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Abstract

The present paper addresses the parameter-dependent H∞ filter design problem for output estimation in linear parameter varying (LPV)
plants that include constant delays in the state. We develop LMI-based delay-dependent conditions to guarantee stability and an induced L2
gain bound performance for the filtering error system. An explicit characterization of the filters’ state–space representation is given in terms of
the solutions to a convex optimization problem associated with the synthesis conditions. By taking the output estimation error into account as
the H∞ criterion, the developed filters are shown to be capable of tracking the desired outputs of the time-delayed parameter varying system in
the presence of external disturbances. Two families of filters are examined: memoryless and state-delayed filters. The latter one which involves
a delay term in its dynamics has the benefit of reducing the conservatism in the design and improving performance. Illustrative examples are
provided to demonstrate the feasibility and advantages of the proposed methodologies for memoryless and state-delayed filter design and to
validate the superiority of using the state-delayed configuration compared to the conventional memoryless filters.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

State estimation has been widely studied and has found many
practical applications in the past four decades. When a priori
statistical information on the external disturbance signals is
not known, Kalman filtering cannot be employed. To address
this issue, H∞ filtering was introduced, in which the external
disturbance signal is assumed to be only energy bounded, and
the main objective of the design is to minimize the H∞ norm of
the filtering error system (see [5,6] and the references therein).
Recently, a lot of research has been conducted on the design of
H∞ filters, including the treatment of system uncertainty and
time delays [15,11,2] by means of Riccati-oriented approaches,
as well as, linear matrix inequality (LMI)-based formulations.

In control design for systems that operate over a wide oper-
ating range, a common approach is to schedule various fixed
operating point designs. Unfortunately, there are no known
systematic techniques for scheduling such controllers that
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provide guarantees on the resulting performance or even
stability of the combined closed-loop system. Moreover, un-
acceptable transients may occur while switching between the
fixed-point designed controllers [13]. However, recent ad-
vances in optimal and robust control theory provide a design
methodology that results in optimal parameter-dependent con-
trollers that guarantee stability and performance over the full
operating envelope [14]. The controllers are scheduled based
upon the varying parameter values, which are not known a
priori but can be measured in real time. The corresponding
controllers are designed such that they achieve a level of
performance against worst-case variations of the parameters.
These controllers initially introduced in [14] are referred to as
linear parameter varying (LPV) controllers.

Time delays generally occur in communication systems,
transmission systems, chemical processing systems, power sys-
tems, and many other engineering processes. It is well known
that if the presence of delays is not considered in the con-
troller design, it can cause instability or serious deterioration
in the performance of the resulting closed-loop system. The
study of time-delay systems has received significant attention
in the past decade (see [10] and numerous reference therein).
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Current research efforts in this area are divided into two main
directions, namely, delay-independent stability and delay-
dependent stability criteria. Although the delay-independent
analysis conditions are easy to check, the absence of infor-
mation on the delay causes conservativeness of the criterion,
especially when the delay size is small. Delay-dependent sta-
bility conditions, which take the size of the delay into account,
are typically less conservative than the delay-independent ones
[10]. Recently, some appreciable work has been completed
to analyze and synthesize time-delay LPV controlled systems
(e.g., see [17,16]). The present work uses Lyapunov–Krasovskii
functionals for the delay-dependent analysis and filter de-
sign. It generalizes the work in [9], that is concerned with
the state estimation of LPV time-delay systems from an H∞
perspective. Also, a more elaborate Lyapunov–Krasovskii
functional that includes additional terms is used in the present
paper resulting in improved performance. Comparisons with
[9] are provided to illustrate the reduced conservatism of
the results of the proposed designs. The work in [8] also
formulates a general delay-independent/rate-dependent filter
design methodology for continuous time-delayed LPV sys-
tems. Notice that the results of [8,11] are known to provide
conservative results because of lack of information on the
size of the state delay in the synthesis conditions. A short
version of the current paper has also been recently appeared
in [7].

