
High-Throughput VLSI Implementations of Iterative Decoders and
Related Code Construction Problems∗

Vijay Nagarajan†, Stefan Laendner†, Nikhil Jayakumar‡, Olgica Milenkovic†, and Sunil P. Khatri‡
†University of Colorado, Boulder

‡Texas A&M University, College Station

December 18, 2006

Abstract

We describe an efficient, fully-parallel Network of Programmable Logic Array (NPLA)-based realization of iterative
decoders for structured LDPC codes. The LDPC codes are developed in tandem with the underlying VLSI implementation
technique, without compromising chip design constraints.Two classes of codes are considered: one, based on combinato-
rial objects derived from difference sets and generalizations of non-averaging sequences, and another, based on progressive
edge-growth techniques. The proposed implementation reduces routing congestion, a major issue not addressed in prior
work. The operating power, delay and chip-size of the circuits are estimated, indicating that the proposed method sig-
nificantly outperforms presently used standard-cell basedarchitectures. The described LDPC designs can be modified to
accommodate widely different requirements, such as those arising in recording systems, as well as wireless and optical
data transmission devices.

Index Terms: Code Construction, Fully-Parallel VLSI implementation,Iterative Decoding, Low-Density Parity-Check

Codes, Network of PLAs

1 Introduction

One of the most prominent capacity-approaching error-control techniques in communication theory is coding with low-

density parity-check (LDPC) matrices, coupled with decoding of the form of belief propagation on a graphical represen-

tation of the code. Currently, long random-like LDPC codes offer the best quality error-control performance for a wide

range of standard channels [5, 6], channels with memory [10,15], and channels with inter-symbol interference (ISI) [19].

In addition to their excellent performance, LDPC codes havedecoders of complexity linear in their code length and of an

inherently parallel nature. This makes them amenable for implementation using parallel VLSI architectures. The primary

performance-limiting factor of most known parallel implementations is the complexity of the graph connectivity associated

with random-like LDPC codes. Additional problems arise from the fact that LDPC codes of random structure also require

large block sizes for good error correction performance, leading to prohibitively large chip sizes. Despite these bottlenecks,

there were several attempts to come up with high throughput implementations [3] and implementation-oriented code con-

structions [51, 52]. The drawbacks of most of these proposedtechniques are that the code-design and VLSI implementation

∗Part of this work was presented at Globecom 2004, Dallas, Texas. This work is supported in part by a fellowship from the Institute for Information
Transmission, University of Erlangen-Nuremberg, Germany, awarded to Stefan Laendner.

issues are considered in a somewhat decoupled manner, resulting in increased chip dimension and reduced data throughput.

As an example, the standard-cell based approach adopted in [3] has a die area of 7.5 mm x 7 mm for a rate 1/2 code; the

design strategy followed in that and other reports is based on choosing some known random or structured coding scheme,

and developing a good parallel, serial, or partly-parallelimplementation for it [3, 26, 51, 52]. Some of these strategies rely

on utilizing complicated optimization techniques that fail to be efficient for code lengths beyond several thousands. In ad-

dition, they do not address the need of high throughput, low-to-moderate redundancy codecs used in recording and optical

communication systems and some wireless architectures. For the applications mentioned above, the decoder is usually only

one part of a significantly larger system including other components such as channel detectors/estimators, timing recovery

circuits etc. Hence, it is very important to develop low hardware complexity coders/decoders that operate as efficient as

possible. Despite all the above described issues, no systematic investigation of different VLSI implementation problems

arising in the context of LDPC decoder and encoder design hasbeen performed so far.

We address the problem of LDPC code construction, analysis,and VLSI implementation from a different and signif-

icantly broader perspective. The crux of the proposed approach is that VLSI implementation-aware code design can lead

to an exceptional increase in data throughput and overall code performance by means of careful choices of VLSI imple-

mentation and circuit design techniques. In this context, ajoint optimization of code-related and hardware-imposed code

constraints is performed. The first set of constraints includes characteristics such as large girth and minimum distance of the

codes; the second set of constraints is related to VLSI issues such as routing congestion, cross-talk minimization, uniform

processing delay in one iteration, power conservation, andchip size reduction. For the purpose of fast prototyping, FPGA

implementations of the proposed coding scheme can be devised, relying only on thestructure of the code graphsand not

on the actual VLSI layout.

The proposed work is aimed at devising a fully parallel implementation based on NPLAs. Implementing a circuit using

a medium sized network of PLAs was shown to result in fast and area-efficient designs [20, 21]. As will be seen, the check

and variable nodes in an LDPC decoder can be decomposed into such a network configuration, resulting in a fully parallel

LDPC decoder architecture. This fully-parallel implementation also eliminates the need forstoring the code description -

the code structure is implicit in the wiring of the chip itself. The obtained implementation results indicate that PLA-based

designs have a very small chip size and low power consumptioneven for codes of long length and that they offer a high

level of operational flexibility. The system throughput is only limited by the rate at which the integrated circuit (IC) is able

to read in serial data, which is approximately 10Gbps in modern CMOS technology, but it could support order of magnitude

increased serial decoding rates as well. If however, the input data for the decoder is transferred to the data in parallel, then

our approach can deliver decoding rates of several hundredsof Gbps.

The rest of the paper is organized as follows. Section 2 discusses problems related to the design of structured LDPC

decoder integrated circuits (ICs). Section 3 presents an overview of one possible implementation approach. Section 4

introduces the technical details needed for describing theproposed VLSI architecture. Section 5 contains an overviewof

the proposed layout while section 6 explains the structure of the LDPC codes supporting the proposed layout. The chip

power, area, and throughput estimates are presented in section 7. Section 8 introduces generalized LDPC (GLDPC) codes

and related VLSI design issues, while section 9 describes some reconfigurability problems. Section 10 discusses possible

applications of the designed codecs while the concluding remarks are given in section 11.

2 LDPC Codes: Implementation bottlenecks

In 1963, Gallager [14] introduced a class of linear block codes known as low-density parity-check codes, endowed with

a very simple, yet efficient, decoding procedure1. These codes, popularly referred to as LDPC codes, are described in

terms of bipartite graphs. In the bipartite graph of a designed-rate 1−m/n code, them rows of the parity-check matrixH

represent check nodes (“right nodes”), while itsn columns represent variable nodes (“left nodes”). The edgesof the graph

are placed according to the non-zero entries in the parity-check matrix. If all variable nodes have the same degree, the code

is calledleft-regular. Similarly, if all check-nodes have the same degree, the code is termedright-regular. The decoding

complexity is directly proportional to the number of edges and hence to the number of ones in the parity-check matrix,

justifying the use of sparse matrices.

A consequence of the graphical representation of LDPC codesis that these codes can be efficiently decoded in an

iterative manner. More specifically, decoding is performedin terms of belief propagation (BP) [22, 37], with log-likelihood

ratios of bits and checks iteratively passed between the twoclasses of nodes until either all parity-check equations are

satisfied or a maximum number of iterations is reached. The iterations are initiated at the variable nodes, which usually

receive soft input information from the channel. At the end of message passing decoding, the bits are estimated based on the

final reliability information of the variable nodes. We mostly focus our attention on the sum-product version of the belief

propagation (BP) algorithm. The same type of design philosophy can be used for other classes of iterative algorithms, such

as min-sum decoding. Furthermore, the design methods proposed in this work can be applied to both regular and irregular

codes.

The operations performed at each variable and check node canbe summarized as follows:

Variable nodes (VN):

Denote2 the set of all neighboring check nodes incident to variable nodev asCv, the set of all variable nodes connected

to check nodec asVc, a message on an edge going from variable nodev to check nodec in the l th iteration asm(l)
vc , and a

message on the edge going from check nodec to variable nodev in thel th iteration asm(l)
cv . In this case, at each iteration of

1We assume that the reader is familiar with basic notions fromcoding theory. All definitions relevant for this work can be found in [25].
2In this section, we follow the notation in [37], p. 626.

the sum-product algorithm,m(l)
vc is computed as the sum of the channel information at variablenodev, m0, and the incoming

messagesm(l)
cv on the edges coming from all other check nodesc′ ∈Cv\{c} incident tov. Since there are no prior messages

from the check nodes at the zeroth iteration, the algorithm is initialized tom(0)
vc = m0. Formally,

m(l)
vc =







m0, if l = 0

m0 + ∑
c′∈Cv\{c}

m(l)
c′v, if l ≥ 1 , (1)

whereydenotes the channel output andp(y|x= i), i = 0,1 represents the channel transition statistics, whilem0 = log p(y|x=1)
p(y|x=0)

denotes the channel output log-likelihood ratio of the variablev.

