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Abstract

Clustering is an important function in data mining. Its typical application includes the analysis of consumer’s materials. Adaptive
resonance theory network (ART) is very popular in the unsupervised neural network. Type I adaptive resonance theory network
(ART1) deals with the binary numerical data, whereas type II adaptive resonance theory network (ART2) deals with the general numer-
ical data. Several information systems collect the mixing type attitudes, which included numeric attributes and categorical attributes.
However, ART1 and ART2 do not deal with mixed data. If the categorical data attributes are transferred to the binary data format,
the binary data do not reflect the similar degree. It influences the clustering quality. Therefore, this paper proposes a modified adaptive
resonance theory network (M-ART) and the conceptual hierarchy tree to solve similar degrees of mixed data. This paper utilizes artificial
simulation materials and collects a piece of actual data about the family income to do experiments. The results show that the M-ART
algorithm can process the mixed data and has a great effect on clustering.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Clustering is the unsupervised classification of patterns
into groups. It is an important data analyzing technique,
which organizes a collection of patterns into clusters based
on similarity (Hsu, 2006; Hsu & Wang, 2005; Jain &
Dubes, 1988). Clustering is useful in several exploratory
pattern-analysis, grouping, decision-making, and machine-
learning situations. This includes data mining, document
retrieval, image segmentation, and pattern classification.
Clustering methods have been successfully applied in many
fields including pattern recognition (Anderberg, 1973),
biology, psychiatry, psychology, archaeology, geology,
geography, marketing, image processing (Jain & Dubes,
1988) and information retrieval (Rasmussen, 1992; Salton
& Buckley, 1991). Intuitively, patterns with a valid cluster
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are more similar to each other than they are to a pattern
belonging to a different cluster.

Data clustering has been considered as a primary data
mining method for knowledge discovery. There have been
many clustering algorithms in the literature. In general,
major clustering methods can be classified into the hierar-
chical or the partition category. A hierarchical method cre-
ates a hierarchical decomposition of the given set of data
patterns. A partition approach produces k partitions of
the patterns, where each partition represents a cluster. Fur-
ther classification in each of the categories is possible (Jain
& Dubes, 1988). In addition, Jian (1999) discussed some
cross-cutting issues that might affect all of the different
approaches regardless of their placement in the categories
(Jain, Murty, & Flynn, 1999). Being non-incremental or
incremental is one of the issues (Hsu, 2006; Hsu & Wang,
2005). Non-incremental clustering methods process all the
data patterns at a time. These algorithms usually require
the entire datasets being loaded into memory and therefore
have high requirement in memory space.

The major advantage with the incremental clustering
algorithms is that it is not necessary to store the entire

mailto:hsucc@yuntech.edu.tw
mailto:sunny@ms. chinmin.edu.tw
mailto:sunny@ms. chinmin.edu.tw


1178 C.-C. Hsu, Y.-P. Huang / Expert Systems with Applications 35 (2008) 1177–1185
pattern matrix in the memory. So, the space requirements
of incremental algorithms are very small. Incremental clus-
tering considers input patterns one at a time and assigns
them to the existing clusters (Jain & Dubes, 1988). Here,
a new input pattern is assigned to a cluster without affect-
ing the existing clusters significantly. Moreover, a major
advantage of the incremental clustering algorithms is their
limited space requirement since the entire dataset is not
necessary to store in the memory. Therefore, these algo-
rithms are well suited for a dynamic environment and for
very large datasets. They have already been applied along
these directions (Can, 1993; Ester, Kriegel, Sander, Wim-
mer, & Xu, 1998; Somlo & Adele, 2001).

Most of clustering algorithms consider either categorical
data or numeric data. However, many mixed datasets
including categorical and numeric values existed nowadays.
A common practice to clustering mixed dataset is to trans-
form categorical values into numeric values and then pro-
ceed to use a numeric clustering algorithm. Another
approach is to compare the categorical values directly, in
which two distinct values result in distance 1 while identical
values result in distance 0. Nevertheless, these two methods
do not take into account the similarity information embed-
ded between categorical values. Consequently, the cluster-
ing results do not faithfully reveal the similarity structure
of the dataset (Hsu, 2006; Hsu & Wang, 2005).

