
Virtually Eliminating Router Bugs

Eric Keller∗ Minlan Yu∗ Matthew Caesar† Jennifer Rexford∗
∗ Princeton University, Princeton, NJ, USA † UIUC, Urbana, IL, USA

ekeller@princeton.edu {minlanyu, jrex}@cs.princeton.edu caesar@cs.uiuc.edu

ABSTRACT
Software bugs in routers lead to network outages, security
vulnerabilities, and other unexpected behavior. Rather than
simply crashing the router, bugs can violate protocol se-
mantics, rendering traditional failure detection and recovery
techniques ineffective. Handling router bugs is an increas-
ingly important problem as new applications demand higher
availability, and networks become better at dealing with tra-
ditional failures. In this paper, we tailor software and data
diversity (SDD) to the unique properties of routing proto-
cols, so as to avoid buggy behavior at run time. Our bug-
tolerant router executes multiple diverse instances of routing
software, and uses voting to determine the output to publish
to the forwarding table, or to advertise to neighbors. We de-
sign and implement a router hypervisor that makes this par-
allelism transparent to other routers, handles fault detection
and booting of new router instances, and performs voting in
the presence of routing-protocol dynamics, without needing
to modify software of the diverse instances. Experiments
with BGP message traces and open-source software running
on our Linux-based router hypervisor demonstrate that our
solution scales to large networks and efficiently masks buggy
behavior.

Categories and Subject Descriptors
C.2.6 [Computer-Communication Networks]: Internet-
working—Routers; C.4 [Performance of Systems]: [Fault
tolerance, Reliability, availability and serviceability]

General Terms
Design, Reliability

Keywords
Routers, Bugs, Reliability, BGP

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’09, December 1–4, 2009, Rome, Italy.
Copyright 2009 ACM 978-1-60558-636-6/09/12 ...$10.00.

The Internet is an extremely large and complicated dis-
tributed system. Selecting routes involves computations across
millions of routers spread over vast distances, multiple rout-
ing protocols, and highly customizable routing policies. Most
of the complexity in Internet routing exists in protocols im-
plemented as software running on routers. These routers
typically run an operating system, and a collection of proto-
col daemons which implement the various tasks associated
with protocol operation. Like any complex software, routing
software is prone to implementation errors, or bugs.

1.1 Challenges in dealing with router bugs
The fact that bugs can produce incorrect and unpredictable

behavior, coupled with the mission-critical nature of Inter-
net routers, can produce disastrous results. This can be seen
from the recent spate of high-profile vulnerabilities, outages,
and huge spikes in global routing instability [40, 39, 16, 22,
21, 13, 31]. Making matters worse, ISPs often run the same
protocols and use equipment from the same vendor network-
wide, increasing the probability that a bug causes simultane-
ous failures or a network-wide crash. While automated sys-
tems can prevent misconfigurations from occurring [23, 24],
these techniques do not work for router bugs, and in fact the
state-of-the-art solution today for dealing with router bugs
involves heavy manual labor—testing, debugging, and fix-
ing code. Unfortunately operators must wait for vendors to
implement and release a patch for the bug, or find an inter-
mediate work around on their own, leaving their networks
vulnerable in the meantime.

Worse still, bugs are often discovered only after they cause
serious outages. While there has been work on dealing with
failures in networks [35, 33, 27], router bugs differ from tra-
ditional “fail-stop” failures (failures that cause the router
to halt in some easily-detectable way) in that they violate
the semantics of protocol operation. Hence a router can
keep running, but behave incorrectly – by advertising in-
correct information in routing updates, or by distributing
the wrong forwarding-table entries to the data plane, which
can trigger persistent loops, oscillations, packet loss, session
failure, as well as new kinds of anomalies that can’t happen
in correctly behaving protocols. This fact, coupled with the
high complexity and distributed nature of Internet routing,
makes router bugs notoriously difficult to detect, localize,
and contain.

As networks become better at dealing with traditional fail-
ures, and as systems that automate configuration become
more widely deployed, we expect bugs to become a major
roadblock in improving network availability. While we ac-
knowledge the long-standing debate in the software engi-



neering community on whether it is possible to completely
prevent software errors, we believe unforeseen interactions
across protocols, the potential to misinterpret RFCs, the
increasing functionality of Internet routing, and the ossifi-
cation of legacy code and protocols will make router bugs a
“fact-of-life” for the foreseeable future and we proceed under
that assumption.

1.2 The case for diverse replication in routers
Unlike fail-stop failures, router bugs can cause Byzantine

faults, i.e., they cause routers to not only behave incorrectly,
but violate protocol specification. Hence, we are forced to
take a somewhat heavy-handed approach in dealing with
them (yet as we will find, one that appears to be necessary,
and one that our results indicate is practical). In particular,
our design uses a simple replication-based approach: instead
of running one instance of routing software, our design uses
a router hypervisor1 to run multiple virtual instances of rout-
ing software in parallel. The instances are made diverse to
decrease the likelihood they all simultaneously fail due to a
bug. We leverage data diversity (to manipulate the inputs
to the router, for example by jittering arrival time of up-
dates, or changing the layout of the executable in memory)
and software diversity (given multiple implementations of
routing protocols already exist, running several of them in
parallel). We then rely on Byzantine-fault tolerant (BFT)
techniques to select the “correct” route to send to the for-
warding table (FIB), or advertise to a neighbor 2.

The use of BFT combined with diverse replication (run-
ning multiple diverse instances) has proven to be a great
success in the context of traditional software, for example in
terms of building robust operating systems and runtime en-
vironments [18, 28, 36, 44, 12]. These techniques are widely
used since heterogeneous replicas are unlikely to share the
same set of bugs [18, 28, 44]. In this paper, we adapt diverse
replication to build router software that is tolerant of bugs.

A common objection of this approach is performance over-
heads, as running multiple replicas requires more processing
capacity. However, BFT-based techniques provide a simple
(and low-cost) way to leverage the increasingly parallel na-
ture of multicore router processors to improve availability
without requiring changes to router code. Network opera-
tors also commonly run separate hardware instances for re-
silience, across multiple network paths (e.g., multihoming),
or multiple routers (e.g., VRRP [27]). Some vendors also
protect against fail-stop failures by running a hot-standby
redundant control plane either on multiple blades within a
single router or even on a single processor with the use of
virtual machines [19], in which case little or no additional
router resources are required. Since router workloads have
long periods with low load [9], redundant copies may be run
during idle cycles. Recent breakthroughs vastly reduce com-
putational overhead [45] and memory usage [26], by skipping
redundancy across instances.

1We use the term router hypervisor to refer to a software
layer that maintains arbitrates between outputs from mul-
tiple software replicas. However, our approach does not re-
quire true virtualization to operate, and may instead take
advantage of lighter-weight containerization techniques [4].
2For BGP, sources of non-determinism such as age-based
tie-breaking and non-deterministic MED must be disabled.
This is often done by operators anyway because they lead to
unpredictable network behavior (making it hard to engineer
traffic, provision network capacity, and predict link loads).

1.3 Designing a Bug-Tolerant Router
In this paper, we describe how to eliminate router bugs

“virtually” (with use of virtualization technologies). We de-
sign a bug-tolerant router (BTR), which masks buggy be-
havior, and avoids letting it affect correctness of the net-
work layer, by applying software and data diversity to rout-
ing. Doing so, however, presents new challenges that are
not present in traditional software. For example, (i) wide-
area routing protocols undergo a rich array of dynamics, and
hence we develop BFT-based techniques that react quickly
to buggy behavior without over-reacting to transient incon-
sistencies arising from routing convergence, and (ii) our de-
sign must interoperate with existing routers, and not require
extra configuration efforts from operators, and hence we de-
velop a router hypervisor that masks parallelism and churn
(e.g., killing a faulty instance and bootstrapping a new in-
stance).