Check nodes (CN):

From the duality principle [13] it follows that the messagem(l)
cv is computed based on the messages from all other incoming

edges at the previous iteration,m(l−1)
v′c , according to

tanh(m(l)
cv /2) = ∏

v′∈Vc\{v}
tanh(m(l−1)

v′c /2). (2)

The computations in Equation (2) will be referred to as thelog/tanhoperations.

The implementation bottlenecks of the decoding process canbe easily identified from the previous discussion, as sum-

marized below.

• Large wiring overhead and routing congestion of the code graph implementation.These problems become particu-

larly apparent for low-rate, long and random-like codes.

• Approximate computations performed at check nodes, involving tanh and arctanh functions.These approximations

have to be implemented for every incoming edge of a check nodeand they have a two-fold effect: first, they may

compromise the decoder performance, and second, they can lead to a large increase in the chip size.

• Finite precision arithmetic and finite computational time imposed on the hardware implementation.For many codes

these constraints have a significant impact on the error-correcting performance. Capacity-approaching random-like,

irregular codes [38] are usually very long and take a large number of iterations (typically around 1000) ([37],p. 624)

to converge to a stable solution. This has a significant bearing on the throughput of the implementation. On the other

hand, restricting the maximum number of iterations performed can in certain cases lead to significant degradations

of the error performance.

Current implementations fail to provide solutions to one ormore of these problems. Ideally, one would like to use codes

with near-capacity performance that also bound the worst-case (longest) wire length desired, and that have chip-area and

chip-delay characteristics as good as possible. Most knownapproaches for handling these obstacles deal with code design

and implementation problems as separate issues thereby leading to non-optimal solutions [3]3. Also, most known imple-

mentation schemes usestandard-cell circuitry. It was shown in [20, 21] that an implementation of a circuit using a network

of medium-sized PLAs has better area and delay characteristics compared to a standard cell design. Hence, we propose to

investigate PLA-based decoders and compare their performance with those of known standard-cell implementations.

3 The Proposed Approach: Structure and Full Parallelism

Our proposed implementation of afully-parallelLDPC decoding system utilizes extremely fast and area-efficient NPLAs [20,

21]. The major features of the proposed system are :

• Full parallelism with the code structure “embedded” in the wiring;

• Area and delay efficient implementation with PLAs;

• A unified approach of tackling the LDPC code design and VLSI implementation problem.

This approach can yield a throughput of the order of several hundred Gbps. As a consequence, it can be used in most

modern recording and wireless systems. Given the placementand routing constraints arising out of the NPLA architecture,

LDPC codes are tailor-made to meet these and performance-related constraints. Such an approach yields an overall solution

of the problem that demonstrates a significant improvement over prior attempts to implement LDPC codecs in VLSI.

4 LDPC Codec Architecture

4.1 Encoder Implementation

The central problem of the paper – a fully parallel decoder design – has to be viewed in the context of a scheme that

deals jointly with the encoding and decoding process. LDPCencodingcan be realized in terms of operations involving

matrix multiplications that can be implemented in terms of tree-based XOR operations in hardware. This ensures that

encoding delays for the codes investigated are logarithmicin the code length. Additionally, for certain LDPC codes of

the form presented in the forthcoming sections, encoders based on shift registers and addition units can be used as well.

In this setting, the parity check matrix itself is used for the encoding process. This significantly simplifies the overall

implementation of the codec, and as a consequence, the LDPC encoding process is not expected to present a stumbling

block of the architecture.

4.2 Decoder Implementation

In the proposed approach, the parallel nature of the iterative decoding process is directly exploited in the hardware imple-

mentation. Since each of the variable and check nodes makes use of information available from their counterparts only

3It is widely believed that the proprietary chip by Flarion Technologies [12](now Qualcomm) is a notable exception.

from the previous cycle, it is possible to let these units operate in parallel and complete their operations in one clock cycle.

The main challenge in this implementation is to reduce the complexity of the inter-connects. This problem is solved at

the code design level itself. The LDPC codes are hardwired into the chip and have a structure that results in small wiring

overhead. The fully parallel design helps avoid storing thecode parity-check matrix in a look-up table or some other way.

The hardware architectures used for the variable and check nodes of the decoder are described next.

4.2.1 Variable Node Architecture

The variable node operations are specified by Equation (1). The outgoing information through any edge is the sum of

the log-likelihood values of the channel information and the information coming into the variable node from all other

edges. Hence, at a variable node a series of additions of log-likelihood values is performed. The channel information and

check messages are quantized to values that can be represented by 5 bits. Extensive computer simulations show that 5-bit

quantization results in very small degradation of the decoder performance in the waterfall region [5, 31], for most types of

sufficiently long LDPC codes. Nevertheless, quantization can have a significant impact on the codes’ performance in the

error-floor region – see for example [33, 35, 46], but this issue will not be dealt with in this paper. Assuming 5-bit quantized

messages both from the channel and the checks, a total of⌈log(dv + 1)⌉+ 1 stages (levels) of two-input adders is needed

to perform the variable operations. For this purpose, Manchester adders described in [33] are used. At the beginning of the

evaluate period of a clock cycle, the messages from the previous iterations are used to perform a series of additions. The

results of these additions are latched and sent as inputs to the check nodes during the next clock cycle. The sign of the sum

represents the current estimate of the decoded bit. Figure 1illustrates the described variable node architecture. Though it is

possible to increase the throughput by stopping the iterative process for a given block by checking for its parity, the proposed

architecture does not incorporate this feature. This feature is dictated by the constant throughput requirement imposed by

Figure 1: Variable node architecture (dv =2)

most applications. Hence, the number of iterations performed is fixed, and chosen depending on the convergence speed

of the decoding process. To increase the throughput, this number is typically set to 16; in general, a number of 16 or 32

iterations was found to be most appropriate for the proposedcode structures. For codes with a very small gap to capacity,

the number of iterations would have to be significantly larger, of the order of several thousands. This follows based on

the fundamental trade-off between complexity and performance of error-control codes [27]. Due to these facts, such codes

are not suitable for practical implementation. A gap to capacity of approximately 1dB is usually considered a good choice

regarding the trade-off between performance and complexity and the stability of operation of the decoder [36].

4.2.2 Check Node Architecture

At the check nodes, two types of operations are performed: parity updates and reliability updates. Since the parity update

operation implementation has been dealt with in [3], and since it has a very small influence on the chip area and power

overhead, it will not be discussed in this paper.

The reliability operations described in Equation (2) are – as are the variable node operations – performed in the log-

likelihood domain in order to avoid multiplication and division operations. The system blocks are required to:

• Performlog/tanhoperation on each incoming edge;

• Add all values obtained from these operations on a check node;

• Subtract the incoming value on each edge from the result obtained in the previous step;

• Perform an inverselog/tanh operation on the messages on each of the edges, in order to obtain the “outgoing”

information from the variable nodes at the end of an iteration.

Figure 2 shows the reliability update architecture of a check node for the casedc=3. Finite precision arithmetic is used to

develop a PLA-based look-up for thelog/tanhandlog/arctanhoperations, as described below.

Figure 2: Architecture for reliability update in check node

4.2.3 PLA Design

The design of a good PLA layout4 plays a crucial role in efficiently implementing the check-node circuitry. The problem of

designing good PLA layouts was addressed by one of the authors in [21]. For the sake of completeness, the most important

features of the PLAs are described in this section.

A PLA can be considered as a means to directly implement a conjunctive (product of sum) or disjunctive (sum of

product) expression of a set of switching functions. A PLA has an “AND” plane followed by an “OR” plane. In practice,

either NAND or NOR arrays are used, with the resulting PLA said to be a NAND/NAND or a NOR/NOR device.

Let us describe the functionality of a PLA of the NOR-NOR formwith w rows,n input variablesxi , i ∈ {1,2, . . . ,n}, and

moutput variablesy j , j ∈ {1,2, . . . ,m}. Define aliteral L i as an input variable or its complement. A functiong is described

by a sum of cubesg = ∑w
i=1Ci , where each cube is the product of literalsCi = L1

i ·L2
i · · ·L

ti
i , according to:

g =
w

∑
i=1

(Ci) =
w

∑
i=1

(Ci) =
w

∑
i=1

(L1
i ·L2

i · · ·L
ti
i) =

w

∑
i=1

(L1
i +L2

i + · · ·+Lti
i) (3)

In words, the PLA outputg is obtained as the logical NOR of a series of expressions, each corresponding to the NOR

of the complement of the literals present in the cubes ofg. As can be seen from the schematic view of the PLA core

in Figure 3, the outputs of the PLA are implemented by vertically running output lines(f andg in Figure 3), which are

connected to the horizontalword linesimplementing the cubes ofg. Each cube combines the vertically-runningbit-lines

(a, a, b, b, c andc in Figure 3) implementing the two literals for each input variable, the variable itself and its complement.