This article is based on distance hierarchy (Hsu, 2006;
Hsu & Wang, 2005) to propose a new incremental cluster-
ing algorithm for mixed datasets, in which the similarity
information embedded between categorical attribute is
considered during clustering. In our setting, each attribute
of the data is associated with a distance hierarchy, which is
an extension of the concept hierarchy (Somlo & Adele,
2001) with link weights representing the distance between
concepts. The distance between two mixed data patterns
is then calculated according to distance hierarchies.

It is worth mentioning that the representation scheme of
distance hierarchy can generalize some conventional dis-
tance computation schemes including the simple matching
and the binary encoding for categorical values, and the
subtraction method for continuous values and ordinal
values.

The rest of this article is organized as follows. Section 2
reviews clustering algorithms and discusses the shortcom-
ings of the conventional approaches to clustering mixed
data. Section 3 presents distance hierarchy for categorical
data and proposes the incremental clustering algorithm
based on distance hierarchies. In Section 4, experimental
results on synthetic and real datasets are presented. Con-
clusions are given in Section 5.

2. Literature review

Adaptive resonance theory neural networks model real-
time prediction, search, learning, and recognition. ART
networks function as models of human cognitive informa-
tion processing (Carpenter, 1997; Carpenter & Grossberg,
1993; Grossberg, 1980, 1999, 2003). A central feature of
all ART systems is a pattern matching process that com-
pares an external input with the internal memory of an
active code. ART1 deals with the binary numerical data
and ART2 deals with the general numerical data (Gross-
berg, 1999). However, these two methods do not deal with
mixed data attributes.

About clustering mixed data attributes, there are two
approaches for mixed data. One is resorted to a pre-process,
which transferred the data to the same type, either all
numeric or all categorical. For transferring continuous data
to categorical data, some metric function is employed. The
function is based on simple matching in which two distinct
values result in distance 1, with identical values of distance 0
(Guha, Rastogi, & Shim, 1999). The other is to use a metric
function, which can handle mixed data (Wilson & Martinez,
1997). Overlap metric is for nominal attributes and normal-
ized Euclidean distance is for continuous attributes.

Among problems with simple matching and binary
encoding, a common approach for handling categorical
data is simple matching, in which comparing two identical
categorical values result in distance 0, while two distinct
values result in distance 1 (Ester et al., 1998; Wilson &
Martinez, 1997). In this case, the distance between patterns
of Gary and John in the previous example becomes
d(Gary, John) = 1, which is the same as d(John, Tom) = d(-
Gary,Tom) = 1. Obviously, the simple matching approach
disregards the similarity information embedded in categor-
ical values.

Another typical approach to handle categorical attri-
butes is to employ binary encoding that transforms each
categorical attribute to a set of binary attributes and a cat-
egorical value is then encoded to a set of binary values. As
a result, the new relation contains all numeric data, and the
clustering is therefore conducted on the new dataset. For
example, as the domain of the categorical attribute: Favor-
ite_Drink. The set of it is {Coke, Pepsi, Mocca}. Favor-
ite_Drink is transformed to three binary attributes: Coke,
Pepsi and Mocca in the new relation. The value Coke of
Favorite_Drink in a pattern is transformed to a set of three
binary values in the new relation, i.e. {Coke = 1, Pepsi = 0,
Mocca = 0}. The Manhattan distance of patterns Gary
and John is dM(Gary, John) = 2, which is the same as
dM(Gary,Tom) and dM(John, Tom), according to the new
relation. Traditional clustering algorithm transfers Favor-
ite_Drink categorical attributes into a binary numerical
attribute type as shown in Fig. 1.

After transformation, each original categorical attribute
handled by the binary encoding approach contributes as
twice as that by the simple matching approach, as shown
in the above example of distance (Gary, John). Conse-
quently, when the binary encoding approach is adopted
by a clustering algorithm, categorical attributes have larger
influence on clustering data than those adopting the simple
matching approach.