At the same time we leverage new opportunities made
available by the nature of routing to build custom solutions
and extend techniques previously developed for traditional
software. For example, (i) routers are typically built in a
modular fashion with well-defined interfaces, allowing us to
adapt BFT with relatively low complexity, and implement it
in the hypervisor with just a few hundred lines of code, (ii)
using mechanisms that change transient behavior without
changing steady-state outcomes are acceptable in routing,
which we leverage to achieve diversity across instances, and
(iii) routing has limited dependence on past history, as the
effects of a bad FIB update or BGP message can be un-
done simply by overwriting the FIB or announcing a new
route, which we leverage to speed reaction by selecting a
route early, when only a subset of instances have responded,
and updating the route as more instances finish computing.
Moreover, router outputs are independent of the precise or-
dering and timing of updates, which simplifies recovery and
bootstrapping new instances.

The next section discusses how diversity can be achieved
and how effective it is, followed by a description of our de-
sign (Section 3) and implementation (Section 4). We then
give performance results in Section 5, consider possible de-
ployment scenarios in Section 6, contrast with related work
in Section 7, and conclude in Section 8.

2. SOFTWARE AND DATA DIVERSITY IN
ROUTERS

The ability to achieve diverse instances is essential for our
bug-tolerant router architecture. Additionally, for perfor-
mance reasons, it is important that the number of instances
that need to be run concurrently is minimal. Fortunately,
the nature of routing and the current state of routing soft-
ware lead to a situation where we are able to achieve enough
diversity and that it is effective enough that only a small
number of instances are needed (e.g., 3-5, as discussed be-
low). In this section we discuss the various types of diversity
mechanisms, in what deployment scenario they are likely to
be used, and how effective they can be in avoiding bugs.

Unfortunately, directly evaluating the benefits of diver-
sity across large numbers of bugs is extremely challenging,
as it requires substantial manual labor to reproduce bugs.
Hence, to gain some rough insights, we studied the bug re-
ports from the XORP and Quagga Bugzilla databases [8,
5], and taxonomized each into what type of diversity would



likely avoid the bug and experimented with a small subset,
some of which are described in Table 1.3

2.1 Diversity in the software environment
Code base diversity : The most effective, and commonly
thought of, type of diversity is where the routing software
comes from different code bases. While often dismissed as
being impractical because a company would never deploy
multiple teams to develop the same software, we argue that
diverse software bases are already available and that router
vendors do not need to start from scratch and deploy mul-
tiple teams.

First, consider that there are already several open-source
router software packages available (e.g., XORP, Quagga,
BIRD). Their availability has spawned the formation of a
new type of router vendor based on building a router around
open-source software [7, 8].

Additionally, the traditional (closed-source) vendors can
make use of open-source software, something they have done
in the past (e.g., Cisco IOS is based on BSD Unix), and
hence may run existing open-source software as a “fallback”
in case their main routing code crashes or begins behaving
improperly. Router vendors that do not wish to use open-
source software have other alternatives for code diversity, for
example, router vendors commonly maintain code acquired
from the purchase of other companies [38].

As a final possibility, consider that ISPs often deploy routers
from multiple vendors. While it is possible to run our bug-
tolerant router across physical instances, it is most practical
to run in a single, virtualized, device. Even without access
to the source code, this is still a possibility with the use of
publicly available router emulators [1, 3]. This way, network
operators can run commercial code along with our hypervi-
sor directly on routers or server infrastructure without direct
support from vendors. While intellectual property restric-
tions arising from their intense competition makes vendors
reticent to share source code with one another, this also
makes it likely that different code bases from different ven-
dors are unlikely to share code (and hence unlikely to share
bugs).

We base our claim that this is the most effective approach
partially from previous results which found that software
implementations written by different programmers are un-
likely to share the vast majority of implementation errors in
code [30]. This result can be clearly seen in two popular
open-source router software packages: Quagga and XORP
differ in terms of update processing (timer-driven vs. event-
driven), programming language (C vs. C++), and configu-
ration language, leading to different sorts of bugs, which are
triggered on differing inputs. As such, code-base diversity
is very effective and requires only three instances to be run
concurrently.

However, effectively evaluating this is challenging, as bug
reports typically do not contain information about whether
inputs triggering the bug would cause other code bases to
fail. Hence we only performed a simple sanity-check: we se-
lected 9 bugs from the XORP Bugzilla database, determined
the router inputs which triggered the bug, verified that the
bug occurred in the appropriate branch of XORP code, and

3To compare with closed-source software, we also studied
publicly available Cisco IOS bug reports, though since we
do not have access to IOS source code we did not run our
system on them.

then replayed the same inputs to Quagga to see if it would
simultaneously fail. We then repeated this process to see if
Quagga’s bugs existed in XORP. In this small check, we did
not find any cases where a bug in one code base existed in
the other, mirroring the previous findings.

Version diversity : Another source of diversity lies in the
different versions of the same router software itself. One
main reason for releasing a new version of software is to
fix bugs. Unfortunately, operators are hesitant to upgrade
to the latest version until it has been well tested, as it is
unknown whether their particular configuration, which has
worked so far (possibly by chance), will work in the latest
version. This hesitation comes with good reason, as often
times when fixing bugs or adding features, new bugs are
introduced into code that was previously working (i.e., not
just in new features). This can be seen in some of the exam-
ple bugs described in Table 1. With our bug-tolerant router,
we can capitalize on this diversity.

For router vendors that fully rely on open-source software,
version diversity will add little over the effectiveness of code-
base diversity (assuming they use routers from three code
bases). Instead, version diversity makes the most sense for
router vendors that do not fully utilize code-base diversity.
In this case, running the old version in parallel is protection
against any newly introduced bugs, while still being able to
take advantage of the bug fixes that were applied.

Evaluating this is also a challenge as bug reports rarely
contain the necessary information. Because of this, to eval-
uate the fraction of bugs shared across versions (and thus,
the effectiveness), we ran static analysis tools (splint, uno,
and its4) over several versions of Quagga, and investigated
overlap across versions. For each tool, we ran it against
each of the earlier versions, and then manually checked to
see how many bugs appear in both the earlier version as well
as the most recent version. We found that overlap decreases
quickly, with 30% of newly-introduced bugs in 0.99.9 avoided
by using 0.99.1, and only 25% of bugs shared across the two
versions. As it is not 100% effective, this will most likely
be used in combination with other forms of diversity (e.g.,
diversity in the execution environment, described next).

2.2 Execution environment diversity
Data diversity through manipulation of the execution en-

vironment has been shown to automatically recover from a
wide variety of faults [12]. In addition, routing software spe-
cific techniques exist, two of which are discussed below. As
closed-source vendors do not get the full benefit from run-
ning from multiple code bases, they will need to rely on data
diversity, most likely as a complement to version diversity.
In that case, around five instances will be needed depending
on the amount of difference between the different versions.
This comes from the result of our study which showed ver-
sion diversity to be 75% effective, so we assume that two
versions will be run, each with two or three instances of that
version (each diversified in terms of execution environment,
which as we discuss below can be fairly effective).

Update timing diversity: Router code is heavily concur-
rent, with multiple threads of execution and multiple pro-
cesses on a single router, as well as multiple routers simul-
taneously running, and hence it is not surprising that this
creates the potential for concurrency problems. Luckily, we
can take advantage of the asynchronous nature of the rout-
ing system to increase diversity, for example, by introduc-



Bug Description Effective Diversity

XORP 814 The asynchronous event handler did not fairly allocate its resources when Version (worked in
processing events from the various file descriptors. Because of this, a single 1.5, but not 1.6)
peer sending a long burst of updates could cause other sessions to time out
due to missed keepalives.

