pseu-
doinverse as before

(13)

In practice, we find that sampling is the limiting factor for
the “backbone” approach. For sparse samples, it is necessary
to choose large neighborhood radii in order to get a consistent
backbone manifold; with such a manifold, when the tiles are
warped to the backbone coordinate system, the local features
found in tile manifolds tend to be blurred in the first coordi-
nates, and lower coordinates may be lost. The only way to over-
come these limitations is to ensure that the backbone has a large
enough sample space. However, we want to avoid the scaling
problems associated with deriving manifold coordinates, so this
limits the number of samples that we can allow, and therefore
the number of tiles from which we can hope to derive a sufficient
sample size. In practice, this does not preclude us from using a
backbone concept to align the manifolds of a smaller number of
tiles on a more local basis, but practical application over a large
scene could be computationally expensive.

A third alternative strategy returns us to the fundamental con-
cept behind the manifold, namely that on the manifold the data is
locally linear. Indeed, we saw LLE took advantage of this local
linearity in both the manifold coordinate system and in the orig-
inal data space, to construct local linear embedding transforma-
tions that preserve neighbood geometry. Now, suppose that we
have optimized manifold coordinates for tile using ISOMAP
and that we extract a random fraction of samples from an adja-
cent tile that has also been optimized by ISOMAP. For sample

from tile , let be the manifold coordinate and the co-
ordinates in the full spectral space (the original spectrum). Pre-
suming that adjacent tiles have enough data of similar type, we
can expect that a good fraction of these points will have neigh-
bors in the full spectral space. We search for neighbors of
in the full spectral space of tile . Let these neighbors of
in the full spectral space of tile be denoted by . Whenever
we encounter less than neighbors in the full spectral space,
we reject this point for later use in the mapping that we want to
construct from the manifold coordinates of tile to tile . For

Fig. 4. Hybrid approach to merging manifold coordinates. Tiles derived from
the scene are optimized separately using ISOMAP. Merging of a pair of tiles T
and T uses the local reconstruction properties of LLE to map a selected sample
of points from one manifold coordinate system to the other. A pseudoinverse is
then constructed to map the entire manifold from one tile to the other.

each point with a sufficient number of neighbors, we now solve
for the least squares reconstruction weights of in the
full spectral space of tile using the neighboring samples ,
as was done in the LLE algorithm described earlier. As we saw
earlier, because LLE is a neighborhood-preserving transforma-
tion, we can now construct the manifold coordinates of in
tile , which we denote by , using the weights derived
for the neighbors in the full spectral space. Once we have done
this for a sufficient sample of points, we can then construct a
transformation matrix from the manifold coordinates of tile ,

to those of tile ,

(14)

again using the pseudoinverse

(15)

where is the matrix of manifold coordinate samples
from tile , and is the corresponding set of coordinates
constructed in the manifold coordinate system of tile using
LLE insertion. These steps are summarized in Fig. 4.

VI. RESULTS: ALIGNING TILE MANIFOLDS

A 124-channel PROBE2 airborne hyperspectral scene of
Smith Island, VA acquired on October 18, 2001 [5], [7] was par-
titioned into a set of 75 75 pixel tiles. For each tile, ISOMAP
was used to derive an optimal tile manifold coordinate system.
All three approaches to merging tile manifold coordinates were
evaluated using this data.

The advantage of the approach that uses an LLE reconstruc-
tion of a limited set of points and then the pseudoinverse is that
it scales as , where is the number of points needed
to construct the mapping from one tile to an adjacent one, and
this is typically a small number. In the tests that we performed
with 75 75 tiles, we were successful in merging tiles using
300 pixels in the mapping. In contrast, the backbone approach
requires significantly more samples to work because, in effect,
we must create an entirely new representative manifold. For the
backbone approach, we found that nearly 50% of the samples
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Fig. 5. Merging manifold coordinates. (Upper left) RGB subset derived from original PROBE2 hyperspectral scene, Smith Island, VA, showing nine adjacent
tiles. (Upper right, top row) RGB of manifold coordinates derived for each tile using ISOMAP prior to alignment, from left to right: coordinates 1-2-3, 4-5-6,
7-8-9. (Middle row) RGB with stretch, showing same manifold coordinates after alignment using the pseudoinverse LLE mapping. (Bottom row) Same without
stretch highlighting surf zone.

from each tile in a two-tile merge were required to ensure a
merge with a minimum of discontinuities. Because the back-
bone approach is sample-limited, and optimization of the back-
bone manifold scales the same way that the tiles do computa-
tionally, this makes it less attractive for merging a large number
of tiles. The tie-point approach suffered from similar scaling
issues. If a sparse set of tie-points samples are employed, this
tends to create isolated pockets in the distance graph, which ul-
timately led to poor matching. Overcoming this requires a large
number of tie-points, which leads to long computational times.