The ART network is a popular incremental clustering
algorithm (Jain & Dubes, 1988). It has several variants
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Fig. 1. Traditional clustering algorithm transfers Favorite_Drink cate-
gorical attributes into binary numerical attribute type.
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Fig. 2. (a) A distance hierarchy with weight 1, (b) two-level distance
hierarchy for simple matching approach, and (c) degenerated distance
hierarchy with w = (max � min) for a numeric attribute.
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(Carpenter & Grossberg, 1987; Carpenter, Grossberg, &
Rosen, 1991), in which ART1 handles only the binary data
and ART2 can handle only the arbitrary continuous data.
K-prototype (Huang, 1998) is a recent clustering algorithm
for mixed data. It transfers categorical data attributes to
the binary data format, however, the binary data do not
reflect the similar degree. It influences the clustering qual-
ity. Therefore, this paper proposes a modified adaptive res-
onance theory network algorithm and the conceptual
hierarchy tree to solve the similar degree of mixed data.
3. Clustering hybrid data based on distance hierarchy

This paper proposes the distance hierarchy tree structure
to overcome the expression for similar degree. This dis-
tance hierarchy tree algorithm combines the adaptive reso-
nance theory network algorithm and it can be effective with
mixed data in data clustering. This section presents dis-
tance hierarchy for categorical data and it proposes the
incremental clustering algorithm based on distance
hierarchies.
3.1. Distance hierarchy

The distance hierarchy tree is a concept hierarchy struc-
ture. It is also a better mechanism to facilitate the represen-
tation and computation of the distance between categorical
values. A concept hierarchy consists of two parts: a node
set and a link set (Dash, Choi, Scheuermann, & Liu,
2002; Hsu, 2006; Hsu & Wang, 2005; Maulik & Bandyo-
padhyay, 2002). According to binary encoding approach,
it does not reflect the similar degree. However, it influences
the clustering quality. Maintenance was difficult when the
domain of a categorical attribute changes, because the
transformed relation schema also needs to be changed.
The transformed binary attributes cannot preserve the
semantics of the original attribute. Because of the draw-
backs resulting from the binary-encoding approach, this
paper uses distance hierarchy to solve the similar degree
of mixed data. A concept hierarchy extends with distance
weights as shown in Fig. 2.

This paper extends the distance hierarchy structure with
link weights. Each link has a weight representing a dis-
tance. Link weights are assigned by domain experts. There
are several assignment alternatives. The simplest way is to
assign all links as a uniform constant weight. Another
alternative is to assign heavier weights to the links closer
to the root and lighter weights to the links away from the
root. For simplicity, unless stated explicitly, each link
weight is set to 1 in this article. The distance of two con-
cepts at the leaf nodes is the total weight between those
two nodes.

A point X in a distance hierarchy consists of two parts,
an anchor and a positive real-value offset, denoted as
X(N,d), that is, anchor(X) = N and offset(X) = d. The
anchor is a leaf node and the offset represents the distance
from the root of the hierarchy to the point. A point X is an
ancestor of Y if X is in the path from Y to the root of the
hierarchy. If neither one of the two points is an ancestor of
the other point, then the least common ancestor, denoted as
LCA(X,Y), is the deepest node that is an ancestor of X as
well as Y.

Let X(NX,dX) and Y(NY,dY) be two points, the distance
between X and Y can be defined as

jX � Y j ¼ dX þ dY � 2dLCPðX ;Y Þ ð1Þ

where LCP(X,Y) is the least common point of X and Y in
the distance hierarchy. dLCP(X,Y) is the distance between
the least common point and the root. The distance between
two equivalent points is 0, i.e. |X � Y| = 0. For example,
W = (Coke, 1.4), X = (Coke,0.3), Y = (Pepsi, 0.3) and
Z = (Pepsi,1.4). Both X and Y are ancestors of W and Z.
X is equivalent to Y, and their distance is 0. Both X and
Y are the least common points of these two points. They
are the least common points of Y and W, as well as those
of Y and Z. The distance between nodes Any and Drink
is 1. The distance between Y and Z is |1.4 + 0.3 �
2 * 0.3| = 1.1. The least common point, LCP(W,Z), of W

and Z is the node Drink, which is also the least common
ancestor of these two points. Therefore, dLCP(W,Z) = 1.
Furthermore, the distance between W and Z is
|1.4 + 1.4 � 2 * 1| = 0.8.