Quagga 370 The BGP default-originate command in the configuration file does not work Version (worked
properly, preventing some policies from being correctly realized. in 0.99.5, but not 0.99.7)

XORP 814 (See above) Update
(randomly delay delivery)

Quagga XX A race condition exists such that when a prefix that is withdrawn and Update
(see note) immediately re-advertised, the router only propagates to peers the withdraw (randomly delay delivery)

message, and not the subsequent advertisement.
XORP 31 a peer that initiates a TCP connection and then immediately disconnects Connection (can delay

causes the BGP process to stop listening for incoming connections. disconnect)
Quagga 418 Static routes that have an unreachable next hop are correctly considered Connection (can interpret

inactive. However, the route remains inactive even when the address of change as reset as well)
network device is changed to something that would make the next hop
reachable (e.g., a next hop of 10.0.0.1 and an device address that changed
from 9.0.0.2/24 to 10.0.0.2/24).

Table 1: Example bugs and the diversity that can be used to avoid them. Note for the bug listed as Quagga
XX, it was reported on the mailing list titled “quick route flap gets mistaken for duplicate, route is then
ignored,” but never filed in Bugzilla.

ing delays to alter the timing/ordering of routing updates
received at different instances without affecting the correct-
ness of the router (preserving any ordering required by the
dependencies created by the protocol, e.g., announcements
for the same prefix from a given peer router must be kept
in order, but announcements from different peer routers can
be processed in any order). We were able to avoid two of
the example bugs described in Table 1 with a simple tool
to introduce a randomized short delay (1-10ms) when de-
livering messages to the given instance. Further, by man-
ually examining the bug databases, we found that approxi-
mately 39% of bugs could be avoided by manipulating the
timing/ordering of routing updates.

Connection diversity: Many bugs are triggered by changes
to the router’s network interfaces and routing sessions with
neighbors. From this, we can see that another source of
diversity involves manipulating the timing/order of events
that occur from changes in the state or properties of the
links/interfaces or routing session. As our architecture (dis-
cussed in Section 3) introduces a layer between the router
software and the sessions to the peer routers, we can mod-
ify the timing and ordering of connection arrivals or status
changes in network interfaces. For the two example bugs in
Table 1, we found they could be avoided by simple forms of
connection diversity, by randomly delaying and restarting
connections for certain instances. By manually examining
the bug database, we found that approximately 12% of bugs
could be avoided with this type of diversity.

2.3 Protocol diversity
As network operators have the power to perform config-

uration modifications, something the router vendors have
limited ability to do, there are additional forms of diversity
that they can make use of. Here, we discuss one in particu-
lar. The process of routing can be accomplished by a variety
of different techniques, leading to multiple different routing
protocols and algorithms, including IS-IS, OSPF, RIP, etc.

While these implementations differ in terms of the precise
mechanisms they use to compute routes, they all perform a
functionally-equivalent procedure of determining a FIB that
can be used to forward packets along a shortest path to a
destination. Hence router vendors may run multiple dif-
ferent routing protocols in parallel, voting on their outputs
as they reach the FIB. To get some rough sense of this ap-
proach, we manually checked bugs in the Quagga and XORP
Bugzilla databases to determine the fraction that resided in
code that was shared between protocols (e.g., the zebra dae-
mon in Quagga), or code that was protocol independent.
From our analysis, we estimate that at least 60% of bugs
could be avoided by switching to a different protocol.

3. BUG TOLERANT ROUTER (BTR)
Our design works by running multiple diverse router in-

stances in parallel. To do this, we need some way of allowing
multiple router software instances to simultaneously execute
on the same router hardware. This problem has been widely
studied in the context of operating systems, through the use
of virtual machine (VM) technologies, which provide isola-
tion and arbitrate sharing of the underlying physical ma-
chine resources. However, our design must deal with two
new key challenges: (i) replication should be transparent
and hidden from network operators and neighboring routers
(Section 3.1), and (ii) reaching consensus must handle the
transient behavior of routing protocols, yet must happen
quickly enough to avoid slowing reaction to failures (Sec-
tion 3.2).

3.1 Making replication transparent
First, our design should hide replication from neighbor-

ing routers. This is necessary to ensure deployability (to
maintain sessions with legacy routers), efficiency (to avoid
requiring multiple sessions and streams of updates between
peers), and ease of maintenance (to avoid the need for oper-
ators to perform additional configuration work). To achieve



this, our design consists of a router hypervisor, as shown in
Figure 1. The router hypervisor performs four key functions:

Figure 1: Architecture of a bug-tolerant router.

Sharing network state amongst replicas: Traditional
routing software receives routing updates from neighbors,
and uses information contained within those updates to se-
lect and compute paths to destinations. In our design, multi-
ple instances of router software run in parallel, and somehow
all these multiple router instances need to learn about routes
advertised by neighbors. To compute routes, each internal
instance needs to be aware of routing information received
on peering sessions. However, this must happen without
having instances directly maintain sessions with neighbor-
ing routers. To achieve this, we use a replicator component,
which acts as a replica coordinator to send a copy of all
received data on the session to each router instance within
the system. Note that there may be multiple sessions with
a given peer router (e.g., in the case of protocol diversity),
in which case the replicator sends received data to the ap-
propriate subset of instances (e.g., those running the same
protocol). The replicator does not need to parse update
messages, as it simply forwards all data it receives at the
transport layer to each instance.

Advertising a single route per prefix: To protect
against buggy results, which may allow the router to keep
running but may cause it to output an incorrect route, we
should select the majority result when deciding what infor-
mation to publish to the FIB, or to advertise to neighbors.
To do this, we run a voter module that monitors advertise-
ments from the router instances, and determines the route
the router should use (e.g., the majority result).4 Our de-
sign contains two instances of the voter: an update voter that
determines which routing updates should be sent to neigh-
bors, and a FIB voter that determines which updates should
be sent to the router’s FIB (forwarding table). As with the
replicator, the update voter may vote among a subset of in-
stances, for example, those belonging to the same protocol.
The FIB voter will vote among all instances, as all instances
must come to the same decisions with regard to the FIB.
To ensure advertisements are consistent with FIB contents,
the update voter and FIB voter must select the same routes.
To handle this, the same voting algorithm must be used on
both updates and FIB changes.

To avoid introducing bugs, the voter should be as simple
as possible (our voter implementation, containing multiple
alternative voting strategies, is 514 lines of code). We as-
sume the voter is trusted (since it is much simpler than
router code, we expect it to have significantly fewer bugs

4Since voting also reveals the set of misbehaving instances,
our approach also simplifies diagnosis, as the hypervisor can
explicitly report the set of buggy outputs it observes.

and therefore the fact that it is a single point-of-failure is
only a slight concern), and that replication is asynchronous
(we do not assume all instances respond equally fast, as in-
stances may be slow or mute due to bugs), and transparent
(external routers do not interact directly with the multiple
instances, so as to simplify deployment).

Maintaining a set of running replicas: BFT-based
techniques rely on having a sufficient number of correctly-
behaving replicas in order to achieve consensus. Hence, if
an instance crashes or begins producing buggy output, we
may wish to replace it with a new copy. To achieve this,
our hypervisor is responsible for bootstrapping the new in-
stance when it begins running. For traditional routers, boot-
strapping involves establishing a session with a neighboring
router, which causes the neighboring router to send out up-
date messages for each of the prefixes it has an entry for in
its RIB. To avoid introducing externally visible churn, the
hypervisor keeps a history of the last update peers have sent
for each prefix, and replays this for any new instance upon
startup of that instance.