This paper is concerned with delay-dependent analysis
and design of H∞ filters for continuous-time LPV systems
that include a state delay in the state–space representation of
the system. For this purpose, we use a parameter-dependent
Lyapunov–Krasovskii functional and an H∞ performance cri-
terion, that depends on the LPV parameters. Both memoryless
(proper) and state-delayed (nonrational) filters are examined,
and the corresponding filter designs are formulated in the form
of convex optimization problems, which can be effectively
solved using the well-developed interior-point algorithms [3].
Finally, simulation results demonstrate the benefits and capa-
bilities of employing our proposed methodologies for filter
design.

The paper is organized as follows. Section 2 states the class
of LPV delay systems for which the proposed LPV filters
are designed. Section 3 presents sufficient analysis conditions
for a time-delayed LPV system to be stable and to provide
a prescribed level of induced L2 gain. Section 4 presents
our design methodology and the synthesis conditions for
the calculation of memoryless and state-delayed H∞ filters
based on the preliminary formulations given in Section 3.
Section 5 illustrates the capability of our design method to
estimate the desired outputs in selected numerical examples
compared to past approaches, and Section 6 concludes the
paper.

2. Plant formulation and a useful lemma

We consider a general class of the state-delayed LPV sys-
tems, that includes delay terms in the measurement and the

plant output, as follows:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ(t) = A(�(t))x(t)+Ah(�(t))x(t−h)+B1(�(t))w(t),

z(t) = C1(�(t))x(t)+C1h(�(t))x(t−h)+D11(�(t))w(t),

y(t) = C2(�(t))x(t)+C2h(�(t))x(t−h)+D21(�(t))w(t),

x(t) = �(t); t ∈ [−h, 0].

(1)

In this formulation x(t) ∈ Rn is the state vector, w(t) ∈ Rnw is
the vector of external disturbances, y(t) ∈ Rny is the measure-
ments vector, z(t) ∈ Rnz is the plant output vector, which is to
be estimated, and h denotes the constant time-delay. Also, we
assume that �(t) is a given continuous function, and that all
the state–space matrices are known functions of a time-varying
parameter vector �(t) ∈ F�

P measured in real time. F�
P is the

set of allowable parameter trajectories defined as

F�
P�{� ∈ C(R, Rs) : �(t) ∈ P, |�̇i (t)|��i ,

i = 1, 2, . . . , s, ∀t ∈ R+},
where P is a compact subset of Rs , and {�i}si=1 are nonnegative
numbers.

In the following lemma, we state an integral inequality which
will play an important role in the proofs of our results.

Lemma 1 ([12] ). Assume thata(�) ∈ Rp andb(�) ∈ Rp are
given. Then, for any arbitrary positive de“nite matrix R and
any matrix W of the appropriate dimension, the inequality

− 2
∫ t

t−h

aT(�)b(�) d�

�
∫ t

t−h

[bT(�) aT(�) ]

[
R RW

WTR T

] [
b(�)

a(�)

]
d�

holds, whereT = (WTR + I )R−1(RW + I ).

3. L2-gain analysis of LPV time-delayed systems

In this section, we obtain sufficient conditions to guarantee
asymptotic stability and a prescribed L2-gain performance for
the time-delayed parameter varying plant (1). In (1), the transfer
matrix from the vector of disturbances w(t) to the output vector
z(t), assuming frozen LPV parameters, is given by

H(j�) = (C1 + C1he−j�h)(j�I − A − Ahe−j�h)−1B1 + D11.

(2)

We use the relation �max(H(j�)) = �max(H
T(−j�)) in our

analysis. The following equation is straightforward to achieve:

G(j�) = HT(−j�)

= BT
1 (j�I+AT+AT

hej�h)−1(−CT
1 −CT

1he
j�h)+DT

11.