Note that in general, a PLA can implement more than one outputusing the same circuit structure. As an example, the

PLA in Figure 3 implements 2 outputsf andg. Also, a NOR-NOR PLA yields an extremely high-speed realization of the

underlying logic function, which is the reason we choose it for this work.

For the message passing algorithm, literals represent the 5-bit quantized message input log-likelihoods, so a NOR-NOR

layout of the functiong involving 25 = 32 terms is designed accordingly. For the check node PLAs, a logic function con-

sisting of at most 32 terms is used to implement the log-tanh operations. Based on the underlying logic sharing operations,

this number can be modified. The corresponding outputs are retrieved from the output plane through their designated output

drivers.

For our proposed decoder design, pre-charged NOR-NOR PLAs [20, 21] are used. This is motivated by the fact that

NOR-NOR PLAs are extremely fast compared to traditional design approaches.

When a word line of a PLA switches to “high”, it may happen thatsome neighboring lines switch to low. The worst

case switching delay occurs when all neighboring lines of one line, set to “high”, are in a “low” state. For a pre-charged

NOR-NOR PLA, and for every word-line, its neighbors are restricted to either switch with it or remain static. This re-

4The design of a PLA layout in the remainder of this section follows closely the discussion in [21].

static
pullups

precharge
devices

wordbit
line line

output
line

D_CLK

CLK

a a b b f g

Figure 3: Schematic view of the PLA core

sults in reduced delay deterioration due to cross-talk, since adjacent word-lines never switch in opposite directions. As a

consequence, in a pre-charged NOR-NOR PLA, a word-line of the PLA must switch from “high” to “low” at the end of

any computation, or remain pre-charged. In order to ensure that the output of the PLA is sampled only after the slowest

word-line has switched, one maximally loaded5 word-line is designed to switch “low” in the evaluate phase of every clock.

It effectively generates a delayed clock, DCLK, which delays the evaluation until the other word-lineshave reached their

final values. The described PLA core was implemented using two metal layers, where the horizontal word lines were

implemented in metal layer METAL2 [18] (see Figure 4).

Figure 4: Structure of the PLA (layout) used in the check nodes

5The maximally loaded word-line has the maximum number of diffusion and gate loads possible in the PLA (see topmost word line of Figure 3)

In order to perform a valid comparison between asinglePLA implemented in our layout style and the standard-cell

layout style, we implemented both styles for four examples.The delay results were obtained utilizing SPICE [32], while

the area comparison was obtained from actual layouts of bothstyles using two routing layers. The standard-cell style

layout was done by technology-independent optimizations in SIS [44], afterwards mapping the circuit using a library of

11 standard-cells, which were optimized for low power consumption. Placement and routing was done using thewolfe

tool within OCT [4], which in turn callsTimberWolfSC-4.2[43] for placement and global routing, and YACR [34] for

completion of the detailed routing.

The examples for the PLA layout style were flattened, then themagic[16] layout for the resulting PLA was generated

using aperl script. In order to perform the delay computation, a maximally loaded output line pulled down by a single

output pull-down device was simulated.

PLA implementation Standard-cell Ratios
Example n m w D A D A D A

cmb 16 4 15 160.3 53.3k 300 159.8k 0.534 0.334
cu 14 11 19 189.1 69.5k 420 186.5k 0.450 0.373
x2 10 7 17 164.8 45.3k 290 136.8k 0.568 0.331

z4ml 7 4 59 200.5 95.2k 575 118.3k 0.349 0.805

Table 1: Comparison of Standard-cell and PLA implementation styles

The comparison of the two layout styles is summarized in Table 1. We compare four test examples, cmb, cu, x2, and

z4ml, taken from the MCNC91 benchmark suite. The parametersin the columns are:

• n denotes the number of input lines or variables;

• m denotes the number of output lines or variables;

• w denotes the number of rows in the PLA;

• D denotes delay in picoseconds;

• A denotes the layout area of the resulting implementation in square grids.

The values ofD for the standard cell layout style were obtained as the maximum values after simulating about 20 input test

vectors. It has to be taken into consideration that wire resistances and capacitances, which would increase the delay inthe

standard-cell implementation, were not accounted for. Thedelay numbers and area sizes for the PLA layout style are taken

as worst-case values (after accounting for wire resistances and capacitances). Although this leads to a bias in comparison

(in favor of the standard-cell approach), impressive improvements of the PLA layout style over the standard-cell layout

style can still be observed. The PLA layout requires only an area between 33 and 81 per cent of the the standard-cell layout

area, while the average area requirement of the PLAs is 46 percent and the average delay is 48 per cent of the standard-cell

layout style. This favorable area and delay characteristics of the PLA is due to the following reasons:

• In the standard-cell implementation, traversing different levels (i.e. gates) of the design leads to considerable delays,

while the PLA logic functions have a compact 2-level form with superior delay characteristics, as long asw is

bounded.

• Local wiring delays and wire delay variations due to crosstalk are reduced in the PLA, since it is collapsed into a

compact 2-level core.

• Extremely compact layout is achieved in the PLA by using minimum-sized devices.

• In a standard-cell layout, both PMOS and NMOS devices are used in each cell, leading to a loss of layout density

due to the PMOS-to-NMOS diffusion spacing requirements. Incontrast, NMOS devices are used exclusively in the

PLA core, avoiding area overheads due to P-diffusion to N-diffusion spacing rules

• Finally, PLAs are dynamic, and hence faster than static standard-cell implementations.

In summary, the advantages of the proposed realization are favorable delay and area characteristics, as well as improved

cross-talk immunity, compared to traditional standard-cell based ASICs. By utilizing these novel PLAs, interconnected in

the manner of [21], all these characteristics can be exploited to implement fast, fully parallel LDPC codecs. For each check

node, 2dc PLAs and(⌈log(dc)⌉+1) 2-input adders have to be used to perform its underlying operations. The checks and

the variables are hard-wired with separate wiring in eitherdirection. As already pointed out, uniform 5-bit quantization

is performed on the messages, although it is also possible toimplement non-uniform quantization schemes suited to the

particular channel noise density function. Accuracy of operation can be improved by using non-uniform quantization that

can be adaptively changed based on the evolution of the checkand variable message densities. The PLA design needs

minimal modification to allow for such flexibility.

If one is willing to somewhat compromise the decoding performance of a code, an alternative belief propagation al-

gorithm can be implemented: the sum-product algorithm can be approximated by the min-sum algorithm, for which the

outgoing check-node messages are computed as

ui =









dc

∏
j = 1
j 6= i

sign(v j)









min
j ∈ {1, ...,dc}

j 6= i

|v j |. (4)

This min-sum approximation leads to an underestimate of thetrue message values [50], but the simpler implementation of

theminandsignfunctions largely reduces the check node complexity requiring less complicated circuitry and chip area of

the PLAs.

Clocking and Logic Control

S1 Bank

S4 Bank

S2 S3

Ring of C/V Node Clusters

Check Node

Variable Nodes

C/V Clusters

Figure 5: Concentric implementation of LDPC codes

5 VLSI Implementation of LDPC CODECs

In order to utilize the IC area most efficiently, a decoder implementation with a square aspect ratio is sought. The proposed

die floor plan is shown in Figure 5. The implementation consists of banks of check and variable (C/V) node clusters,

arranged in a concentric configuration. White spaces in Figure 5 are reserved for clock drivers and control logic. There

are four sets of banks shown in the figure, denoted byS1, S2, S3 andS4, respectively. Each bank of C/V nodes consists

of several C/V node clusters, shown in the right side of Figure 5. A cluster consists of a single check node, and several

variable nodes. A typical high-rate code has a large number of variable nodes for each check node. For example, a rate 0.9

code has 10 variable nodes for each check node. Check node computations are assumed to be more complex, as indicated

by the larger area devoted to these nodes’ logic in the figure.

A set of clusters arranged along the sides of a square will be called aring. The size of the ring is the number of banks

of clusters on one side of the square. Denoting the size of a bank of C/V node clusters in ringi by a+ 2i, and the total

number of check nodes bym, one obtains the following formula for the number of ringsr in the above describedconcentric

construction:

r =

⌈√
a2−2a+1+m +1−a

2

⌉

. (5)

Alternative C/V cluster packing with different variable tocheck node ratios can be used for the min-sum version of the

iterative decoding algorithm, making the number of packed blocks dependent on the decoding algorithm; it also makes the

C/V cluster structure more amenable for lower-rate codes. Furthermore, different variable to check-node packing ratios can

be used for generalized LDPC codes, described in more detailin section 8.

As described before, the PLAs for the reliability operations of check nodes require a large chip area, which allows

arrangements of C/V node clusters with a large number of variable nodes neighboring a check node as shown in Figure 5.