A special distance hierarchy calls numeric distance hier-
archy for a numeric attribute, say xi, is a degenerate one,
which consists of only two nodes, a root MIN and a leaf
MAX (e.g. Fig. 2c), and has the link weight w being the
domain range of xi, i.e. w = (maxi � mini). A point p in
such a distance hierarchy has the value (MAX, dp) where
the anchor is always the MAX and the offset dp is the dis-
tance from the point to the root MIN.

About measuring distance, the distance between two
data points can be measured as follows: Let x =
[x1 x2 . . .xn] and y = [y1 y2 . . .yn]. The distance between a



Fig. 3. Modified adaptive neural network architecture.
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training pattern x and an M-ART neuron y is measured as
the square root of the sum of the square differences
between each-paired components of x and y. Specifically,
x andy represent a training data and a map neuron, respec-
tively, with n-dimension, and C is a set of n distance hier-
archies, then the distance between x and y can be
expressed as

dðx; yÞ ¼ kx� yk ¼
X
i¼1;n

wiðxi � yiÞ
2

 !1=2

¼
X
i¼1;n

wiðhðxiÞ � hðyiÞÞ
2

 !1=2

ð2Þ

where h(xi) and h(yi) are the mapping of xi and yi to their
associated distance hierarchy hi and wi, the attribute
weight, is a user specified parameter allowing the domain
expert to give different weights. For a numeric attribute I,
h(xi) � h(yi) is equal to xi � yi, since h(xi) � h(yi) =
(MIN,dh(xi))� (MIN,dh(yi)) = (MIN,xi� mini)� (MIN,yi�
mini) = (xi � yi).

The attribute weight wi can be used to remedy the mixed

depth effect of distance hierarchies, especially when all the
attribute domains are normalized to a small range, such
as [01]. For example, the difference between any two dis-
tinct values of an attribute with a two-level distance hierar-
chy, like Fig. 2b, is always 1 while the difference between
two distinct values of a three-level distance hierarchy can
be the 0.5 (minimum) or 1 (maximum). Therefore, in a mul-
tidimensional data set with attributes associated with vari-
ous depths of distance hierarchies, attributes with shallow
distance hierarchies tend to dominate the distance compu-
tation. Decreasing the weight of attributes with a shallow
hierarchy or in contrast, increasing the weight of an attri-
bute with a deep hierarchy can alleviate the mixed depth
effect.
3.2. Incremental clustering of hybrid data

The unsupervised clustering algorithm has two layers,
the input layer and output layer. There is one distance tree.
As shown in Fig. 3, each layer is explained as follows.

The input layer is used for receiving the data or the vec-
tor. In the input layer, each neuron corresponds to the
input vector. An input vector can be a numerical attribute
or a categorical attribute. The output layer presents the
clustering result. Each neuron represents a clustering result.
Each related prototype vector is the representative of a
clustering vector.

Particularly, supposes D = {1,2, . . .,n} is the training
dataset. Input neurons hx1,x2, . . .,xni receive the input data
vector. A neuron xk represents an input vector, an attribute
or a variable. The sets of distance tree are {dt1,dt2, . . .,dtn},
each dti expresses the training dataset’s attribute xi. It rep-
resents the concept distance in the special and general
relation.
A neuron yi of the output layer is a vector.
yi = [y1i,y2i, . . .,yni]. The neuron yki = (N,d) is composed
of two parts: N is a symbol and d is a real number. When
yki corresponds to a categorical attribute, N corresponds to
a categorical attribute value. When yki corresponds to a
numerical attribute, N corresponds to a numerical symbol.