Fig. 5 shows a set of nine tiles derived from the hyperspec-
tral flightline. For each of these nine tiles, a manifold coor-
dinate system was derived using ISOMAP. As the top row of
the figure shows, the original tile manifolds show a rich struc-
ture, but the coordinate systems are not aligned. When the pseu-
doinverse LLE processing is applied to these using roughly 300
points, an excellent fit of the coordinate systems results. In this
example, all nine tiles ultimately were aligned to the tile in the
upper right corner. This proceeded in two stages. If the tiles are
numbered by consecutive rows, then, in the first stage, the sixth
and ninth tiles were each converted to the manifold coordinate
system of the eighth tile. These are the only tiles that show any
beach, dune, or surf. Then these two transformed tiles and all

the remaining tiles were aligned to the the manifold coordinate
system of the tile in the upper right corner. The logic behind this
relates to the types of land-cover found in specific tiles. In order
for the pseudoinverse LLE processing to be able to merge tiles
pairwise, the fraction of samples extracted from one tile in the
pair must have a sufficient number of neighbors in the original
full spectral space in order to construct the mapping. Note that
in the case of the ninth tile, there were not sufficient samples
found to construct a mapping that aligned the pixels in the surf
zone, which were not represented in the other tiles to any great
degree. For this reason, the aligned manifolds are shown with
two different stretch factors because these points could not be
mapped in a continuous manner and a larger number of pixels
were rejected by the pseudoinverse LLE processing during the
construction of the mapping. The surf zone is a distinct class
that is not spectrally close to any other class in the set of nine
tiles. This large distance is preserved when the tiles are merged.
The surf zone appears as an anomaly with respect to data in the
other tiles. The rejection of a large number of pixels by the pseu-
doinverse LLE processing also suggests how we can go about
constructing a metastrategy for merging individual tiles. When
a large rejection rate occurs, an automated version of this pro-
cessing is then instructed to search for other neighboring tiles
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Fig. 6. Automated alignment of manifold coordinates. (Upper left) Subset derived from PROBE2 hyperspectral scene of Hog Island, VA, from October 18, 2001,
showing a cross section of the island with salt marsh, uplands, brackish and fresh water marshes, dune grasslands, and beach. The subset was partitioned into fifteen
75� 75 tiles. (Upper right, top row) Conceptual view of a series of alignment steps made between tile manifold coordinates. The iterative algorithm proceeds by
attempting to align the leading edge tile of each graph (series of connected alignments) to the target tile, labeled “t.” (Middle and bottom rows) ISOMAP coordinates
before (left column) and after alignment (right column) for coordinates 1-2-3 (middle row) and coordinates 4-5-6 (bottom row).

in the immediate vicinity where a more reasonable number of
points could be used to merge. Conversely, if a merge is allowed,
the discontinuity in the manifold mapping allows for the map-
ping of anomalies in a scene.

VII. AUTOMATING THE ALIGNMENT OF TILE MANIFOLDS

We focus on one possible strategy, showing its strengths and
weaknesses and how improvements can be made. The basic idea
is to look for a series of alignment transformations that take
each tile manifold coordinate system to that of a target tile. If
a tile differs significantly from the target tile, a series of align-
ment steps must be made between intermediate tiles that share
common properties. We first look for a direct mapping to the
target tile. If the tile point reconstruction does not pass thresh-
olds for valid number of neighbors in the target tile and av-
erage reconstruction error, then we look for the best match in

a backbone directory of random points taken from each tile.
The same kinds of criteria are applied at this stage, except that
we allow for the possibility of expanding the matching neigh-
borhood radius between the tile and potential intermediate tiles
to ensure at least one valid “hop.” The procedure records each
hop for each source tile. As the procedure continues, a series of
chains, some of which ultimately link to each other, is formed
with various pathways to the target tile. These are a series of
linear transformations described in (14) and (15). Fig. 6 shows
a conceptual view of this alignment procedure.

Note in Fig. 6 that the majority of the scene is aligned quite
well. There are some small discontinuities at the interface be-
tween a few of the tiles. This occurs primarily because along the
manifold alignment trajectory for any particular tile, the tile may
not encounter a sufficient number of constraints to the mani-
fold coordinate orientation and scales for all possible land-cover
types. It also suggests strategies for improving the approach de-
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scribed in Fig. 6 by enforcing manifold continuity constraints
between adjacent tiles. Another alternative is also discussed in
Section VIII.

VIII. COMPUTATIONAL SCALING AND OPTIMIZATION

Subdividing a large hyperspectral flightline into a set of
smaller tiles permits application of (suboptimal) nonlinear
dimensionality techniques to the entire image. This paper is
driven by the desire to process large remote sensing images
and, simultaneously, overcome memory and computational
scaling obstacles. Precise values for the memory requirements
and computation times of the present algorithm are provided in
Table I. Here, we present a simple scaling analysis of the basic
computation and memory requirements.