Presenting a common configuration interface: As
there is no standardization of the configuration interface in
routers, each router has ended up with its own interface. In
the case where instances from different code bases are used,
to keep the network operator from needing to configure each
instance separately, a mechanism is needed to hide the dif-
ferences in each configuration interface. Fortunately, this
is not unlike today’s situation where ISPs use routers from
multiple vendors. To cope with this, ISPs often run con-
figuration management tools which automate the process of
targeting each interface with a common one. As such, we
can rely on these same techniques to hide the configuration
differences.

3.2 Dealing with the transient and real-time
nature of routers

The voter’s job is to arbitrate amongst the“outputs”(mod-
ifications to the FIB, outbound updates sent to neighbors) of
individual router instances. This is more complex than sim-
ply selecting the majority result – during convergence, the
different instances may temporarily have different outputs
without violating correctness. At the same time, routers
must react quickly enough to avoid slowing convergence.
Here, we investigate several alternative voting strategies to
address this problem, along with their tradeoffs.

Handling transience with wait-for-consensus: The
extreme size of the Internet, coupled with the fact that
routing events are propagated globally and individual events
trigger multiple routing updates, results in very high update
rates at routers. With the use of replication, this problem
is potentially worsened, as different instances may respond
at different times, and during convergence they may tem-
porarily (and legitimately) produce different outputs. To
deal with this, we use wait-for-consensus voting, in which
the voter waits for all instances to compute their results be-
fore determining the majority vote. Because all non-buggy
routers output the same correct result in steady-state, this
approach can guarantee that if k or fewer instances are faulty
with at least 2k + 1 instances running, no buggy result will
reach the FIB or be propagated to a peer.

Note that in practice, waiting for consensus may also re-
duce instability, as it has an effect similar to the MRAI (Min-
imum Route Advertisement Interval) timer (routers with



MRAI send updates to their neighbors only when a timer
expires, which eliminate multiple updates to a prefix that
occur between timer expiries). Namely, forcing the voter to
wait for all instances to agree eliminates the need to adver-
tise changes that happen multiple times while it is waiting
(e.g., in the presence of unstable prefixes). However, the
downside of this is that reaction to events may be slowed
in some cases, as the voter must wait for the k + 1th slow-
est instance to finish computing the result before making a
decision.

Speeding reaction time with master/slave: Routers
must react quickly to failures (including non-buggy events)
to ensure fast convergence and avoid outages. At the same
time, the effects of a bad FIB update or BGP message can
be undone simply by overwriting the FIB or announcing a
new route. To speed reaction time, we hence consider an
approach where we allow outputs to temporarily be faulty.
Here, we mark one instance as the master, and the other in-
stances as slaves. The voter operates by always outputting
the master’s result. The slaves’ results are used to cross-
check against the master after the update is sent or during
idle cycles. The benefit of this approach is that it speeds con-
vergence to the running time of the master’s computation.
In addition, convergence is no worse than the convergence
of the master, and hence at most one routing update is sent
for each received update. However, the downside of this
approach is that if the master becomes buggy, we may tem-
porarily output an incorrect route. To address this, when
failing over to a slave, the voter readvertises any differences
between the slaves’ routing tables and the routing table com-
puted by the master. Hence, temporarily outputting an in-
correct route may not be a problem, as it only leads to a
transient problem that is fixed when the slaves overthrow
the master.

Finally, we consider a hybrid scheme which we refer to as
continuous-majority. This approach is similar to wait-for-
consensus in that the majority result is selected to be used
for advertisement or for population into the FIB. However,
it is also similar to master/slave in that it does not wait for
all instances to compute results before selecting the result.
Instead, every time an instance sends an update, the voter
reruns its voting procedure, and updates are only sent when
the majority result changes. The benefit of this approach
is it may speed reaction to failure, and the majority result
may be reached before the slowest instance finishes com-
puting. The downside of this approach is that convergence
may be worsened, as the majority result may change several
times for a single advertised update. Another downside of
this approach is that voting needs to be performed more of-
ten, though, as we show in our experiments (Section 5) this
overhead is negligible under typical workloads.

4. ROUTER HYPERVISOR PROTOTYPE
Our implementation had three key design goals: (i) not

requiring modifications to routing software, (ii) being able
to automatically detect and recover from faults, and (iii) low
complexity, to not be a source of new bugs. Most of our de-
sign is agnostic to the particular routing protocol being used.
For locations where protocol-specific logic was needed, we
were able to treat messages mostly as opaque strings. This
section describes our implementation, which consists of a
set of extensions built on top of Linux. Our implementation
was tested with XORP versions 1.5 and 1.6, Quagga versions

0.98.6 and 0.99.10, and BIRD version 1.0.14. We focused
our efforts on supporting BGP, due to its complexity and
propensity for bugs. Section 4.1 describes how we provide a
wrapper around the routing software, in order for unmodified
routing software to be used, and Section 4.2 describes the
various faults that can occur and how our prototype detects
and recovers from them.

4.1 Wrapping the routing software
To eliminate the need to modify existing router software,

our hypervisor acts as a wrapper to hide from the routing
software the fact that it is a part of a bug-tolerant router,
and allows the routing instances to share resources such as
ports, and access to the FIB. Our design (Figure 2) takes
advantage of the fact that sockets are used for communi-
cating with peer routers, and for communicating forwarding
table (FIB) updates to the kernel. Hence, our implementa-
tion intercepts socket calls from the router instances using
the LD PRELOAD environment variable and uses a mod-
ified libc library, called hv-libc, to redirect messages to a
user-space module, called virtd, which manages all commu-
nication.

Figure 2: Implementation architecture.

The two key functions the hypervisor then needs to man-
age are discussed below:

Socket-based communications: To connect to peer
routers (with TCP) and for writing to the common FIB
(with Netlink), the multiple routers need to share access
to a common identifier space (e.g., port 179 in BGP). We
handle this by intercepting socket system calls in hv-libc,
performing address translation in hv-libc, and using virtd
as a proxy (e.g., when a router instance listens on port 179,
instead they are made to listen on a random port and virtd
will listen on 179 and connect to each of the random ports
when receiving an incoming connection).

Bootstrapping new connections: When the BTR ini-
tially starts up, the routing instances start with empty rout-
ing tables. In BGP, a session with a peer is established by
creating a TCP connection, exchanging OPEN messages,
and acknowledging the OPEN message with a KEEPALIVE
message. After the session is established, the peers exchange
routing information. However, when replacing a failed in-
stance, we need to bootstrap it locally, to prevent the failure
from being externally visible (e.g., sending a route-refresh to
a peer). Additionally, we need to bootstrap it independently,
to prevent the new instance starting in a faulty state (e.g.,
bootstrapping off another router instance). Since a router’s
state only depends on the last received RIB advertised by
its neighbors, we add some additional logic to the hypervisor
to store the last-received update for each (prefix,neighbor)



pair. Then when a new instance is started, the hypervisor
replays its stored updates. To lower complexity, the hyper-
visor treats the (prefix, neighbor) fields and other attributes
in the packets as opaque strings, and does not implement
protocol logic such as route selection.

4.2 Detecting and recovering from faults
To deal with bugs, our hypervisor must detect which out-

puts are buggy (e.g., with voting), and recover from the
buggy output (by advertising the voting result, and if nec-
essary restarting/replacing the buggy instance).