Hence, G(j�) has the following state–space representation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̃x(	) = −AT(�(	))x̃(	)−AT
h(�(	))x̃(	 + h) − CT

1 (�(	))z̃(	)

−CT
1h(�(	))z̃(	 + h),

w̄(	) = BT
1 (�(	))x̃(	) + DT

11(�(	))z̃(	),

x̃(	) = �(	); 	 ∈ [0, h].
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This is the backward adjoint equivalent of system (1). Change
of variable in the form of x̄(	) = x̃(h − 	) gives the forward
adjoint model as follows:⎧⎪⎪⎨
⎪⎪⎩

˙̄x(t̄) = AT(�(t̄))x̄(t̄) + AT
h(�(t̄))x̄(t̄ − h) + CT

1 (�(t̄))z̄(t̄)

+CT
1h(�(t̄))z̄(t̄ − h),

w̄(t̄) = BT
1 (�(t̄))x̄(t̄) + DT

11(�(t̄))z̄(t̄),

x̄(t̄) = 
(t̄); t̄ ∈ [−h, 0].
(3)

Note that the above state–space model has the same L2-gain as
the original system (1). Now, assuming independence of noise
signals z̄(t) and z̄(t − h), which is a reasonable assumption,
we define the augmented vector z̃(t) = [z̄T(t), z̄T(t − h)]T and
hence the new system representation reads⎧⎪⎪⎨
⎪⎪⎩

˙̄x(t) = AT(�(t))x̄(t) + AT
h(�(t))x̄(t − h)

+[CT
1 (�(t)) CT

1h(�(t))]z̃(t),
w̄(t) = BT

1 (�(t))x̄(t) + [DT
11(�(t)) 0]z̃(t),

x̄(t) = 
(t); t ∈ [−h, 0].
(4)

The obtained form of state–space representation of the system
does not include a state delay in the output equation. We now
determine sufficient conditions that guarantee asymptotic sta-
bility and H∞ performance for plants in the form of (4).

Let us consider a time-delayed LPV plant given by{
ẋ(t) = A0(�(t))x(t) + A1(�(t))x(t − h) + B(�(t))w(t),

z(t) = L(�(t))x(t) + D(�(t))w(t),

x(t) = �(t); t ∈ [−h, 0].
(5)

Given system (5) and a prescribed scalar � > 0, we define the
performance index

J (w) =
∫ ∞

0
(zT(t)z(t) − �2wT(t)w(t)) dt . (6)

Now, we use the forward adjoint system, as pointed out before,
which is equivalent to (5){ ˙̃x(t) = AT

0 (�(t))x̃(t) + AT
1 (�(t))x̃(t − h) + LT(�(t))z̃(t),

w̃(t) = BT(�(t))x̃(t) + DT(�(t))z̃(t).
(7)

The adjoint system (7) and its forward and backward adjoint
systems are equivalent with respect to the H∞ norm from
the disturbance vector to the output vector. Following [2], we
represent (7) in an equivalent descriptor model form as

˙̃x(t) = �(t),

0 = −�(t) + (A0 + A1)
Tx̃(t) − AT

1

∫ t

t−h

�(s) ds + LTz̃(t), (8)

where we have used the Leibniz–Newton formula instead of
the time-delayed state term. This form enables us to formulate
the synthesis conditions in terms of linear matrix inequalities
as we will see later.

Now, consider the following Lyapunov–Krasovskii func-
tional

V (t) = [x̃T(t) �T(t)]FP(�)

[
x̃(t)

�(t)

]

+
∫ 0

−h

∫ t

t+�
�T(s)R�(s) ds d�, (9)

where

P(�) =
[

P1(�) 0
P2(�) P3(�)

]
, F = diag[I, 0],

0 < P1(�) = P T
1 (�), RT = R > 0.