As the traditional self-organizing maps and adaptive
neural network, the vector has two functions. One is the
vector in the output layer and the other is mapped each
other in the training dataset. Each dti in the distance tree
relates to the attribute xi in the training data and the neu-
ron attribute yik in the output layer. The algorithm has the
following steps:

Input: N records in the training datasets, which include
distance hierarchy sets, warning value and stopping
parameter value.
Output: Z neurons (the prototype of clustering).
Step 1. Read the first record and map it into the first
neuron’s vector.
Step 2. Read the next record until the record is empty.
Find out the most similar output neuron. If similar
degrees exceed the warning value, then join this record
to the group and adjust the vector else set up a new neu-
ron. And set the vector as a new neuron’s vector.
Step 3. Meet the stopping conditions and then stop else
repeat Step 2 until the record is empty.
3.3. Evaluating clustering results

About time complexity, the main decisive factors of the
complexity of time in the training algorithm are the train-
ing data record N, data dimension P, output neuron num-
ber Z and train round C. For each round in the training
data, the vectors compare all the attributes with the output
neurons. So the time complexity of the whole process is
O(C * N * Z * P).

The other method is the significance test on external
variables. This technique compares the clusters on vari-
ables, but it does not generate. One way of doing this is
to compute the expected entropy of the clusters using a var-
iable, say a class attribute C that does not participate in the
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clustering. The expected entropy of an attribute C in a set
of clusters can be computed as follows. First, it calculates
the entropy of an attribute C in each cluster. Then it sum-
mates all the entropies weighted by its cluster size. The rela-
tionship is:

E �ðCÞ ¼ �
X

k

jCkj
jDj

X
j

P ðC ¼ V jÞ log P ðC ¼ V jÞ
 !

ð3Þ

where Vj denotes one of the possible values that the attri-
bute C can take, |Ck| is the size of the cluster k, and |D| is
the size of the data set.

The categorical utility function (Gluck & Corter, 1985)
attempts to maximize the probability that the two objects
in the same cluster have attribute values in common and
the probability that the objects from different clusters have
different attributes. The categorical utility of a set of clus-
ters can be calculated as

CU ¼
X

k

jCkj
jDj

X
i

X
j

½PðAi ¼ V ijjCkÞ2 � P ðAi ¼ V ijÞ2�
 !

ð4Þ

Here, P(Ai = Vij|Ck) is the conditional probability that the
attribute i has the values Vij given the cluster Ck, and
P(Ai = Vij) is the overall probability of the attribute i hav-
ing the values Vij in the entire set. The function aims to
measure if the clustering improves the likelihood of similar
values falling in the same cluster. Obviously, the higher the
CU values, the better the clustering result (Barbara, Couto,
& Li, 2002).

For numeric attributes, the standard deviation repre-
sents the dispersion of values. Variance (r2) can be used
for evaluating the quality of clustering numeric data. Here,
it can sum up the respective variance of every numeric attri-
bute in all the clusters to evaluate the quality of clustering.
The method of calculating the variance is shown in Eq. (5),
where V k

i;avg and V k
i;j are the average and the jth record

value of attribute i in cluster k, respectively. Incidentally,
the attribute values have been normalized before clustering.
Apparently, the lower the variance values, the better the
clustering results:

r2 ¼
X

k

1

jCkj
X

i

X
j

ðV k
i;j � V k

i;avgÞ
2 ð5Þ

Several cluster validity indices, such as Davies–Bouldin
(DB) Index and Calinski Harabasz (CH) Index (Halkidi,
Table 1
Synthetic dataset

Sex Age Amt Depart

F(50%) M(50%) N(20,2) 70–90 EE
ME
ID
VC
MBA
MIS
Batistakis, & Vazirgiannis, 2001; Maulik & Bandyopadhy-
ay, 2002), have been published; however, they are only suit-
able for the numeric data. Hence, in order to evaluate the
effectiveness of clustering mixed data, this paper uses CV
index (Hsu & Chen, 2007), which combined the category
utility (CU) function with variance. The CV is defined as
in Eq. (6), where the CU and variance are the validity index
for categorical and numeric data, respectively. The higher
the CV values, the better the clustering result:

CV ¼ CU

1þ Variance
ð6Þ
4. Experiments and discussion

This paper develops a prototype system with Borland
C++ Builder 6. A series of experiments have been per-
formed in order to verify the method. A mixed synthetic
dataset and a UCI dataset have also been designed to show
the capability of the M-ART in reasonably expressing and
faithfully preserving the distance between the categorical
data. It also reports the experimental results of artificial
and actual data.