Detection: One of our main goals is that the BTR should
be able to automatically detect and recover from bugs af-
fecting correctness of the router’s control or data planes.5

Since our design fundamentally relies on detecting differ-
ences in outputs of different instances, we need to handle
every possible way their outputs could differ. All faults can
be generalized to four categories: (i) an instance sending
a message when it should not, (ii) an instance not send-
ing a message when it should, (iii) an instance sending a
message with incorrect contents, and (iv) bugs that cause
a detectable faulty system event, such as process crashing
or socket error. The first three categories are detected by
using voting (the fourth category is easily detectable, so no
further discussion is given). If an instance has a different
output from the majority, we consider it a fault. For exam-
ple, in case (i) above, the winning update will be the NULL
update, in cases (ii) and (iii) the winning update will be the
most-commonly advertised one. To avoid reacting to tran-
sient changes, voting is only performed across steady-state
instance outputs, which have been stable for a threshold pe-
riod of time. We then mark instances whose steady-state
outputs differ from those of the majority or those that are
not yet stable as being faulty (including in schemes like mas-
ter/slave, which perform this step after advertising).6

Recovery: In the common case, recovering from a buggy
router simply involves using the output from the voting pro-
cedure. However, to deal with cases where the router is per-
sistently buggy, or crashes, we need some way to kill and
restart the router. As a heuristic, we modified our hypervi-
sor with a fault threshold timeout. If an instance continues
to produce buggy output for longer than the threshold, or
if the router undergoes a faulty system event, the router is
killed. To maintain a quorum of instances on which vot-
ing can be performed, the BTR can restart the failed in-
stance, or replace it with an alternate diverse copy. In ad-
dition, to support the master/slave voting scheme, we need
some way to overwrite previously-advertised buggy updates.
To deal with this, our implementation maintains a history
of previously-advertised updates when running this voting
scheme. When the hypervisor switches to a new master, all
updates in that history that differ from the currently adver-
tised routes are sent out immediately.

4.3 Reducing complexity
It is worth discussing here the role the hypervisor plays in

the overall reliability of the system. As we are adding soft-
ware, this can increase the possibility of bugs in the overall

5We do not address, for example, faults in logging.
6We consider legitimate route-flapping due to persistent fail-
ures and protocol oscillations to be rare. However, we can
detect this is occurring as the majority of instances will not
be stable and we can act accordingly.

system. In particular, our goals for the design are that (i) the
design is simple, implementing only a minimal set of func-
tionality, reducing the set of components that may contain
bugs, and (ii) the design is small, opening the possibility of
formal verification of the hypervisor – a more realistic task
than verifying an entire routing software implementation.
To achieve these goals, our design only requires the hyper-
visor to perform two functions: (i) acting as a TCP proxy,
and (ii) bootstrapping new instances. Below, we described
how these functions are performed with low complexity.

Acting as a TCP proxy: To act as a TCP proxy simply
involves accepting connections from one end point (remote
or local) and connecting to the other. When there is a TCP
connection already, the hypervisor simply needs to accept
the connection. Then, upon any exchange of messages (in
or out) the hypervisor simply passes data from one port
to another. In addition, our design uses voting to make
replication transparent to neighboring routers. Here, the
update messages are voted upon before being sent to the
adjacent router. However, this is simply comparing opaque
strings (the attributes) and does not involve understanding
the values in the strings.

Overall, our implementation included multiple algorithms
and still was only 514 lines of code. These code changes
occur only in the hypervisor, reducing potential for new bugs
by increasing modularity and reducing need to understand
and work with existing router code. From this, we can see
that the hypervisor design is simple in terms of functionality
and much of the functionality is not in the critical section
of code that will act as a single point of failure.

Bootstrapping new instances: To bootstrap new instances
requires maintaining some additional state. However, bugs
in this part of the code only affect the ability to bootstrap
new instances, and do not affect the “critical path” of voting
code. One can think of this code as a parallel routing in-
stance which is used to initialize the state of a new instance.
Of course, if this instance’s RIB is faulty, the new instance
will be started in an incorrect state. However, this faulty
state would either be automatically corrected (e.g., if the
adjacent router sends a new route update that overwrites
the local faulty copy) or it would be determined to be faulty
(e.g., when the faulty route is advertised), in which case a
new instances is started. Additionally, the RIB that needs
to be kept is simply a history of messages received from the
adjacent router and therefore is simple. Bootstrapping a
new instance also requires intercepting BGP session estab-
lishment. Here, the hypervisor simply needs to observe the
first instance starting a session (an OPEN message followed
by a KEEPALIVE) and subsequent instances simply get the
two received messages replayed.

5. EVALUATION
We evaluate the three key assumptions in our work:

It is possible to perform voting in the presence of dynamic
churn (Section 5.1): Voting is simple to do on fixed inputs,
but Internet routes are transient by nature. To distinguish
between instances that are still converging to the correct
output from those that are sending buggy outputs, our sys-
tem delays voting until routes become stable, introducing
a tradeoff between false positives (incorrectly believing an
unstable route is buggy) and detection time (during which
time a buggy route may be used). Since these factors are



independent of the precise nature of bugs but depend on
update dynamics, we inject synthetic faults, and replay real
BGP routing traces.

It is possible for routers to handle the additional overhead of
running multiple instances (Section 5.2): Internet routers
face stringent performance requirements, and hence our de-
sign must have low processing overhead. We evaluate this
by measuring the pass-through time for routing updates to
reach the FIB or neighboring routers after traversing our
system. To characterize performance under different oper-
ating conditions, we vary the routing update playback rate,
the source of updates (edge vs. tier-1 ISP), and the number
of peers.

Running multiple router replicas does not substantially worsen
convergence (Section 5.3): Routing dynamics are highly de-
pendent on the particular sequence of steps taken to arrive at
the correct route – choosing the wrong sequence can vastly
increase processing time and control overhead. To ensure
our design does not harm convergence, we simulate update
propagation in a network of BTRs, and measure convergence
time and overhead. For completeness, we also cross-validate
these against our implementation.

5.1 Voting in the presence of churn
To evaluate the ability to perform voting in the presence

of routing churn, we replayed BGP routing updates collected
from Route Views [6] against our implementation. In par-
ticular, we configure a BGP trace replayer to play back a
100 hour long trace starting on March 1st 2007 at 12:02am
UTC. The replayer plays back multiple streams of updates,
each from a single vantage point, and we collect information
on the amount of time it takes the system to select a route.
Since performance is dependent only on whether the bug is
detected by voting or not, and independent of the particu-
lar characteristics of the bug being injected, here we use a
simplified model of bugs (based on the model presented in
Section 4.2), where bugs add/remove updates and change
the next-hop attribute for a randomly-selected prefix, and
have two parameters: (i) duration, or the length of time an
instance’s output for a particular prefix is buggy, (ii) interar-
rival time, or the length of time between buggy outputs. As
a starting point for our baseline experiments, we assume the
length of time a bug affects a router, and their interarrival
times, are similar to traditional failures, with duration of 600
seconds, and interarrival time of 1.2 million seconds [34].

5.1.1 Comparison of voting strategies
There is a very wide space of voting strategies that could

be used in our system. To explore tradeoffs in this space, we
investigated performance under a variety of alternative vot-
ing strategies and parameter settings. We focus on several
metrics: the fault rate (the fraction of time the voter out-
put a buggy route), waiting time (the amount of time the
voter waits before outputting the correct route) and update
overhead (the number of updates the voter output).

Fault rate: We investigate the fault rate of the vot-
ing strategies by injecting synthetic faults and varying their
properties. First, we varied the mean duration and interar-
rival times of synthetic faults (Figures 3 and 4). We found
that for very high bug rates, wait-3 (waiting for K = 3 out
of R = 3 copies to agree before selecting the majority result)
outperformed master/slave. This happened because wait-3
is more robust to simultaneous bugs than master/slave, as

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1e+08 1e+06 10000 100 1

F
au

lt 
ra

te
 [f

ra
ct

io
n]

Bug duration [sec]

cts. major
master

std. router
wait-3

Figure 3: Effect of bug duration on fault rate, holding

bug interarrival times fixed at 1.2 million seconds.