The derivative of the first term of the above functional along
the system trajectory results in

V̇1(t) = x̃T(t)Ṗ1x̃(t) + 2x̃T(t)P1 ˙̃x(t) = x̃T(t)Ṗ1x̃(t)

+ 2[x̃T(t) �T(t)]P T
[ ˙̃x(t)

0

]
= x̃T(t)Ṗ1x̃(t) + 2[x̃T(t) �T(t)]P T

×
[

�(t)

−�(t) + AT
2 x̃(t) − A1

∫ t

t−h
�(s) ds + LTz̃(t)

]

= 2[x̃T(t) �T(t)]P T
([

0 I

AT
2 −I

] [
x̃(t)

�(t)

]
+
[

0
LT

]
z̃(t)

)
+ x̃T(t)Ṗ1x̃(t) + �(t),

where A2 = A0 + A1. Also, the time derivative of the second
term of V (t) is

V̇2(t) =
∫ 0

−h

(�T(t)R�(t) − �T(t + �)R�(t + �)) d�

= h�T(t)R�(t) −
∫ t

t−h

�T(�)R�(�) d�,

where we have used the Leibniz integral rule. Now, making use
of Lemma 1 provides us with the existence of a matrix R > 0
such that

− 2
∫ t

t−h

[x̃T(t) �T(t)]P T
[

0
AT

1

]
�(s) ds

�
∫ t

t−h

�T(s)R�(s) ds

+
∫ t

t−h

[x̃T(t) �T(t)]P T
[

0
AT

1

]
R−1[0 A1]P

[
x̃(t)

�(t)

]
ds

�
∫ t

t−h

�T(s)R�(s) ds

+ h[x̃T(t) �T(t)]P T
[

0
AT

1

]
R−1[0 A1]P

[
x̃(t)

�(t)

]
.

Note that while using Lemma 1, we have assumed that the
corresponding matrix W = 0. A less conservative filter design
can be obtained by making the matrix Wa free parameter. Then,
a more complex but less conservative LMI formulation can be
derived to design such filters. Using the obtained derivative
terms provides us with the following result for V̇ (t)

V̇ (t) = 
T(t)�0
(t) + h�T(t)R�(t)

+ h[x̃T(t) �T(t)]P T
[

0
AT

1

]
R−1[0 A1]P

[
x̃(t)

�(t)

]
,
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where


(t) =
[

x̃(t)

�(t)

z̃(t)

]
, �0 =

[
�1 +

[
Ṗ1 0
0 0

]
�

[0 L]P 0

]
,

�1 = P T
[

0 I

AT
2 −I

]
+
[

0 A2
I −I

]
P .

If our objective is to keep the H∞ norm of the operator map-
ping external disturbances to the desired output less than a pre-
scribed positive value �, then we have to make the performance
measure, as defined in (6), negative. We can rewrite the perfor-
mance measure as

J ′ =
∫ ∞

0
(w̃T(t)w̃(t) − �2z̃T(t)z̃(t) + V̇ (t)) dt . (10)

Substituting w̃(t) from (7) results in the integrand in (10) being
less than 
T(t)�1
(t). Now, if �1 < 0, then J < 0 which im-
plies that the L2-gain from the disturbance z̃(t) to the system
output w̃(t) is less than �. Using Schur complement on �1 < 0
leads to

�2 =
[�1 + diag(Ṗ1, hR) + h�2 � �

[0 L]P −�2I �

[BT 0] DT −I

]
< 0, (11)

with �2 given by �2 = P T
[

0
AT

1

]
R−1[0 A1]P . But �2 < 0 is a

bilinear matrix inequality because of the presence of both Rand
R−1. However, using the Schur complement again we obtain
the following LMI:

�3 =
⎡
⎢⎣

�1 + diag(Ṗ1, hR) � � �

[0 L]P −�2I � �

[BT 0] DT −I �

[0 A1]hP 0 0 −hR

⎤
⎥⎦< 0. (12)

An equivalent LMI can be obtained by utilizing the congruence
transformation T1 = diag(Q, I, I, I ), where Q = P −1, and
applying it to LMI (12). First, note that

Q =
[

Q1 0
Q2 Q3

]
, Q1 = P −1

1 > 0, Q̇1 = −Q1Ṗ1Q1. (13)