4.1. Synthetic data sets

The synthetic dataset consisted of three categorical attri-
butes: Sex, Department and Product. The two numeric
attributes are Age and Amt. One class level attribute is Col-
lege. The total records are 600. Table 1 shows all distribu-
tions of synthetic categorical dataset. Fig. 4 shows the
concept hierarchies for the synthetic categorical dataset.

The M-ART parameters are established as follows: The
initial warning value is 0.5 and it increases progressively by
0.05 until 0.7. The initial learning rate is 0.4–0.6. The stop
condition is occurs when the momentum of the output
layer is lower than 0.000015. The input sequence influences
the performance of M-ART and ART2 algorithms. There-
fore M-ART uses five different introductory orders. The
experimental results are shown in Table 2. In the K-proto-
type method, the initial central points are influenced by
clustering. There are five experiments by randomly choos-
ing one central point. Each parameter in ART2 algorithm
is established a = 0.1, b = 0.1, c = 0.1, d = 0.9, theta = 0.1–
0.2, rho = 0.755–0.76, bottom to top weight = 2.

The experimental result is shown in Table 2. The
entropy values can be used for evaluating the quality of
ment Product College Count

Coke Engineering 100
Pepsi 100
Bread Design 100
Rice 100
Apple Management 100
Orange 100
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Rice Bread Coke Pepsi Orange Apple

Engineering Management

ID VC EE ME MIS MBA

Any

Desing

M F

Any

Fig. 4. The concept hierarchies for the synthetic datasets.

Table 2
Entropy values for Student dataset with clusters by ART2, K-prototype
and M-ART

Order ART2 K-prototype M-ART

1 0.47 0.44 0
2 0.42 0.38 0
3 0.43 0.38 0
4 0.42 0.37 0
5 0.42 0.39 0
Mean 0.43 0.39 0
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clustering. The value is small and the quality of clustering is
good. In these five experiments, entropy values are zero in
M-ART. That means that the classification value in each
group is the same. That is to say, the datasets are divided
into three groups such as Engineering, Design, and Man-
agement. The experimental results show that, in the same
input order, the quality of clustering M-ART method is
the highest, K-prototype method is second, and traditional
ART2 is the lowest. ART2 and K-prototype are unable to
divide the datasets into three groups.

4.2. UCI adult data

These experiments use a real Adult dataset from the
UCI repository [Murphy 1992] with 48,842 records of 15
attributes, including eight categorical attributes, six numer-
ical attributes, and one class attribute.

This experiment uses seven attributes, which include
three categorical attributes, such as Relationship, Mari-
tal_status, and Education; and four numeric attributes,
Capital_gain, Capital_loss, Age, and Hours_per_week.
The concept hierarchies are constructed in Fig. 5. The
M
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Fig. 5. Concept hierarchies for (a) Marital-status, (b) Educa
M-ART parameters are established as follows: the initial
warning value is 0.55 and it increases progressively 0.05
until 0.75. The initial learning rate is 0.9. The stop condi-
tion t occurs when the momentum of the output layer is
lower than 0.000015.
4.3. Experiments and discussion

This paper collects the dataset with different methods.
These methods divide adult datasets into 5, 6, 7 and 8
groups. Concerning the CU values for categorical attri-
butes, the higher the CU values, the better the clustering
result. The CU value of clustering M-ART method is the
highest, K-prototype method is second, and traditional
ART2 is the lowest. The symbol ‘‘***’’ means that it does
not find the suitable parameter to divide into group with
the datasets. The parameter of ART2 reaches 7, it is unable
to divide seven groups all the time. The problem occurs
because there are too many parameters in ART2. Table 3
shows the CU values of the clustering results by M-ART,
ART2 and K-prototypes of each categorical attribute on
level 1 and the leaf level in individual concept hierarchies
with cluster numbers 5, 6, 7 and 8. The parameter of M-
ART is established as follows: the initial warning value is
0.53–0.58, and the initial learning rate is 0.7.

This paper normalizes the variance between 0 and 1 for
numeric results. The normalized variance is useful in CV
index. Table 4 shows the CV values of the clustering results
by M-ART, ART2 and k-prototypes on level 1 and the leaf
level in individual concept hierarchies with cluster numbers
5, 6, 7 and 8. The higher the value of CV values, the better
the clustering result. The CV value in M-ART method is
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tion and (c) Relationship attributes of the Adult dataset.