The regularity inherent in the IC architecture of Figure 5 represents an input constraint for the code construction prob-

Clocking Control

Figure 6: Alternative implementations of LDPC codes

lem. In particular, the locality of a check node and several variable nodes in a cluster is exploited during the code construc-

tion process. In order to minimize the length of long wires between check and variable nodes, the codes are additionally

constrained in such a way that nodes in theS1 bank do not communicate with nodes in theS4 bank, and likewise, and that

the nodes inS2 do not communicate with nodes in the bankS3. Prototype codes of this kind have been constructed, and

custom IC implementations of these codes have been developed with very good results presented in section 7. The resulting

design has the property that wiring is sparse and that long wire lengths are minimized due to the fact that the codes are

constructed so as to exploit the regularity of the above architecture. At the same time, code performance does not have to

be significantly compromised by introducing this constraint, as will be seen in the subsequent sections.

For the purpose of achieving more flexibility in the code design process, and hence in the achievable error-correcting

performance, alternative layouts can be considered as well. The layouts introduce some losses in desirable VLSI im-

plementation characteristics, which are to be compensatedby the improvements in code performance. First, the node

“communication constraint” can be relaxed insofar that a small number of blocks within opposite banks of the concentric

construction are allowed to interact with each other. The number of units communicating across the central region of the

chip will depend on the number of units per side on the innermost ring of the architecture. For example, if this number is set

to 10 and only the 3 innermost rings were allowed to communicate, 36 clusters per side would be allowed to communicate

with each other across the chip. This number is very small compared to the total number of clusters and cannot cause a

major change in code performance. On the other hand, if the innermost ring were to contain a much higher number of

blocks, the number of layers would be small resulting in a large central clocking area. This implies that a large portion of

the chip is inefficiently utilized. Furthermore, it would nolonger help to have the inner rings communicate across the chip,

as it would imply potentially significantly longer wire lengths, resulting in routing and delay issues. This motivates the

design of two possible alternative layout schemes depictedin Figure 6.

The idea is to introduce a bridge connecting the basic units across the clocking control region in the center of the

chip. This can increase the percentage of variable nodes communicating across the central region of the chip and lead to

improved code performance. Another approach is to make use of a chip with a 2 : 1 aspect ratio, rather than a square aspect

ratio, and to additionally eliminate the central clocking control unit. The proposed architecture is shown in Figure 6.This

architecture also allows for larger flexibility in the code design process by ensuring the communication of a larger fraction

of units across the chip without the constraints imposed by routing and delay issues.

6 LDPC Codes for the Concentric Construction

6.1 Constraints on LDPC Codes from VLSI Implementation Structure

For the concentric VLSI implementation described in the previous section, an LDPC code can be constructed based on the

following set of constraints:

• Variable and check nodes on opposite sides of the chip shouldnot be mutually connected, or less restrictively, very

few connections should exist between them; this ensures that no wires cross the central region of the block or very

few do so.

• Only nodes on the border of two neighboring sides of the chip are allowed to exchange messages during the decoding

process; this ensures highly localized wiring.

Posed as constraints on the code design process, these requirements take the following form. Assume thatU denotes the set

of variable nodes of the code, and thatW denotes the set of parity-check nodes. We seek a code with good error-correcting

characteristics that allows for a partition of the setU into four subsetsU1, U2, U3, U4, approximately of the same size. If

Si denotes the subset of parity-check nodes inW that are adjacent to the variable nodes inUi , i = 1,2,3,4, then one should

limit the intersection between those subsets to:

|S1∩S2| ≤ s, |S3∩S4| ≤ s, |S1∩S3| ≤ s, |S2∩S4| ≤ s, |S1∩S4| ≤ c, |S2∩S3| ≤ c, (6)

for some integerss andc such thatc ≪ s, andc sufficiently small. In this setting, the check nodes inS1, S2, S3, andS4

will be assigned to the four different sides of the chip, and there will be very limited or absolutely no interaction between

these sides. Furthermore, the variables in the intersection of setsS1 andS2, say, will be placed on the edge between the two

corresponding sides. For a code of interest, a structure satisfying these constraints can be obtained by selectively deleting

some non-zero entries in the parity-check matrix. This has to be done in such a way as neither to make the code graph

disconnected nor to have a large number of variables of degree less than or equal to two. Furthermore, one can devise a

code construction methods that would directly address the constraints posed in Equation (6).

Figure 7: Layout from a coding perspective

S1
S4
S3
S2
S2

H = S1
S4
S3
S3
S2
S1
S4













































1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0













































,

i.e., H =





I P P2 P3 I P
P3 I P P2 P P2

P2 P3 I P P2 P3



 , P =









0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0









(7)

To clarify the code-design ideas, we consider a “toy-example” of a rate 1/2 code with parity-check matrix given in

Equation (7). In this example,P is used to denote a circulant permutation matrix of dimension p (in the given example,

p = 4). It is to be observed that the code described byH is of no practical use, since it is of length 24 only and its

graphical representation contains a very large number of four-cycles. It can also be seen that the matrix in Equation (7)

contains linearly dependent and repeated rows. Nevertheless, it is straightforward to explain all the underlying constraints

and design issues on such a simple structure.

The vertical labels in the matrix of Equation (7) represent the banks of the chip-layout and the horizontal labels represent

the variable nodes. All check-nodes with the same label are in the same bank of the layout. Thus, for this case one has:

S1 = {1,6,11,16,17,19,22,24}, S4 = {2,7,12,13,18,20,21,23},

S3 = {3,8,9,14,17,19,22,24}, S2 = {4,5,10,15,18,20,21,23},

|S1| = |S2| = |S3| = |S4| = 8,

S1∩S4 = /0,S1∩S3 = {17,19,22,24},S1∩S2 = /0,

S3∩S4 = /0,S2∩S4 = {18,20,21,23},S2∩S3 = /0.

(8)

Based on Equation (8), one can see that the code matrix in Equation (7) can be used without any modifications for the

proposed design approach. As a result, no wires will be crossing the central region of the chip. Furthermore, although this

scenario is not directly applicable in this case, one can make the desired codes parity-check matrix slightly irregular, by

deleting certain ones inH, in order to meet the implementation constraints of Equation (6). This process is to be performed

in such a in such a way as to eliminate edges that result in wirings between opposite banks. In addition, such “sparsifying”

could also be performed to reduce, rather than completely eliminate, the number of wires crossing the central section of

the chip. Consequently, only few entries in the parity-check matrix would be modified, ensuring that with overwhelming

probability the overall code characteristics and parameters are not compromised.

The variables in the intersections of adjacent banks can be placed at the “diagonals” of the concentric chip. Placement

within theSi, i = 1, ..,4, banks themselves can be governed by knownproximity-preservingspace-filling curves, such as the

Hilbert-Peano (HP) or Moor’s version of the HP curve (HP-M) [42]. The square-traversing structure for these two curves

(dimension four) are depicted below.

HP :

6 7 10 11
5 8 9 12
4 3 14 13
1 2 15 16

HP−M :

7 8 9 10
6 5 12 11
3 4 13 14
2 1 16 15

(9)

For example, for theH matrix in Equation (7) one can take eight variables and threechecks per node bank. If two

variable nodes from a given bank are glued to one check, then one obtains three blocks, and two variable blocks can be

grouped independently. Denote these blocks byC1(Si),C2(Si),C3(Si),C4(Si), respectively, and the corresponding variable

nodes byB1,i ,B2,i ,B3,i,B4,i . Then, for example, one can chooseB1,1 = {1,6}, B1,2 = {16,19}, B1,3 = {17,22} andC4(S1) =

{11,24}.

An example of a practically important code parity-check matrix, with the partition property described in Equation (6)

and withc = 0 is shown below,

HS =









H1,1 H1,2 0 0
0 0 H2,1 H2,2

H3,1 0 0 H3,2

0 H4,3 H4,2 0









. (10)

The question of interest is how tochoose the blocks H1,1, ...,H4,2 so that the resulting code has good performance under

iterative message passing, and at the same time has a simple structure amenable for practical implementation also allowing

for easy encoding. This problem is addressed in detail in thenext section.

6.2 Code Construction Approach Based on Difference Sets

Several design strategies forHS are described below. The sub-matricesHi, j , i = 1, ...,4; j = 1,2 are chosen to be row/column

subsets of “basic” parity-check matricesH based on permutation blocks, as described in more detail by one of the authors

in [48]. For the first technique the “basic” parity-check matrix H is of the form

H =









Pi1,1 Pi1,2 ... Pi1,s−1 Pi1,s

Pi2,1 Pi2,2 ... Pi2,s−1 Pi2,s

...
Pim,1 Pim,2 ... Pim,s−1 Pim,s









, (11)

whereP is of dimensionN, ik,l ∈ N ∪{−∞} andP−∞ stands for the zero matrix of dimensionN. The integersik,l form

a so-calledCycle-Invariant Difference Set(CIDS) of orderh, or cyclic shifts thereof [30]. CIDSs are a subclass of Sidon

sets [30] which can be easily constructed according to the formula

Θ = {0≤ a≤ qh−1 : ωa + ω ∈ GF(q)}, (12)

whereGF(q) denotes a finite field with a prime number of elementsq. For (N = 5,h = 2) and (N = 7,h = 4) two such sets

are{i1, i2, i3, i4, i5}= {23,72,244,313,565} (mod 624) and{i1, i2, i3, i4, i5, i6, i7}= {431,561,1201,1312,1406,1579,1883}

(mod 2400). The resulting codes have girth six. The last claim is a consequence of the result proved by one of the authors

in [11].