Based on the above transformation, we have

�4 =
⎡
⎢⎣

(1, 1) � � �

[0 L] −�2I � �

[BT 0]Q DT −I �

[0 hA1] 0 0 −hR

⎤
⎥⎦< 0, (14)

where (1, 1)=
[

0 I

AT
2 −I

]
Q+QT

[
0 A2
I −I

]
+QT

[
0 0
0 hR

]

Q +
[−Q̇1 0

0 0

]
. Applying the Schur complement to (14) and

noting that

[
0 0
0 hR

]
=
[

0
I

]
hR[0 I ], the following inequality

is obtained:

�5 =

⎡
⎢⎢⎢⎣

(1, 1) � � � �

[0 L] −�2I � � �

[BT 0]Q DT −I � �

[0 hA1] 0 0 −hR �

h[0 I ]Q 0 0 0 −hR−1

⎤
⎥⎥⎥⎦< 0, (15)

where (1, 1) =
[

0 I

AT
2 −I

]
Q + QT

[
0 A2
I −I

]
+
[−Q̇1 0

0 0

]
.

The resultant inequality is nonlinear, so we use the congruence
transformation T2 = diag(I, I, I, S, I ), where S = ST = R−1.
Application of the mentioned transformation to (15) leads to

�6 =

⎡
⎢⎢⎢⎣

(1, 1) � � � �

[0 L] −�2I � � �

[BT 0]Q DT −I � �

[0 hSA1] 0 0 −hS �

h[0 I ]Q 0 0 0 −hS

⎤
⎥⎥⎥⎦< 0. (16)

Now, we are in the position where we can state the following
theorem which provides conditions to ensure the system stabil-
ity and H∞ performance.

Theorem 2. Consider the time-delayed system given by(5)
with initial state trajectory� = 0. If there exist a continuously
differentiable positive de“nite matrix functionQ1(�) and ma-
tricesS = ST > 0, Q2 andQ3 such that

� =

⎡
⎢⎢⎢⎣

(1, 1) � � � �

[0 L(�)] −�2I � � �

[BT(�)Q1(�) 0] DT(�) −I � �

[0 hSA1(�)] 0 0 −hS �

h[Q2 Q3] 0 0 0 −hS

⎤
⎥⎥⎥⎦< 0,

(17)

where(1, 1) =
[

Q2 + QT
2 − Q̇1(�) �

AT
2 (�)Q1(�) − Q2 + QT

3 −Q3 − QT
3

]
, for

all � ∈ P, |�̇i |��i , then the above time-delayed system is
asymptotically stable and has inducedL2-gain less than�.
Also, the optimum gain that corresponds to the above bound
can be found by solving an LMI problem in the form of

{
min �2

s.t. (17).
(18)

Proof. Using (16) and substituting Q from (13) proves the
theorem. �

Now, we turn our attention to the original problem, that is,
the stability and performance analysis of plant (1) and the cor-
responding design of the H∞ filters. The next lemma is a
straightforward extension of Theorem 2 to analyze plant (1).

Lemma 3. Consider the time-delayed system given by(1)
with initial state trajectory�(t) = 0. If there exist a contin-
uously differentiable positive de“nite matrix functionQ1(�)
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and matricesS = ST > 0, Q2, andQ3 such that

⎡
⎢⎢⎢⎢⎢⎣

(1, 1) � � � �[
0 C1(�)

0 C1h(�)

]
−�2I � � �

[BT
1 Q1(�) 0] [DT

11 0] −I � �

[0 hSAh(�)] 0 0 −hS �

h[Q2 Q3] 0 0 0 −hS

⎤
⎥⎥⎥⎥⎥⎦< 0, (19)

where (1, 1) is given in Theorem2, for all � ∈ P, |�̇i |��i ,
then the time-delayed system is asymptotically stable and has
inducedL2-gain less than�.

Proof. Making use of the forward adjoint of (4) and Theorem 2
proves the lemma. �

4. LPV H∞ filter design

In this section, the problem of designing parameter-
dependent filters for the time-delayed LPV system (1), which
make the induced L2-gain bound of the filter error system
minimum, is investigated. We propose two filters with similar
structure, one of which has memory in its dynamics and an-
other one that is memoryless. In the present work, we intend
to design the filters for estimation of the plant output z(t).