Consider as an example an pixel problem divided into
tiles, each containing pixels. The manifold computation
for each tile scales as and requires
memory of bytes. The size of the calculated
distance graph determines the overall memory requirement.
Once all of the individual tiles are processed, splicing them
together scales computationally as , where
is the number of pixels per tile, and in the worst case,
pairs of tiles are tested to obtain a best-fit final result. Mini-
mizing the total run time and dropping constants and slowly
varying log terms yields . Using a typical value of

yields . Therefore, an optimal tile size is
. As seen in Table I, a 1-GB memory

restriction limits the maximum tile size to a square tile
approximately 110 pixels on a side. In this example, the optimal
tile size happens to nicely balance typical memory and runtime
constraints.

A simple parallelization involves a distributed architecture,
wherein each tile is processed by a separate processor. Using
the example above, this requires about 100 processors each with
access to GB of memory. The runtime to complete all of
the individual tiles is , and to splice the
tiles to one another is, in the worst case, . As-
suming the optimal number of tiles is chosen, the total par-
allel runtime scales roughly as . Again, only
the leading term is kept. Employing the same image size as
before ( ) implies that the tiling procedure improves
total runtime by as compared to the entire-
image-at-once calculation. Similarly, the memory requirements
of the tiling approach are reduced by a factor of . Thus,
subdividing large images makes these calculations feasible for
large hyperspectral scenes.

The caveats to the tiling approach and to the optimization cal-
culations involve sampling issues. First, the tile size must
be large enough to accurately represent the manifold of the local
region, and, second, each tile must sample enough of the global
manifold to represent all of the features of the full scene. At
present, the latter restriction appears more critical. Features that
are spatially correlated and appear in only one or two tiles may
not map nicely when the individual tiles are spliced together.
This is the source of some of the minor spatial discontinuities
in Fig. 6. A method that better samples the global manifold in-
volves subdividing the image by decimating rather than tiling.
However, the tiling approach employed here with well-defined

tile boundaries permits an easy, visual analysis of the continuity
of the manifold results across tile boundaries.

IX. CONCLUSION

We have motivated the need for a nonlinear coordinate de-
scription of hyperspectral remote sensing data, citing a number
of sources of nonlinearity such as subpixel heterogeneity and
multiple scattering, BRDF effects, and the presence of nonlinear
media such as water. The direct result of these is a fundamental
limit on the ability to discriminate, for instance, spectrally sim-
ilar vegetation such as Phragmites australis and Scirpus spp.
when a linear spectral coordinate system is assumed. Providing
examples from water and both vegetated and nonvegetated
land imagery, we demonstrated that the manifold coordinate
representation provides a more compact representation of
hyperspectral data than MNF, a standard linear transform used
in the analysis of hyperspectral imagery. On a small dataset
derived from an airborne hyperspectral scene, we compared
ISOMAP with one of the standard linear mixing models and
showed the potential of ISOMAP to improve the separability of
spectrally similar vegetation that typically causes false alarms
when a linear coordinate system is assumed. We have described
a number of data-driven algorithms for deriving nonlinear data
manifold coordinate systems, e.g., ISOMAP and LLE. The
only globally optimal algorithm is ISOMAP, which scales
computationally as with memory require-
ments of , making it impractical in its original form for
large remote sensing datasets. We have described a number of
practical strategies for overcoming these scaling issues. All of
these approaches relied on the ability to divide, conquer, and
merge smaller subsets of the remote sensing data. Each of the
approaches to scaling the representation began by dividing the
scene into a large number of computationally tractable tiles.
An optimal tile manifold coordinate system was then obtained
using ISOMAP, and then the goal was to align the manifold
coordinate system to a consistent set of global coordinates. All
of the approaches then relied on some set of common or similar
points to align the manifold coordinates systems. The most
computationally flexible and scalable approach to aligning
these coordinate systems aligned tiles in pairs, using a set of
random samples from one tile to construct a mapping of these
points to a nearby tile. This approach used the LLE recon-
struction algorithm to find the best mapping of one manifold
coordinate to another. Other alternatives that were explored
included optimization of a decimated backbone manifold to
which tile manifolds were aligned. The LLE pseudoinverse
merge of the ISOMAP optimized tiles scaled the best, since it
scales as , where is the number of points needed
to construct the mapping from one tile to an adjacent one, and

. The overall approach was demonstrated on nine
adjacent tiles in an airborne hyperspectral scene. A metas-
trategy for autoalignment of manifold tiles was also outlined
and demonstrated on a 15-tile example; areas for improvement
(small artifacts) were identified, and suggestions for mitigation
were described and will be the subject of future investigation.
General scaling analysis of our nonlinear dimensionality reduc-
tion algorithm revealed computation times of
for a parallel implementation using a distributed memory
architecture. Optimal tile size implies reasonable memory
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requirements that are available on present-day parallel com-
puters. Even serial implementations on a single CPU could
be potentially useful in some applications with present-day
workstations. Deriving a manifold coordinate system from the
geodesic distances between pixels of the underlying nonlinear
hyperspectral data manifold provides a compact representa-
tion of the hyperspectral information. These new coordinates
inherently incorporate the correlations between the various
hyperspectral channels and, therefore, provide an efficient and
convenient set of coordinates for image classification and target
and anomaly detection.
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