Next, we choose the first two block-rows of the CIDS-based LDPC codes to representH1,1, and then form the other sub-

blocks ofH from block-rows and block-column subsets of the parity-check matrices of these CIDS codes. Two examples

for CIDS-based parity-check matrices are shown below. The first corresponds to a rateR = 1/3 code withdv=4, dc=6,

while the second corresponds to a rateR= 1/2 code withdv=3,dc=6. In both cases, the dimension ofP, the basic circulant

permutation matrix, is 74−1 = 2400.

H1 =

























Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 0 0 0 0 0 0
Pi6 Pi1 Pi2 Pi3 Pi4 Pi5 0 0 0 0 0 0
0 0 0 0 0 0 Pi1 Pi2 Pi3 Pi4 Pi5 Pi6

0 0 0 0 0 0 Pi6 Pi1 Pi2 Pi3 Pi4 Pi5

0 0 0 Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 0 0 0
0 0 0 Pi6 Pi1 Pi2 Pi3 Pi4 Pi5 0 0 0

Pi4 Pi5 Pi6 0 0 0 0 0 0 Pi1 Pi2 Pi3

Pi3 Pi4 Pi5 0 0 0 0 0 0 Pi6 Pi1 Pi2

























(13)

H =

















Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 0 0 0 0 0 0
0 0 0 0 0 0 Pi1 Pi2 Pi3 Pi4 Pi5 Pi6

0 0 0 Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 0 0 0
0 0 0 Pi6 Pi1 Pi2 Pi3 Pi4 Pi5 0 0 0

Pi4 Pi5 Pi6 0 0 0 0 0 0 Pi1 Pi2 Pi3

Pi3 Pi4 Pi5 0 0 0 0 0 0 Pi6 Pi1 Pi2

















(14)

Both codes have length 2×6× (74−1) = 28800, and are free of cycles of length four and six (i.e. the girth of the codes

g is at least eight). Lower bounds on the minimum distancesd of the codes of rate 1/2 and 1/3 can be obtained from the

well-known formula due to Tanner [45],

d ≥ 2
(dv−1)g/4−1

dv−2
, (15)

and are equal to eight and six, respectively. Figure 8 shows the BER curves for these codes for different number of decoding

iterations. For the simulations, 5-bit quantized messageswere used. Observe that the LDPC code of rate 1/2 with VLSI-

implementation imposed constraints exhibits an error-floor type behavior at very high BERs - i.e. at BERs of the order

of 10−5. The rate 1/3 code represents an interesting example of a rare code whichexhibits multiple error floors in its

performance curve. One possible combinatorial explanation for this phenomena is the decrease in thediameterof the code

graphs represented by matrices in (13) and (14), as comparedto the original code graph. The diameter of the graph is

the maximum of the lengths of the shortest distance between any pair of variable nodes, and it measures the quality of

“information mixing” in the code graph. The error floors might also be due to the emergence of different small trapping

sets in the code. Despite their good code parameter properties (such as fairly large girth), these codes show a surprisingly

weak performance and are not considered for implementationpurposes.

Figure 8: Error performance of regular rate-1/3 and rate-1/2 concentric codes

For the alternative constructions described in section 5, one can use codes with parity-check matrices of the form shown

below.

Halt =

























Pi1 Pi2 0 Pi4 Pi5 Pi6 0 0 Pi3 0 0 0
Pi6 Pi1 Pi2 0 Pi4 Pi5 0 0 0 Pi3 0 0
0 0 Pi3 0 0 0 Pi1 Pi2 0 Pi4 Pi5 Pi6

0 0 0 Pi3 0 0 Pi6 Pi1 Pi2 0 Pi4 Pi5

0 0 0 Pi1 Pi2 0 Pi4 Pi5 Pi6 0 0 Pi3

Pi3 0 0 Pi6 Pi1 Pi2 0 Pi4 Pi5 0 0 0
Pi4 Pi5 Pi6 0 0 Pi3 0 0 0 Pi1 Pi2 0
0 Pi4 Pi5 0 0 0 Pi3 0 0 Pi6 Pi1 Pi2

























(16)

The small improvement in the error-correcting ability of the resulting code in this case is not large enough to justify the

introduction of longer length wires, as was observed duringextensive simulations.

If one is willing to compromise the throughput in order to achieve better quality of error-protection, the number of

iterations can be increased to several hundreds. For the example of the rate 1/3 codes shown in Figure 8, Table 2 shows

the trade-off between code performance, number of decodingiterations and the resulting throughput for one representative

noise level corresponding to an SNR value of 2.27dB (here, SNR is defined as 10 log(Eb/N0)).

Number of iterations BER Throughput (Gbps)
16 3.00×10−4 958.9158
32 1.65×10−4 479.4579
128 1.49×10−4 119.8645

Table 2: BER and throughput for 2.27 dB as a function of the number of iterations for the rate-1/3 code (50% duty cycle)

6.3 Construction Approach Based on Array Codes

A different technique for designingHS of the form shown in (10) is based on array codes [48], described in terms of a

parity-check matrix of the form:

HA =













P0·0 P0·1 ... P0·(q−1)

P1·0 P1·1 ... P1·(q−1)

P2·0 P2·1 ... P2·(q−1)

...

Pi·0 Pi·1 ... Pi·(q−1)













, (17)

whereq is some odd prime, andP has dimensionq. To construct a code with non-interacting banks, all that isneeded is

to retain an appropriate set of block-row labelsA = {a0,a1, . . .} ∈ {0,1, . . . , i} and block-column labelsB = {b0,b1, . . .} ∈

{0,1, . . . ,(q− 1)} and to delete all other permutation matrices from the matrix. To ensure good code performance, we

suggest the use of improper array codes (IAC), a type of shortened array codes described by one of the authors in [29].

IACs of column weight four (dv = 4) can be constructed so as to have girth at least ten, provided that the chosen sets

of exponents ofP avoid solutions tocycle-governing equations[29]. The parity-check matrices of codes of girth ten are

obtained by selecting a set of block-rows fromHA and by deleting block-columns from this selection (i.e. shortening the

code) in a structured manner: only those block-rowsai and block-columnsb j are retained that are indexed by numbers from

the sequences in [29], Table 5, starting asA = {0,1,3,7} andB = {0,1,9,20,46,51,280, ...} for q=911. Codes obtained

from this construction have girth equal to ten.

The parity-check matrix for array-based codes of rate 1/3, of the special structure given by Equation (10), is specified

in terms of exponents ofP which are products of the formai ·b j , i = 0,1,2,3, j = 0,1,2,3,4,5:

H =

























Pa0·b0 Pa0·b1 Pa0·b2 Pa0·b3 Pa0·b4 Pa0·b5 0 0 0 0 0 0
Pa0·b0 Pa1·b1 Pa1·b2 Pa1·b3 Pa1·b4 Pa1·b5 0 0 0 0 0 0

0 0 0 0 0 0 Pa0·b0 Pa0·b1 Pa0·b2 Pa0·b3 Pa0·b4 Pa0·b5

0 0 0 0 0 0 Pa1·b0 Pa1·b1 Pa1·b2 Pa1·b3 Pa1·b4 Pa1·b5

0 0 0 Pa2·b0 Pa2·b1 Pa2·b2 Pa2·b3 Pa2·b4 Pa2·b5 0 0 0
0 0 0 Pa3·b0 Pa3·b1 Pa3·b2 Pa3·b3 Pa3·b4 Pa3·b5 0 0 0

Pa2·b0 Pa2·b1 Pa2·b2 0 0 0 0 0 0 Pa2·b3 Pa2·b4 Pa2·b5

Pa3·b0 Pa3·b1 Pa3·b2 0 0 0 0 0 0 Pa3·b3 Pa3·b4 Pa3·b5

























. (18)

Codes of different rate (e.g. 1/2) can be obtained by deleting block-columns, as described in [29].

The performance of shortened (IAC) array codes of rate 1/3 defined by Equation (18) is shown in Figure 9. Since

q = 911, the resulting length of the code is 12×911= 10932. Simulations showed no error floor up to a BER of 10−7.