4.1. Design of a memoryless “lter

Consider a class of memoryless filters with the state–space
equations given by

{
ẋF(t) = AF(�(t))xF(t) + BF(�(t))y(t),

zF(t) = CF(�(t))xF(t) + DF(�(t))y(t),
(20)

in which the parameter-dependent matrices AF(�(t)), BF(�(t)),
CF(�(t)), and DF(�(t)) are the unknown filter parameters. In
the above equations, we have assumed that zF(t) is the estima-
tion of the plant output z(t). Let us define the estimation error
as e(t) = z(t) − zF(t).

Our goal is to develop an H∞ filter of form (20) such that
for all admissible parameter trajectories �(t) ∈ F�

P:

• The filtering error system obtained from the interconnection
of plant (1) and filter (20) is asymptotically stable.

• The above-mentioned filtering error system guarantees, un-
der zero initial condition, that

sup
�∈F�

P

sup
‖w‖2 �=0

‖e(t)‖2

‖w(t)‖2 + ‖w(t − h)‖2
�� (21)

for all energy-bounded disturbances and a prescribed positive
value �.

We use the analysis condition (19) to obtain the synthesis in-
equalities for the augmented system of the plant and the filter
in terms of LMIs. The following theorem provides a sufficient
condition to guarantee both asymptotic stability and induced
L2-gain performance of the interconnection of plant (1) and
the proposed memoryless filter (20).

Theorem 4. If there exist continuously differentiable positive
de“nite matrix functionsQa(�), Qb(�), parameter-dependent
matrices X and Y and matricesS1 = ST

1 > 0, Q2, Q3, CF, and
DF such that⎡
⎢⎢⎢⎢⎢⎢⎣

�11 � � � �

[0 �21] −�2I � � �

[�31 0] [�32 0] −I � �

[0 h�41] 0 0 −hS �

h[Q2 Q3] 0 0 0 −hS

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (22)

then the augmented system formed by the interconnection of
(1) and(20) is asymptotically stable and has inducedL2-gain
less than�. Furthermore, memoryless “lter matrices for “lter
(20) that satisfy the above conditions can be computed by

AF(�) = (X(�)Q−1
b (�))T,

BF(�) = (Y (�)Q−1
b (�))T,

CF, DF: from LMI (22). (23)

The variables in (22) are defined as

�11 =

⎡
⎢⎢⎣

Q2 + QT
2 −

[
Q̇a 0
0 Q̇b

]
�

[
AT

2 Qa AT
2 Qb − X − CT

2 Y − CT
2hY

0 X

]
− Q2 + QT

3 −Q3 − QT
3

⎤
⎥⎥⎦ ,

�21 =
[
C1 − CF − DFC2 CF

C1h − DFC2h 0

]
,

�31 = [BT
1 Qa BT

1 Qb − DT
21Y ],

�41 =
[
(S1 + Qb)Ah − Y TC2h 0

2QbAh − Y TC2h 0

]
,

�32 = DT
11 − DT

21D
T
F , S =

[
S1 Qb

Qb Qb

]
.

Proof. The equations of the augmented system determined
from the interconnection of (1) and (20) read⎧⎪⎨
⎪⎩

ẋa(t) = Aa(�(t))xa(t) + Aah(�(t))xa(t − h)

+ Ba(�(t))w(t),

e(t) = Ca(�(t))xa(t) + Cah(�(t))xa(t − h)

+ Da(�(t))w(t),

(24)

where xa(t) = [xT(t) xT(t) − xT
F (t)]T and

Aa =
[

A0 0
A − AF − BFC2 AF

]
, Aah =

[
Ah 0

Ah − BFC2h 0

]
,
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Ba =
[

B1
B1 − BFD21

]
, Ca = [C1 − CF − DFC2 CF],

Cah = [C1h − DFC2h 0], Da = D11 − DFD21.