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1000  10000  100000  1e+06  1e+07  1e+08

F
au

lt 
ra

te
 [f

ra
ct

io
n]

Bug interarrival time [sec]

cts. major
master

std. router
wait-3

Figure 4: Effect of bug interval on fault rate, holding

bug duration fixed at 600 seconds.

master/slave takes some short time to detect the fault, po-
tentially outputting an incorrect route in the meantime. In
addition, unless the bug rate is extremely high, continuous-
majority performs nearly as well as wait-3, with similar ro-
bustness and update overhead.

Overall, we found that recovery almost always took place
within one second. Increasing the number of instances run-
ning in parallel (R) makes the router even more tolerant
of faults, but incurs additional overheads. Also, wait-for-
consensus and continuous-majority gain more from larger
values of R than the master/slave strategy. For example,
when moving from R = 3 to R = 4 instances, the fault rate
decreases from 0.088% to 0.003% with wait-for-consensus,
while with master/slave the fault rate only decreases from
0.089% to 0.06%.

However, there may be practical limits on the amount
of diversity achievable (for example, if there is a limited
number of diverse code instances, or a bound on the ability
to randomize update timings). This leads to the question—
if we have a fixed number of diverse instances, how many
should be run, and how many should be kept as standbys
(not running, but started up on demand)? We found that
standby routers were less effective than increasing R, but
only for small values of R, indicating that for large numbers
of diverse instances, most instances could be set aside as
standbys to decrease runtime overhead. For example, if R =
3, under the continuous-majority strategy we attain a fault
rate of 0.02%. Increasing R to 4 reduced the fault rate to
0.0006%, while instead using a standby router with R = 3
reduced the fault rate to 0.0008%. This happens because
buggy outputs are detected quickly enough that failing over
to a standby is nearly as effective as having it participate
in voting at every time step. Because of this, operators can



 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100

C
um

ul
at

iv
e 

fr
ac

tio
n

Updates per 1-sec interval

cts. major
master

std. router
wait-3

Figure 5: Effect of voting on update overhead.

achieve much of the benefits of a larger number of instances,
even if these additional instances are run as lower-priority
(e.g., only updated during idle periods) standbys.

Waiting time: Different voting algorithms provide differ-
ent tradeoffs between waiting time (time from when a new
best-route arrives, to when it is output by the voter) and the
fault rate. The master/slave strategy provides the smallest
waiting time (0.02 sec on average), but incurs a higher fault
rate (0.0006% on average), as incorrect routes are adver-
tised for a short period whenever the master becomes buggy.
Continuous-majority has longer wait times (0.035 sec on av-
erage), but lower fault rate (less than 0.00001% on average),
as routes are not output until multiple instances converge
to the same result. The wait-for-consensus strategy’s per-
formance is a function of the parameter K—larger values
of K increase wait time but decreases fault rate. However,
we found that increasing K to moderate sizes incurred less
delay than the pass-through time for a single instance, and
hence setting K = R offered a low fault rate with only minor
increases in waiting time.

Update overhead: Finally, we compare the voting strate-
gies in terms of their effect on update overhead (number of
routing updates they generate), and compare them against a
standard router (std. router). Intuitively, running multiple
voters within a router might seem to increase update over-
head, as the voter may change its result multiple times for a
single routing update. However, in practice, we find no sub-
stantial increase, as shown in Figure 5, which plots a CDF
of the number of updates (measured over one second inter-
vals). For the master/slave strategy this is expected, since
a single master almost always drives computation. In wait-
for-consensus, no updates are generated until all instances
arrive at an answer, and hence no more than one outbound
update is generated per inbound update, as in a standard
router. Interestingly, the continuous-majority strategy also
does not significantly increase update overhead. This hap-
pens because when an update enters the system, the voter’s
output will only change when the majority result changes,
which can only happen once per update.

5.1.2 Performance of fault detection
Protocols today often incorporate thresholds (such as BGP’s

MRAI timer) to rate-limit updates. To evaluate the level of
protection our scheme provides against unstable instances,
as well as the ability to distinguish steady-state from tran-
sient behavior, we incorporated a configurable timeout pa-
rameter (T ) in fault detection to identify when a route be-
comes stable. Figure 6 shows the tradeoff as this parameter
varies between the false negative rate (the number of times

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016
 0.018

 0.02

 0.01  0.1  1  10  100
 0

 200

 400

 600

 800

 1000

 1200

 1400

F
au

lt 
ra

te
 [f

ra
ct

io
n]

N
um

be
r 

of
 fa

ls
e-

ne
g 

ev
en

ts

Convergence timeout (T) [sec]

cts. major,wait-3 fault-rate
cts. major,wait-3 false-neg

master fault-rate
master false-neg

Figure 6: Effect of convergence time threshold.

a non-buggy instance is treated as buggy), and the fault rate
(i.e., the false positive rate of the voter, or the fraction of
time a buggy route is treated as non-buggy). We found that
as T increases, the false negative rate decreases, as larger
values of T reduce the probability that transient changes
will be considered when voting. The false negative rate does
not vary among different voting strategies, as fault detec-
tion is only performed on steady-state outputs, and the al-
gorithmic differences between the strategies disappear when
performed on outputs that are not dynamically changing.
The fault rate increases with T , as when a bug does oc-
cur, it takes longer to detect it. Interestingly, the fault rate
initially decreases with T ; this happens because for low val-
ues of T , more instances are treated as buggy, giving fewer
inputs to the voter and increasing the probability of an in-
correct decision. Overall, we found that it was possible to
tune T to simultaneously achieve a low fault rate, low false
negative, and low detection time.

5.2 Processing overhead
We evaluate the overhead of running multiple instances

using our hypervisor with both XORP- and Quagga-based
instances running on single-core 3 Ghz Intel Xeon machines
with 2 GB RAM. We measure the update pass-through time
as the amount of time from when the BGP replayer sends
a routing update to when a resulting routing update is re-
ceived at the monitor. However, some updates may not
trigger routing updates to be sent to neighbors, if the router
decides to continue using the same route. To deal with this
case, we instrument the software router’s source code to de-
termine the point in time when it decides to retain the same
route. We also instrument the kernel to measure the FIB
pass-through time, as the amount of time from when the
BGP replayer sends an update to the time the new route is
reflected in the router’s FIB (which is stored as the routing
table in the Linux kernel).

Figure 7 shows the pass-through time required for a rout-
ing change to reach the FIB. We replayed a Routeviews up-
date trace and varied the number of Quagga instances from
1 to 31, running atop our router hypervisor on a single-
core machine. We found the router hypervisor increases
FIB pass-through time by 0.08% on average, to 0.06 sec-
onds. Our router hypervisor implementation runs in user
space, instead of directly in the kernel, and with a kernel-
based implementation this overhead would be further re-
duced. Increasing the number of instances to 3 incurred
an additional 1.7% increase, and to 5 incurred a 4.6% in-
crease. This happens because the multiple instances contend
for CPU resources (we found that with multicore CPUs this
overhead was substantially lower under heavy loads). To



 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

C
um

ul
at

iv
e 

fr
ac

tio
n

Time [sec]

fib-1
fib-3
fib-5

fib-11
fib-31

std. router

Figure 7: BTR pass-through time.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1  10

C
um

ul
at

iv
e 

fr
ac

tio
n

Convergence time [sec]

CQ25

AS
3967

wait-3
std. router

Figure 8: Network-wide simulations, per-router conver-

gence delay distribution.

evaluate performance under heavier loads, we increased the
rate at which the replayer played back routing updates by
a factor of 3000x. Under this heavy load, FIB pass-through
times slow for both the standard router and BTR due to
increased queuing delays. However, even under these heavy
loads, the BTR incurs a delay penalty of less than 23%. To
estimate effects on convergence, we also measured the up-
date pass-through time as the time required for a received
routing change to be sent to neighboring routers. We found
this time to be nearly identical to the FIB pass-through time
when the MRAI timer was disabled. as updates are sent im-
mediately after updating the FIB. When MRAI was enabled
(even when set to 1 second, the lowest possible setting for
Quagga), the variation in delay across instances was dwarfed
by delay incurred by MRAI. Finally, we found that switch-
ing to the master/slave voting strategy reduces pass-through
delay, though it slightly increases the fault rate, as discussed
previously in Section 5.1.