For performance comparison, we used a random-like (irregular) code of length 10800 constructed in terms of the pro-

gressive edge-growth (PEG) algorithm [17], and for an optimized degree distributions obtained from [47]. Denoting

the fraction of variable nodes of degreedv = i by λi , the chosen variable degree distribution is{λ2,λ3,λ5,λ7,λ15} =

{0.5509,0.2386,0.1320,0.000052,0.0784}. As can be seen, at a bit error rate close to 10−5, the IAC code with the spe-

cial VLSI structure has a performance gap of approximately 1dB compared to random-like codes. This, of course, is

compensated by the array codes’ simplicity of implementation.

0 0.5 1 1.5 2 2.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Rate 1/3 IAC code of length 10932: 16 iterations
Rate 1/3 IAC code of length 10932: 32 iterations
Rate 1/3 IAC code of length 10932: 64 iterations
Rate 1/3 PEG code of length 10800: 16 iterations

Figure 9: Error performance of rate-1/3 concentric codes from shortened array codes in comparison to random-like codes

6.4 Construction Approach based on PEG Codes

Since VLSI-implementation oriented codes based on cycle-invariant difference sets exhibit high error floors, we propose to

relax some of the design constraints in order to improve the system performance. The relaxations pertain to the regularity

of the code, the wiring structure within the banksS1,S2,S3 andS4, and the ease of encoding. The resulting design has a

somewhat more complex, but still highly localized wiring structure, and a slightly increased chip area size.

Besides using permutation matrices to constructHS, one can also develop VLSI-implementation oriented codecsbased

on random-like, irregular LDPC codes constructed by progressive edge-growth (PEG) techniques [17]. The PEG code

construction algorithm can produce random-like, irregular codes with optimized degree distributions that have excellent

BER characteristics [47].

A welding PEG codeof lengthn is constructed in two steps. In the first step, the parity-check matrix of a PEG optimized

code of length⌊n/4⌋ is placed on the diagonal of an all-zero matrix, as shown in Figure 10a). In the second step, half of

the non-zero entries in each row is cyclically shifted⌊n/4⌋ positions to the right. The entries to be shifted are selected

randomly. Performing the same set of shifts for each of the four block-rows does not change the row-weights of the matrix,

nor the optimal column degree distribution. The resulting parity-check matrix structure in Figure 10b can be easily seen to

fit the structure governed by Equation (10). The welding algorithm was described in a different setting in [9], where it was

shown that welded codes can outperform PEG codes.

Figure 11 compares the performance of VLSI-implementationoriented codes of different lengths and rates to standard

PEG codes of the same length and with the same degree distribution. As can be seen, for rate 1/4 codes of lengthn= 48000

(standardly used for mobile communications [8]) as well as for lengthn = 10800 codes of rates 1/3 and 3/4, there exists

only a small performance degradation for welded codes compared to PEG codes. PEG codes have error-floors that cannot

be detected by means of standard Monte-Carlo simulation techniques. Furthermore, the lengths of the codes shown in

Figure 11 are such that no known methods for estimating the height of the error-floor are applicable. Nevertheless, extensive

computer simulations show that welded PEG codes of length several thousand should not have error-floors for BERs above

10−9. These findings suggest that welded PEG codes represent excellent candidates for use in the decoder architectures

proposed in this paper.

7 Estimation results

We applied the proposed method of decoder implementation using a 0.1µ process [1]. The delay and size estimates of the

PLA were based on [20, 21], while the size estimate of adders were taken from [33]. An accurate delay/power evalua-

tion of both these hardware units based on SPICE simulationswas performed. It should be noted that in computing the

size/delay/power estimates of adders and PLAs, wiring overhead, routing delays and the parity update operations at the

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

Figure 10: Construction of VLSI-implementation oriented LDPC codes by welding of PEG parity-check matrices: (a)
before and (b) after welding.

checks were not accounted for. A minimal overhead is incurred upon incorporating these schemes.

Throughput Side of chip Power
(Gbps) (mm) (W)

Flat-out (max.
duty cycle of 1479.4 11.0923 104.5185

77.14%)

50% Duty cycle 958.9158 11.0923 83.6372

Lower clock for
practical 2 11.0923 13.3214

applications

Table 3: Estimates forn=28800, Rate 1/2

Throughput Side of chip Power
(Gbps) (mm) (W)

Flat-out (max.
duty cycle of 369.8537 5.5461 30.4711

77.14%)

50% Duty cycle 239.7289 5.5461 20.9093

Lower clock for
practical 2 5.5461 3.4406

applications

Table 4: Estimates forn=7200, Rate 1/3

As an example, rate 1/3, 1/2 and 3/4 codes, suited for a variety of applications, are considered. In the first case, the

column weightdv was set to four, while the number of decoding iterations was set to 16. Tables 3, 4, and 5 show throughput,

chip size, and power estimates for these given rates and lengths 28800, 7200, and 8992, respectively.

The tables show that the maximum achievable throughput is betweenone and two orders of magnitudehigher than that

demanded by most applications. By lowering the clock speed,the power consumption can be brought down as shown in

Tables 3, 4, and 5. Consequently, power dissipation does notrepresent a bottleneck for practical communication system

applications. The power can be reduced even further if the number of iterations were to be decreased. For example,

for 32 iterations, the power consumption is estimated to be 1.8697 Watts. Alternative techniques for reducing the power

0 0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Rate 3/4 VLSI−adjusted welded code of length 10800: 16 iterations
Rate 3/4 PEG code of length 10800: 16 iterations
Rate 1/3 VLSI−adjusted welded code of length 10800: 16 iterations
Rate 1/3 PEG code of length 10800: 16 iterations
Rate 1/4 VLSI−adjusted welded code of length 48000: 50 iterations
Rate 1/4 PEG code of length 48000: 50 iterations

Figure 11: Error performance of rate-1/3 concentric codes constructed from welded PEG codes and random-like PEG codes

Throughput Side of chip Power
(Gbps) (mm) (W)

Flat-out (max.
duty cycle of 357.4476 6.198 30.3792

77.14%)

50% Duty cycle 231.6876 6.198 21.1382

Lower clock for
practical 2 6.198 4.2603

applications

Table 5: Estimates forn=8992, Rate 3/4

consumption even further are currently under investigation.

The lengthn = 28800 code is probably not acceptable for most practical applications, with typical requirement of 1.5

Gbps throughput and power consumption within 4 Watts. A moreappropriate code length is approximately 8000, for which

the corresponding estimates are presented in Tables 4 and 5.

In order to compare the proposed approach with the standard-cell based implementation in [3], the estimates for a

regular rate 1/2 code on 0.16µ technology are provided as well. The parameters of the design aren = 1024,dv = 3, 64

iterations of BP decoding, and a power supply voltage of 1.5 V. For a throughput of 1 Gbps, the side of the square chip based

on the proposed implementation is 2.956 mm with a power dissipation of 0.723 Watts. This is a tremendous improvement

on the area figures provided in [3], where a similar code dissipated 0.690 Watts with a chip size of 7.5mm x 7mm. The

reason for the drastically reduced size of our implementation is two-fold: first, we utilize extremely dense and compact

implementation approaches (PLAs), and second, we perform the code construction and VLSI implementation tasks in

tandem, resulting in significantly reduced circuit areas. It should again be pointed out that the size estimates in Tables 3, 4

and 5 are for values ofn that are an order of magnitude larger than the ones for the codes reported in [3]. Reducing the

value ofn reduces the chip-size and power consumption, at the cost of minor error performance loss.

Figure 12: Modified decoder graph with channel detector

As a concluding remark, we would like to observe that in the proposed implementation, the delay introduced by the

variable nodes is almost three times smaller than that of a check node. It is therefore possible to further reduce the size

of the chip by using multiplexers that allow a single variable node unit to perform calculations for two variable nodes in

a single clock cycle. This strategy would involve using additional multiplexers, de-multiplexers, and latches, but lead to a

reduction of the number of variable node units to one half of its current value.

In most modern applications, it might also be necessary to incorporate the channel detection block into the bi-partite

graph structure as shown in Figure 12. In such a case, the channel nodes perform the same set of operations as the variable

node and present a minor overhead in terms of area and power dissipation. As an example, we considered a lengthn= 7200

code with a channel detection scheme added to the decoder, and a total number of 32 iterations. Such a code would have a

chip size of 6.1806 mm and power dissipation of 3.6386 Watts.An inclusion of all overheads arising from timing recovery

circuits, serial-parallel, and parallel-serial conversion blocks is not expected to increase the side of the chip beyond 15% of

its current value, based on a very conservative estimate.

8 Generalized LDPC Codes

The implementations proposed in the previous sections can be easily adapted to accommodate generalized LDPC (GLDPC)

codes [24]. GLDPC codes show excellent performance under a combination of iterative message passing and belief propa-

gation algorithms, and for a wide variety of channels [7, 28]. There are two variants of GLDPC codes that one can consider.