Now, substituting the above matrices into (19), replacing
BT

F Qb = Y , AT
FQb = X, and using Q1 = diag(Qa, Qb) and

S =
[

S1 Qb

Qb Qb

]
(in order to eliminate the appeared nonlinear

terms) the analysis condition to satisfy asymptotic stability
and H∞ performance results in (22), and the filter matrices
are obtained from (23). �

4.2. Design of a state-delayed “lter

Now, consider a class of delayed filters with the following
state–space equations:⎧⎪⎨
⎪⎩

ẋF(t) = AF(�(t))xF(t) + AhF (�(t))xF(t − h)

+ BF(�(t))y(t),

zF(t) = CF(�(t))xF(t) + ChF (�(t))xF(t − h)

+ DF(�(t))y(t).

(25)

The filter representation (25) includes an additional state-
delayed term. This term increases the computational com-
plexity of the filter but results in reduced conservatism and
improved performance. Writing the equations of the augmented
system formed from plant (1) and filter (25), we obtain the
following result that provides a sufficient condition in order to
ensure stability and induced L2-gain performance.

Theorem 5. If there exist continuously differentiable positive
de“nite matrix functionsQa(�), Qb(�), parameter-dependent
matrices X, Y, and Z, and matricesST

1 = S1 > 0, Q2, Q3, CF,
ChF, andDF such that⎡
⎢⎢⎢⎣

�11 � � � �

[0 �̄21] −�2I � � �

[�31 0] [�32 0] −I � �

[0 h�̄41] 0 0 −hS �

h[Q2 Q3] 0 0 0 −hS

⎤
⎥⎥⎥⎦< 0 (26)

then the augmented system formed of the interconnection of
(1) and(25) is asymptotically stable and has inducedL2-gain
less than�. Furthermore, the delayed “lter matrices can be
computed by

AF(�) = (X(�)Q−1
b (�))T − Q−1

b (�)Z(�),

AhF = Q−1
b (�)Z(�),

BF(�) = (Y (�)Q−1
b (�))T,

CF, ChF, DF: from LMI (26). (27)

The variables in(26) are de“ned in Theorem4 and as follows:

�̄21 =
[

C1 − CF − DFC2 CF
C1h − ChF − DFC2h ChF

]
,

�̄41 =
[
(S1 + Qb)Ah − Z − Y TC2h Z

2QbAh − Z − Y TC2h Z

]
.

Proof. The equations of the augmented system determined
from the interconnection of (1) and (25) are given by (24), in
which

Aah =
[

Ah 0
Ah − AhF − BFC2h AhF

]
,

Cah = [C1h − ChF − DFC2h ChF]

and the rest of the matrices are computed as in Theorem 4.
Now, using the above matrices, condition (19) and structured
matrices Q1 and Ssimilar to those in Theorem 4, and replacing
BT

F Qb =Y , (AF +AhF)TQb =X, and QbAhF =Z to eliminate
nonlinear terms result in the synthesis condition (26). �

Remark 1. Note that for convenience, in the above results, we
have dropped the dependence of some matrices on the LPV
parameter .

Remark 2. In LMIs (22) and (26) the derivative terms are
computed by

Q̇a =
s∑

j=1

(
±vj

�Qa(�)

��j

)
.

This notation means that every combination of + and − must
be included in the inequalities, in which

∑s
j=1± is involved.

Therefore, the LMIs actually represent 2s different inequalities
obtained from the corresponding 2s different combinations in
the summation.

Remark 3. The above-mentioned LMIs are infinite dimen-
sional. An approach for solving an infinite-dimensional LMI
problem due to its dependence on the parameters is to grid the
parameter space [1]. To keep the computational effort feasible,
the minimization for a defined grid should be performed, and
the constraints for the optimal H∞ attenuation level must be
checked on a finer grid. If this check fails, the minimization
needs to be repeated for a more dense grid. In spite of the rela-
tive efficiency of the available numerical algorithms for solving
LMIs, the utility of this ad hoc approach is limited to systems
with a small number of parameters [1].