Table 3
The CU values for Adult dataset with 5, 6, 7 and 8 clusters by M-ART,
ART2 and K-prototypes

Clusters Leaf_Level Level 1 Increased (%)

M-ART
5 1.069 1.16 8.5
6 1.113 1.20 7.8
7 1.115 1.21 8.5
8 1.177 1.31 11.3

K-prototype
5 0.859 0.834 �2.9
6 1.002 0.977 �2.5
7 1.039 0.919 �11.6
8 1.088 1.087 �0.3

ART2
5 0.001 0.00081 �19
6 0.0043 0.0057 3.3
7 *** *** ***
8 0.0073 0.00757 3.7
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the highest, K-prototype method is second, and traditional
ART2 is the lowest.

After M-ART clustering, each clustering has a proto-
type vector to represent the characteristic of the group.
Table 5 shows the result. There is a binary set in a proto-
type vector. The binary set includes the anchor and Offset.
The anchor shows the mode of this field in this group. The
Offset is the distance vector to the root. The offset means
that a rough proportion of response is accounted for all
number values. The higher the value of Offset values, the
bigger the mode proportion of the anchor result. For exam-
ple the fourth group of anchors is HS-grad. The Offset
value is 0.84 (Offset value regularized between 0 and 1).
The proportion of HS-grad is 73%. Further, the anchor
of 2, 3, 6 and 8 groups is all HS-grad. The Offset value
approaches zero. It expresses the HS-grad node near the
root. Table 6 shows the result. As an example in fifth group
with Marital-status and Relationship, the Offset value is
quite big. The populations of Married-civ-spouse and Hus-
Table 4
The CV values for Adult dataset with 5, 6, 7, 8 clusters by M-ART, ART2 an

Clustering number CU Variance

Leaf_Level Level 1 Age Capital gain Cap

M-ART
5 1.069 1.16 0.127 0.022 0.0
6 1.113 1.2 0.163 0.023 0.0
7 1.115 1.21 0.182 0.011 0.0
8 1.177 1.31 0.218 0.014 0.0

K-prototype
5 0.859 0.834 0.114 0.033 0.0
6 1.002 0.977 0.424 0.72 1.4
7 1.039 0.919 0.515 0.893 1.8
8 1.088 1.087 0.61 1.068 2.1

ART2
5 0.001 0.00081 0.176 0.027 0.0
6 0.0043 0.0057 0.211 0.033 0.0
8 0.0073 0.00757 0.281 0.044 0.0
band of this group are 99% and 89% separately. The result
shows each prototype vector can reflect characteristics of
each group.

For example, the fourth group of anchors is HS-grad.
The Offset value is 0.84 (Offset value is regularized between
0 and 1). The proportion of HS-grad is 73%. Further, the
anchor of 2, 3, 6 and 8 groups is all HS-grad. The Offset
value approaches zero. It expresses the HS-grad node near
the root. Table 6 shows the result. As an example in the
fifth group with Marital-status and Relationship, the Offset
value is quite big. The populations of Married-civ-spouse
and Husband of this group are 99% and 89%, respectively.
The result shows that each prototype vector can reflect the
characteristics of each group.

The prototype vector reflects the characteristic in this
group. A comparison with these prototype vectors and Sal-
ary attribute of each group can obtain some characteristics
about Salary attribute. Table 5 shows that the salary was
over 50k in an order. In the fifth group, all values in the
Salary attribute is over 50k. In the first group, the popula-
tion is 1%. From these prototype vectors, the characteris-
tics in the high-income group can be understood. The
salary is over 50k; the proportion is big in 2, 3 and 5
groups. The characteristics are steady marriage states and
family relationships, the age is generally relatively longer,
and the working hours are relatively longer. The value of
Gain and Loss are relatively bigger. Contrarily, the propor-
tion is small in the 1, 4, 6 and 8 groups. The characteristic is
not married or had divorced, the age is younger, and work-
ing hours is relatively lower. The value of Gain and Loss
are relatively small. It can find out the obvious differences
in groups 1 and 5.