5.3 Effect on convergence
Next, we study the effect of our design on network-wide

convergence. We do this by simulating a network of BTRs
(each with eight virtual router instances) across three network-
level graphs: the entire AS-level topology (labeled AS in Fig-
ure 8) sampled on Jan 20 2008, AS 3967’s internal network
topology as collected from Rocketfuel (labeled 3967), and
cliques (labeled CQ) of varying sizes (since a clique contains
the “worst case” for routing, allowing potential to explore
all n! possible paths in a clique of size n). To determine or-
dering of when BTRs respond, we run our implementation
over routing updates, record pass-through times, and replay
them within our simulation framework. Since for the mas-
ter/slave approach there is no effect on network operation
unless a bug is triggered (since the slaves only operate as
standbys), we focus our evaluation on the other strategies.

We found several key results. First, as shown in Figure 8,

the voting schemes do not produce any significant change
in convergence beyond the delay penalty described in pre-
vious sections, as compared to a network only containing
standard routers. We found this delay penalty to be much
smaller than propagation delays across the network, and to
be reduced further when MRAI is activated. As the number
of instances increases (up to the number of processor cores),
continuous-majority’s delay decreases, because it becomes
increasingly likely that one will finish early. The opposite
is true for wait-for-consensus, as the delay of the slowest
instances becomes increasingly large. Next, while we have
thus far considered a virtual router level deployment, where
voting is performed at each router, we also considered a vir-
tual network deployment, where voting is performed at the
edges of the network. In our experiments we ran eight vir-
tual networks and found that this speeds up convergence, as
routers do not have to wait for multiple instances to com-
plete processing before forwarding updates. Hence, for small
numbers of diverse instances, voting per-router has smaller
convergence delay. However, virtual-network approaches re-
quire substantially more control overhead than the virtual-
router voting schemes. To address this, we found that simple
compression schemes [11] that eliminate redundancy across
updates could reduce the vast majority of this overhead. Fi-
nally, to validate our simulations, we set up small topologies
on Emulab [2], injected routing events, and compared with
simulations of the same topology. We found no statistically
significant difference.

6. DISCUSSION
For simplicity, this paper discusses the one particular de-

sign point. However, our architecture is amenable to deploy-
ment on varying levels of granularity:

Server-based operation: Instead of running the diverse
instances within a single router, their computations may be
offloaded to a set of dedicated servers running in the network
(e.g., an RCP-like platform [15]). These servers run the
router software in virtualized environments, and cross-check
the results of routers running within the network. When
a buggy result is detected, virtual router instances may be
migrated into the network to replace the buggy instance.
Alternatively, the servers may be configured to operate in
read-only mode, such that they may signal alarms to network
operators, rather than participate directly in routing.

Network-wide deployment: Instead of running in-
stances of individual router software in parallel, ensembles
of routers may collectively run entire virtual networks in
parallel. Here, the outputs of a router are not merged into a
single FIB, or as a single stream of updates sent to its neigh-
bors. Instead, each router maintains a separate FIB for each
virtual network, and voting is used at border routers to de-
termine which virtual network data packets should be sent
on. The advantage of this approach is it allows different
routing protocols to be used within each virtual network,
making it simpler to achieve diversity. For example, OSPF
may be run in one network and IS-IS in another. In ad-
dition, convergence speed may be improved, as individual
physical routers do not have to wait for their instances to
reach a majority before sending a routing update.

Process-level deployment: Our design runs multiple
instances of routing software in parallel, and hence incurs
some memory overhead. On many Internet routers this is



not an issue, due to low DRAM costs, and the fact that
DRAM capacity growth has far exceeded that of routing
table growth. That said, if it is still desirable to decrease
memory usage, router software may be modified to vote on
a shared RIB instead of a FIB. We found the RIB is by
far the largest source of memory usage in both Quagga and
XORP, incurring 99.3% of total memory usage. Voting on
a shared RIB would reduce this overhead by eliminating
the need to store separate copies of the RIB across router
instances. Here, voting could be performed across multi-
ple routing daemons (e.g., multiple BGP processes within
a single instance of Cisco IOS) to construct a single shared
RIB. In addition to reducing memory usage, finer-grained
diversity may speed reaction (by only cloning and restarting
individual processes or threads), and finer-grained control
(during times of load, only mission-critical components may
be cloned to reduce resource usage). However, code devel-
opment may become more challenging, since this approach
relies on knowing which parts of code are functionally equiv-
alent. To address this, router software could be written to a
common API, to allow replication and composition of mod-
ules from different code bases while sharing state.

Leveraging existing redundancy: Instead of running
multiple instances in parallel, a router may be able to lever-
age redundant executions taking place at other routers in the
network. For example, networks often provision redundant
network equipment to protect against physical failures. For
example, the VRRP [27] protocol allows multiple routers
to act collectively as a single router. Our architecture is
amenable to leveraging physical redundancy, as the multi-
ple instances may be deployed across the redundant router
instances. In addition, all routers in the ISP compute the
same egress set of BGP routes that are “equal” according to
the first few steps of the decision process that deal with BGP
attributes [24, 15]. To leverage this redundancy, it may be
possible to extend our architecture to support voting across
multiple router’s egress sets.

7. RELATED WORK
Software and data diversity has been widely applied in

other areas of computing, including increasing server reli-
ability [18], improving resilience to worm propagation [36],
building survivable Internet services [28], making systems
secure against vulnerabilities [20], building survivable over-
lay networks [44], building fault tolerant networked file sys-
tems [17], protecting private information [43], and recovering
from memory errors [12]. Techniques have also been devel-
oped to minimize computational overhead by eliminating
redundant executions and redundant memory usage across
parallel instances [45, 26].

However as discussed in Section 1.3, routing software presents
new challenges for SDD (e.g., routers must react quickly to
network changes, have vast configuration spaces and execu-
tion paths, rely on distributed operations), as well as new
opportunities to customize SDD (routers have small depen-
dence on past history, can achieve the same objectives in dif-
ferent ways, have well-defined interfaces). We address these
challenges and opportunities in our design. There has also
been work studying router bugs and their effects [42, 32], and
our design is inspired by these measurement studies. Also,
[14] used a graph-theoretic treatment to study the potential
benefits of diversity across physical routers (as opposed to
diversity within a router). As work dealing with misconfig-

urations [23, 24] and traditional fail-stop failures [10, 35, 33,
27] becomes deployed we envision router bugs will make up
an increasingly significant roadblock in improving network
availability.

Our work can be contrasted to techniques which attempt
to prevent bugs by formally verifying the code. These tech-
niques are typically limited to small codebases, and often re-
quire manual efforts to create models of program behavior.
For example, with manual intervention, a small operating
system kernel was formally verified [29]. For routing, work
has been done on languages to model protocol behavior (e.g.,
[25]), however the focus of this work is on algorithmic be-
haviors of the protocol, as opposed to other possible places
where a bug can be introduced. In contrast, our approach
leverages a small and low-complexity hypervisor, which we
envision being possible to formally verify.