The first is the case wheneach checkin the global parity check matrix is a short LDPC code itself (alternatively, each one

in a row is replaced by a different column of a smaller length LDPC code). In the first setting, a natural generalization of

the proposed architectures is afractal concentric architecture. In this realization, each “local” code is implemented as a

concentric sub-unit. These units can now be looked at as the basic building blocks of the “global” code. It is to be noted

that the “check” blocks in this case each have a bigger area compared to the blocks of a standards LDPC code implemen-

tation. In addition, GLDPC codes usually have a much larger overall parity check matrix. These characteristics impose

a constraint on the smallest achievable size of a fractal-like chip. Consequently, apartly parallel implementationseems

to be a more attractive solution for this problem. For example, by considering a GLDPC with 80000 variable nodes, it is

possible to apply the concept ofsemi-parallelism. It would be reasonable to scale down the level of parallelism by a factor

of 16, to have only 5000 variable node units and a corresponding decreased number of check units as well. Of course, in

this case the throughput will decrease by the same factor, but would be still be comparable to the same value of its LDPC

counterparts of the same rate. Hence, with this approach, itis possible to improve the error performance for the same

throughput and almost the same chip-size and power consumption. Another variant of GLDPC codes has the property that

each check node represents a short algebraic code, for whichan appropriate MAP decoder is used during global iterative

decoding [24]. In this case, at each check node the standardtanhandarctanhoperations are replaced by MAP decoding

circuits (this also justifies using PLA circuits, rather than standard-cell ones, since MAP decoding operations tend tobe

complex). Thus, the area of each check logic will increase based on the size of the MAP-decoder unit. For example, if a

simple[7,4,3] Hamming code is used as a local code, a 128×7 table look-up may be required. Similarly as in the previous

scenario, a partly parallel implementation would provide for a solution with practical chip sizes, while allowing for good

code performance.

9 Reconfigurability

In the context of LDPC decoding, circuit reconfigurability can be achieved by implementing the codes using reconfigurable

wiring, and multiplexedtanhandarctanhnodes. Given a fixed number and arrangement of check and variable nodes, one

can develop several codes that differ in their connectivityof check and variable nodes, but have a “nested” structure. The

latter allows for the wiring differences between the codes to be minimized, resulting in a maximally area-efficient design.

Using these ideas, the predictions are that such an architecture can operate with a throughput of 25Gbps and a power

consumption of about 0.7W, for code lengths approximately 20,000 and rates 1/6, 1/3, 1/2, 2/3 and 5/6. The overall chip

size is estimated to be 14mm on one side.

10 Applications of the proposed LDPC Code Implementations

The extremely powerful and yet fairly simple error control coding schemes of the form of codes on graphs are currently

considered for applications in storage systems, optical communications, as well as wireless systems. We will briefly discuss

some potential applications of the practical design schemeproposed in this work.

Since the emergence of magnetic, optical and solid-state recording technologies, the main force supporting their

progress was the improvement of areal storage density. The most promising storage systems that have emerged in the

recent past are multi-layer and multi-level recorders and nanoscale-probe storage techniques [49]. Especially the class of

systems based on atomic force microscopy (AFM), e.g. the “Millipede”, a thermo-mechanical data-storage system based

on AFM and micro electro-mechanical systems (MEMS), havingdata in the system recorded in blocks of 1024× 1024

arrays, require powerful error control techniques. First results for utilizing codes on graphs for modern storage systems,

namely LDPC codes with iterative decoding for both transversal and perpendicular magnetic recording have been presented

in [39, 40, 41], while joint message-passing decoding of LDPC codes over partial response channels was addressed in [23].

The results of these investigations suggest that very largeperformance gains can be achieved from utilizing such coding

schemes instead of Reed-Solomon (RS) codes, the well-knownand by now standard coding schemes in tape and disk

systems.

A debate is still going on as of how to conduct a fair comparison of complexity and performance for soft-decision

LDPC, which have inherently more complex decoders, and hard-decision RS codecs, whose circuitry is complex due to

their operation overfinite fields of large order. Since quantized soft information can be used for iterativedecoding (3-5 bits

suffice for this purpose), the fact that all operations are performed over a binary field makes codes on graphs an attractive

scheme compared to RS codes.

For the proposed code design technique, the decoder chip size can be made very small and power-efficient, and the

decoder can also be easily incorporated into a larger systeminvolving channel state estimating/equalization and timing

recovery, as described in [2]. Code constraints imposed in storage systems, such as high code rate (usually exceeding 0.8),

lead to an even smaller implementation complexity, due to the fact that such codes have a small number of check nodes. For

possible applications in nano-storage systems, fractal-like generalized LDPC codes developed by one of the authors [7] can

be used instead of LDPC codes, since they represent extensions of product codes well suited for two-dimensional recording

systems.

For wireless communication systems, there already exists aprototype vector-LDPC architecture developed by Flarion

Technologies [12]. The central block of the architecture isa programmable parallel processor that reads adescription of the

particular LDPC codefrom memory. Several codes can reside in the device at once, and switching between them incurs

no overhead. The Flarion LDPC technology was integrated into a mobile wireless communications system for end-to-end

Internet Protocol (IP)-based mobile broadband networking. The modulation schemes supported by Flash-OFDM include

QPSK and 16QAM. The coding rates currently used are 1/6, 1/3,1/2, 2/3, and 5/6, and the system uses adaptive modulation

to rapidly switch between codes. The current maximum data throughput in the Flash-OFDM system is 3 Mbits/sec, but the

decoder actually supports speeds of up to 45 Mbits/sec. Several technical aspects of their design, such as code construction,

power consumption information and chip-size are not disclosed. Also the FPGA and ASIC based implementations of the

Flarion solution suggest that the throughput of their design is substantially lower compared to a custom IC implementation

such as the one described in this work.

The ideas described in this paper propose an LDPC coding scheme construction with a significantly broader perspective.

The described architecture can be extended or modified in order to cover a very wide range of other system architectures,

for example, in concatenation with Multiple-Input Multiple-Output (MIMO) wireless systems. As opposed to the Flarion

technique, the idea in this paper is based on a fully parallelimplementation and the use of PLAs with a low wiring overhead.

Also, in contrast to the Flarion implementation, the customIC based solution proposed here can have the property of on-the-

fly reconfigurability between codes, with significantly improved throughput, as described in the previous sections. Some

additional initial experimental results show a decoding throughput of 25 Gbps and a power consumption of about 0.7W, for

a code of length 20000 and rates 1/6,1/3,1/2,2/3 and 5/6 with a die size 14mm on a side. Nevertheless, one has to point

out that the Flarion implementation includes other functionalities, such as channel estimation and automatic repeat request

(ARQ) controls, which can account for their observed performance.

LDPC codes are also becoming increasingly important in modern high-speed long-haul wavelength-division multiplex-

ing (WDM) systems; there, they can be used to provide a necessary system performance margin or they can effectively

increase the amplifier spacing, transmission distance and system capacity. Optical networking interface device employing

a rate 1/2 block lengthn = 1024 low-density parity-check (LDPC) code were recently developed by Agere Systems. As

for the case of storage systems, high code rates and relatively short code lengths are important design parameters for these

applications, which can be easily accomplished by the code architecture proposed in this paper. Full details regardingcode

implementations for these applications will be described elsewhere.

11 Conclusions and Future Research

A general high throughput VLSI architecture was proposed that can be used to design LDPC decoder chips for specific

applications as wireless communications, magnetic recording, or optical communications. By using an efficient code design

criterion and a regular chip floor plan, which is exploited during code construction, a high speed, low area design was

developed. Furthermore, based on some preliminary estimates, it was concluded that practical size and power constraints

can be met based on the proposed setting. The current problemof interest is to develop techniques for reducing the power

consumption of the chip even further.

Acknowledgements

The authors wish to thank Thorsten Hehn for his help with the PEG algorithm and PEG code simulations and for helpful

discussions.

References
[1] BSIM3 Homepage. http://www-device.eecs.berkeley.edu/∼bsim3/intro.html.

[2] J. Barry, A. Kavcic, S. McLaughlin, A. Nayak, and W. Zeng.Iterative timing recovery.IEEE Signal Processing Magazine, 21:89–102, 2004.

[3] A. J. Blanksby and C. J. Howland. A 690-mw 1024-b, rate 1/2low-density parity-check code decoder.IEEE Journal of Solid-State Circuits, 37(3):404–412, March 2002.

[4] A. Casotto, editor.Octtools-5.1 Manuals, Electronics Research Laboratory, College of Engineering, University of California, Berkeley, CA 94720, Sept. 1991.

[5] S.-Y. Chung, G. D. Forney, Jr, T. J. Richardson, and R. Urbanke. On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit.IEEE
Communication Theory Letters, 5:58–60, February 2001.