The comparison with K-prototype and M-ART, K-pro-
totype can present the prototype vector of each group. In
the categorical attribute, K-prototype is a representation
of the mode as the prototype vector but unable to express
the weight of this group. The M-ART algorithm uses the
Offset value to understand rough population.
d K-prototypes

CV Increased (%)

ital_loss Hours_per_week Leaf_Level Level 1

38 0.071 0.85 0.59 31.08
44 0.085 0.85 0.60 29.05
44 0.1 0.83 0.61 27.05
52 0.115 0.84 0.65 23.00

46 0.073 0.68 0.46 32.85
54 2.937 0.15 0.16 1.72
01 3.635 0.13 0.12 7.01
54 4.342 0.12 0.13 5.56

42 0.079 0.001 0.001 6.64
51 0.095 0.003 0.005 55.87
68 0.128 0.005 0.006 26.71



Table 5
The categorical attribute prototype for Adult dataset with 1–8 clusters by M-ART

C_no >50k Education Marital-status Relationship Age Hours Gain Loss

5 100 (Prof-school, 0.34) (Married-civ-spouse, 0.99) (Husband, 0.89) 48 51 99,999 0
2 46 (HS-grad, 0.03) (Married-civ-spouse, 0.99) (Wife, 0.98) 40 37 1000 131
3 44 (HS-grad, 0) (Married-civ-spouse, 1) (Husband, 1) 44 44 1000 131
7 13 (Some-college, 0.5) (Never-married, 0.61) (Not-in-family, 1) 38 41 1000 87
4 7 (HS-grad, 0.84) (Never-married, 0.5) (Not-in-family, 1) 40 40 0 87
6 6 (HS-grad, 0) (Divorced, 0.5) (Unmarried, 1) 40 39 0 44
8 3 (HS-grad, 0.05) (Never-married, 0.5) (Other-relative, 1) 33 37 0 44
1 1 (Some-college, 0) (Never-married, 0.38) (Own-child, 1) 25 33 0 44

Table 6
The distribution of Education attribute in each cluster

Education C5 C2 C3 C7 C4 C6 C8 C1

Preschool 0 0 0 0 0 0 0 0
1st–4th 0 0 1 0 1 1 2 0
5th–6th 1 1 1 1 1 1 4 0
7th–8th 0 1 3 1 2 2 3 1
9th 0 1 2 1 2 2 3 1
10th 1 2 2 0 6 4 4 4
11th 0 2 2 0 6 4 6 9
12th 0 1 1 0 2 1 3 3
HS-grad 12 31 33 0 73 38 40 30
Some-college 6 20 19 37 0 22 20 34
Assoc-voc 2 5 5 7 0 5 3 3
Assoc-acdm 0 5 3 7 0 4 2 3
Bachelors 24 20 18 34 0 10 9 10
Masters 13 8 7 2 5 4 0 1
Prof-school 33 2 3 8 1 1 1 0
Doctorate 8 1 2 1 1 1 0 0
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In the C7 prototype vector, the value of Education field
is (HS-grad, 0.84): Anchor is HS-grad, and the Offset is
0.84. It expresses that the leaf node in the hierarchy tree
is near the root node and the distance is 0.84. The distance
between leaf node and HS-grad node is 0.16. It shows that
HS-grad has taken heavy proportion in this group. In
Table 6, the heavy proportion is 73%. Otherwise, the Offset
value of Relationship field is about 1. It means that the
mode proportions in each group are between 96% and
100%.

5. Conclusions

Most traditional clustering algorithms can only handle
either categorical or numeric value. Although some
research results have been published for handling mixed
data, they still cannot reasonably express the similarities
among categorical data. The paper presents a MART algo-
rithm, which can handle mixed dataset directly. The exper-
imental results on synthetic data sets show that the
proposed approach can better reveal the similarity struc-
ture among data, particularly when categorical attributes
are involved and have different degrees of similarity, in
which the traditional clustering approaches do not perform
well. The experimental results on the real dataset have bet-
ter performances than other algorithms.
The future work will try to use this method in finding
out the pattern rules from a large time series database.
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