Our design leverages router virtualization to maintain mul-
tiple diverse instances. Router virtualization is an emerging
trend gaining increased attention, as well as support in com-
mercial routers. Our design builds on the high-level ideas
outlined in [16] by providing a complete design, several al-
gorithms for detecting and recovering from bugs, and an
implementation and evaluation. In addition, our design is
complementary to use of models of router behavior [23, 24]
and control-plane consistency checks [41, 37], as these mod-
els/checks can be run in place of one or more of the router
virtual instances. Finally, systems such as MARE (Multi-
ple Almost-Redundant Executions) [45] and the Difference
Engine [26] focus on reducing overheads from replication.
MARE runs a single instruction stream most of the time,
and only runs redundant instruction streams when neces-
sary. The Difference Engine attains substantial savings in
memory usage across VMs, through use of sub-page level
sharing and in-core memory compression. These techniques
may be used to further reduce overheads of our design.

8. CONCLUSIONS
Implementation errors in routing software harm availabil-

ity, security, and correctness of network operation. In this
paper, we described how to improve resilience of networks to
bugs by applying Software and Data Diversity (SDD) tech-
niques to router design. Although these techniques have
been widely used in other areas of computing, applying them
to routing introduces new challenges and opportunities, which
we address in our design. This paper takes an important first
step towards addressing these problems by demonstrating
diverse replication is both viable and effective in building
robust Internet routers. An implementation of our design
shows improved robustness to router bugs with some toler-
able additional delay.

9. REFERENCES
[1] Cisco 7200 simulator. (software to run Cisco IOS

images on desktop PCs) www.ipflow.utc.fr/index.

php/Cisco_7200_Simulator.

[2] Emulab.net. www.emulab.net.

[3] Olive. (software to run Juniper OS images on desktop
PCs) juniper.cluepon.net/index.php/Olive.

[4] OpenVZ. http://www.openvz.org.

[5] Quagga software routing suite. www.quagga.net.

[6] Route views project. www.routeviews.org.

[7] Vyatta (open-source router vendor). www.vyatta.com.



[8] Xorp, inc. www.xorp.net.

[9] S. Agarwal, C. Chuah, S. Bhattacharyya, and C. Diot.
Impact of BGP dynamics on router CPU utilization.
In Passive and Active Measurement, April 2004.

[10] C. Alaettinoglu, V. Jacobson, and H. Yu. Towards
millisecond IGP convergence. In IETF Draft,
November 2000.

[11] R. Alimi, Y. Wang, and Y. R. Yang. Shadow
configuration as a network management primitive. In
SIGCOMM, August 2008.

[12] E. Berger and B. Zorn. DieHard: Probabilistic
memory safety for unsafe languages. In Programming
Languages Design and Implementation, June 2006.

[13] B. Brenner. Cisco IOS flaw prompts symantec to raise
threat level. In Information Security Magazine, Sept.
2005.

[14] J. Caballero, T. Kampouris, D. Song, and J. Wang.
Would diversity really increase the robustness of the
routing infrastructure against software defects? In
NDSS, Feb. 2008.

[15] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and K. van der Merwe. Design and
implementation of a routing control platform. In
NSDI, April 2005.

[16] M. Caesar and J. Rexford. Building bug-tolerant
routers with virtualization. In PRESTO, August 2008.

[17] M. Castro and B. Liskov. Practical byzantine fault
tolerance. In OSDI, February 1999.

[18] B.-G. Chun, P. Maniatis, and S. Shenker. Diverse
replication for single-machine byzantine-fault
tolerance. In USENIX Annual Technical Conference,
June 2008.

[19] Cisco ASR 1000 series aggregation services router high
availability: Delivering carrier-class services to
midrange router.
http://www.cisco.com/en/US/prod/collateral/

routers/ps9343/solution_over%view_c22-450809_

ps9343_Product_Solution_Overview.html.

[20] B. Cox, D. Evans, A. Filip, J. Rowanhill, W. Hu,
J. Davidson, J. Knight, A. Nguyen-Tuong, and
J. Hiser. N-variant systems: A secretless framework
for security through diversity. In Usenix Security,
August 2006.

[21] J. Duffy. BGP bug bites Juniper software. In Network
World, December 2007.

[22] J. Evers. Trio of Cisco flaws may threaten networks.
In CNET News, January 2007.

[23] N. Feamster and H. Balakrishnan. Detecting BGP
configuration faults with static analysis. In NSDI,
May 2005.

[24] N. Feamster and J. Rexford. Network-wide prediction
of BGP routes. In IEEE/ACM Trans. Networking,
April 2007.

[25] T. G. Griffin and J. L. Sobrinho. Metarouting. In
SIGCOMM, August 2005.

[26] D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren,
A. Vahdat, G. Varghese, and G. Voelker. Difference
engine: Harnessing memory redundancy in virtual
machines. In OSDI, December 2008.

[27] R. Hinden. Virtual router redundancy protocol
(VRRP). RFC 3768, April 2004.

[28] F. Junqueira, R. Bhgwan, A. Hevia, K. Marzullo, and
G. Voelker. Surviving Internet catastrophes. In
HotOS, May 2003.

[29] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and
S. Winwood. sel4: Formal verification of an os kernel.
In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles (SOSP), 2009.

[30] J. Knight and N. Leveson. A reply to the criticisms of
the Knight & Leveson experiment. ACM SIGSOFT
Software Engineering Notes, January 1990.

[31] W. Knight. Router bug threatens ’Internet backbone’.
In New Scientist Magazine, July 2003.

[32] A. Kuatse, R. Teixeira, and M. Meulle. Characterizing
network events and their impact on routing. In
CoNEXT (Student Poster), December 2007.

[33] K. Lakshminarayanan, M. Caesar, M. Rangan,
T. Anderson, S. Shenker, and I. Stoica. Achieving
convergence-free routing using failure-carrying
packets. In SIGCOMM, August 2007.

[34] A. Markopoulou, G. Iannaconne, S. Bhattacharrya,
C.-N. Chuah, and C. Diot. Characterization of failures
in an IP backbone. In IEEE/ACM Trans. Networking,
Oct. 2008.

[35] M. Motiwala, M. Elmore, N. Feamster, and
S. Vempala. Path splicing. In SIGCOMM, August
2008.

[36] A. O’Donnell and H. Sethu. On achieving software
diversity for improved network security using
distributed coloring algorithms. In ACM CCS,
October 2004.

[37] R. Rajendran, V. Misra, and D. Rubenstein.
Theoretical bounds on control-plane self-monitoring in
routing protocols. In SIGMETRICS, June 2007.

[38] M. Reardon. Cisco offers justification for procket deal.
June 2004. http://news.cnet.com/
Cisco-offers-justification-for-Procket-deal/

2100-1%033_3-5237818.html.

[39] Renesys. AfNOG takes byte out of Internet. http:
//www.renesys.com/blog/2009/05/byte-me.shtml.

[40] Renesys. Longer is not always better.
http://www.renesys.com/blog/2009/02/

longer-is-not-better.shtml.

[41] L. Wang, D. Massey, K. Patel, and L. Zhang. FRTR:
A scalable mechanism to restore routing table
consistency. In DSN, June 2004.

[42] Z. Yin, M. Caesar, and Y. Zhou. Towards
understanding bugs in router software. In Technical
report, UIUC, January 2009.
www.cs.uiuc.edu/homes/caesar/bugs.pdf.

[43] A. Yumerefendi, B. Mickle, and L. Cox. Tightlip:
Keeping applications from spilling the beans. In NSDI,
April 2007.

[44] Y. Zhang, S. Dao, H. Vin, L. Alvisi, and W. Lee.
Heterogeneous networking: A new survivability
paradigm. In New Security Paradigms Workshop,
September 2008.

[45] Y. Zhou, D. Marinov, W. Sanders, C. Zilles,
M. d’Amorim, S. Lauterburg, and R. Lefever. Delta
execution for software reliability. In Hot Topics in
Dependability, June 2007.