[6] S.-Y. Chung, T. Richardson, and R. Urbanke. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation.IEEE Transactions
on Information Theory, 47(2):657–670, February 2001.

[7] I. Djordjevic, O. Milenkovic, and B. Vasic. GeneralizedLDPC codes for long-haul optical communication systems.IEEE Journal of Lightwave Technology, 23(5):1939–
1946, May 2005.

[8] A. Doenmez, T. Hehn, S. Laendner, and J. Huber. Comparison of high-performance codes on AWGN channel with erasures. In Proceedings of 4th International
Symposium on Turbo Codes in connection with the 6th International ITG-Conference on Source and Channel Coding, Munich, Germany, April 2006.

[9] A. Doenmez, T. Hehn, S. Laendner, and J. B. Huber. Improved optimum-degree randomized LDPC codes of moderate length by Welding. InProceedings of the 44th
Allerton Conference on Communications, Control, and Computing, Allerton House, Monticello, Illinois, USA, September 2006.

[10] A. W. Eckford, F. R. Kschischang, and S. Pasupathy. Analysis of low-density parity-check codes for the Gilbert-Elliott channel. IEEE Transactions on Information
Theory, 51(11):3872–3889, November 2005.

[11] J. Fan. Array codes as low-density parity-check codes.In Proceedings of the 2nd International Symposium on Turbo Codes and Related Topics, pages 543–546, Brest,
France, September 2000.

[12] Flarion Technologies. http://www.flarion.com.

[13] J. Forney, G.D. Codes on graphs: normal realizations.IEEE Transactions on Information Theory, 47(2):520–548, February 2001.

[14] R. Gallager.Low-Density Parity-Check Codes. MIT Press, 1963.

[15] J. Garcia-Frias. Decoding of low-density parity-check codes over finite-state binary Markov channels.IEEE Transactions on Communications, 52(11):1840–1843,
November 2004.

[16] G. T. Hamachi, R. N. Mayo, and J. K. Ousterhout. Magic: A VLSI Layout system. In21st Design Automation Conference Proceedings, 1984.

[17] X.-Y. Hu, E. Eleftheriou, and D. M. Arnold. Regular and irregular progressive edge-growth Tanner graphs.IEEE Transactions on Information Theory, 51:386–398,
January 2005.

[18] N. Jayakumar and S. Khatri. A METAL and VIA maskset programmable VLSI design methodology using PLAs. InProceedings of the International Conference on
Computer-Aided Design (ICCAD), November 2004.

[19] A. Kavcic, X. Ma, and M. Mitzenmacher. Binary intersymbol interference channels: Gallager codes, density evolution and code performance bounds.IEEE Transactions
on Information Theory, 49(7):1636–1652, July 2003.

[20] A. Khatri, R. Brayton, and A. Sangiovanni-Vincentelli. Cross-talk noise immune VLSI design using regular layout fabrics. Kluwer Academic Publishers, 2000. Research
Monograph, ISBN #0-7923-7407-X.

[21] S. Khatri, R. Brayton, and A. Sangiovanni-Vincentelli. Cross-talk immune VLSI design using a network of PLAs embedded in a regular layout fabric. InIEEE/ACM
Internactional Conference on Computer-Aided Design, pages 412–418, November 2000.

[22] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and sum-product algorithm.IEEE Transactions on Information Theory, 47(2):498–519, February 2001.

[23] B. Kurkoski, P. Siegel, and J. Wolf. Joint message passing of LDPC codes and partial response channels.IEEE Transactions on Information Theory, 48(6):1410–1423,
June 2002.

[24] M. Lentmaier and K. Zigangirov. On generalized low-density parity-check codes based on hamming component codes.IEEE Communication Letters, 3(8):248–259,
August 1999.

[25] F. MacWilliams and N. Sloane.The Theory of Error-Correcting Coding. North-Holland, 1977.

[26] M. Manour and N. Shanbhag. Memory-efficient turbo decoder architectures for LDPC codes. InIEEE Workshop on Signal Processing Systems (SIPS ’02), pages 159–164,
November 2002.

[27] R. McEliece. Turbo-like Codes for Nonstandard Channels. ISIT Plenary Talk, Washington, 2001.

[28] O. Milenkovic, I. Djordjevic, and B. Vasic. Block-circulant low-density parity-check codes for optical communication systems.IEEE Journal of Selected Topics in
Quantum Electronics, 10(2):294–299, April 2004.

[29] O. Milenkovic, D. Leyba, and N. Kahyap. Shortened arraycodes of large girth.IEEE Trans. on Inform. Theory, 5(8):3707–3722, August 2006.

[30] O. Milenkovic, K. Prakash, and B. Vasic. Regular and irregular low density parity check codes for iterative decoding based on cycle-invariant difference sets. In
Proceedings of the 43rd Annual Conference on Communications, Computing and Control, Allerton, IL, October 2003.

[31] G. Murphy, E. Popovici, R. Bresnan, and P. Fitzpatrick.Design and implementation of a parameterizable LDPC decoder IP core. InProceedings of the 24th International
Conference on Microelectronics, volume 2, pages 747–750, 2004.

[32] L. Nagel. SPICE: A computer program to simulate computer circuits. InUniversity of California, Berkeley UCB/ERL Memo M520, May 1995.

[33] J. Rabaey.Digital Integrated Circuits: A Design Perspective. Prentice Hall Electronics and VLSI Series. Prentice Hall,1996.

[34] J. Reed, M. Santomauro, and A. Sangiovanni-Vincentelli. A new gridless channel router: Yet Another Channel Routerthe second (YACR-II). InDigest of Technical
Papers International Conference on Computer-Aided Design, 1984.

[35] T. Richardson. Error floors of LDPC codes. InProceedings of the 41st Allerton Conference on Communications, Control, and Computing, Allerton House, Monticello,
IL, USA, October 1-3 2003.

[36] T. Richardson. Workshop on applications of statistical physics to coding theory, Discussion. Santa Fe, New Mexico, January 2005.

[37] T. Richardson, M. Shokrollahi, and R. L. Urbanke. Design of capacity-approaching irregular low-density parity-check codes.IEEE Transactions on Information Theory,
47(2):619–637, February 2001.

[38] T. Richardson and R. L. Urbanke. The capacity of low-density parity-check codes under message-passing decoding.IEEE Transactions on Information Theory, 47(2):599–
618, February 2001.

[39] W. Ryan. Performance of high rate Turbo codes on a pr4-equalized magnetic recording channel. InProceedings of the IEEE International Conference on Communications
(ICC), Atlanta, GA, pages 947–951, June 1998.

[40] W. E. Ryan, S. W. McLaughlin, K. Anim-Appiah, and M. Yang. Turbo, LDPC, and RLL codes in magnetic recording. InProceedings of the 2nd International Symposium
on Turbo Codes and Related Topics, Brest, France, September 2000.

[41] W. E. Ryan, L. L. McPheters, and S. W. McLaughlin. Combined turbo coding and turbo equalization for pr4-equalized lorentzian channels. InProceedings of the
Conference on Information Sciences and Systems, March 1998.

[42] H. Sagan.Space-Filling Curves. Springer Verlag, 1991.

[43] C. Sechen and A. Sangiovanni-Vincentelli. The TimberWolf Placement and Routing Package.IEEE Journal of Solid-State Circuits, X-20(2), April 1985.

[44] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton, and A.L. Sangiovanni-Vincentelli. SIS: A system
for sequential circuit synthesis. Technical Report UCB/ERL M92/41, Electronics Research Laboratory, Univ. of California, Berkeley, CA 94720, May 1992.

[45] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Information Theory, IT-27(9):533–547, April 1981.

[46] J. Thorpe. Low-complexity approximations to belief propagation for LDPC codes. 2003. Available: http://www.ee.caltech.edu/∼jeremy/research/papers/research.html.

[47] R. Urbanke. LdpcOpt - a fast and accurate degree distribution optimizer for LPDC ensembles. http://lthcwww.epfl.ch/ research/ldpcopt/index.php.

[48] B. Vasic and O. Milenkovic. Combinatorial constructions of LDPC codes.IEEE Transactions on Information Theory, 50(6):1156–1176, June 2004.

[49] P. Vettiger and G. Binnig. The Nanodrive Project.Scientific American, pages 46–54, January 2003.

[50] M. R. Yazdani, S. Hemati, and A. H. Banihashemi. Improving belief propagation on graphs with cycles.IEEE Communications Letters, 8(1):57–59, January 2004.

[51] T. Zhang and K. Parhi. Joint (3,k)-regular LDPC code anddecoder/encoder design.IEEE Transactions on Signal Processing, 52(4):1065–1079, April 2004.

[52] H. Zhong and T. Zhang. Design of VLSI implementation-oriented LDPC codes. InProceedings of the IEEE 58th Vehicular Technology Conference, volume 1, pages
670–673, October 2003.