Remark 4. The presented filter design methodology can be
easily extended to address plants that include multiple delays
by adding similar terms associated with multiple delays to the
Lyapunov–Krasovskii functional (9).

Remark 5. In the cited theorems, the filter matrices CF and
DF are not parameter dependent. Imposing a polynomial struc-
ture in terms of the LPV parameters on CF and DF and finding
the corresponding polynomial matrix coefficients can provide
improved results in terms of the L2-gain performance. Also,
taking the matrix R into account as a parameter-dependent Lya-
punov matrix function can provide improved estimation results.
Obviously, these extensions will result in an increased compu-
tational effort for the solution.



296 J. Mohammadpour Velni, K.M. Grigoriadis / Systems & Control Letters 57 (2008) 290…299

5. Simulation results

In this section, we demonstrate our filter design methodology
using some illustrative numerical examples.

In the first example, we are concerned with the estimation
of a noisy output using the filters proposed in the previous
sections. We consider a plant given by

ẋ(t) =
[

0 −1.5 − 0.3 cos(t/3)

1 −2 + 0.5 cos(t/3)

]
x(t)

+
[

0.2 0
0.1 0

]
x(t − h)

+
[

0
1

]
w(t),

y(t) = [0 1]x(t − h) + 0.1w(t),

z(t) = [0.5 cos(t/3) 0]x(t) + [0 0.5]x(t − h).

We assume that the cosine term in the model corresponds
to a system parameter whose functional representation is not
known a priori, but can be measured in real time. Define
�(t) = cos(t/3), and assume that the original system is refor-
mulated as a state-delayed LPV system with parameter �(t).
Note that the parameter space is [−1, 1]. The synthesis prob-
lem is solved for both the memoryless filter (20) and the de-
layed filter (25), and the results are then compared. To solve the
corresponding LMIs, we select an affine form for the matrix
functions with basis functions

f1(�) = 1, f2(�) = �(t). (28)

Using the above basis functions, we obtain an LMI prob-
lem with respect to constant parameter matrices. For in-
stance, Qa(�) in Theorems 4 and 5 is represented as
Qa(�(t))=Qa1 +�(t)Qa2 where Qa1 and Qa2 are symmetric
matrices to be determined by solving LMIs. Gridding in order
to solve the synthesis problem was uniform using seven points
over the parameter space. Validation of the LMI constraints
was performed on a finer grid of 15 points following [1].

Fig. 1 shows the worst case L2-gain performance �lpv of
the system for the two designed filters (the memoryless and the
delayed one) vs. a constant value of the time delay. The plot
illustrates that the delayed filter outperforms the memoryless
filter from the L2-gain performance viewpoint. Note that �lpv
is obtained by solving an LMI problem similar to (18).

In the second example, we compare our proposed filter design
method with a past method that addresses design of parameter-
dependent H∞ filters for a state-delay LPV system proposed
in [9]. Note that the previous work [9] is only concerned with
state estimation. Hence, for comparison, we consider a time
varying plant represented by

ẋ(t) =
[

0 1 + 0.2 cos(2t)

−2 −3 + 0.3 cos(2t)

]
x(t)

+
[
0.2 cos(2t) 0.1

0 0.1 cos(2t)

]
x(t − h) +

[−0.2
−0.2

]
w(t),
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Fig. 1. Profile of the worst case performance of the system (�lpv) for delayed
filter (solid line), and for memoryless filter (dashed line).
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Fig. 2. Profile of the worst case performance of the system (�lpv) for our
new delayed filter (solid line), and for delayed filter in [9] (dashed line).

y(t) =
[

0 1
0.5 0

]
x(t) + [0 1]w(t),

z(t) = x(t).

Fig. 2 shows the induced L2-gain from the noise signal to the
estimation error for the two delayed “lters, the one presented
in [9] and the other one given in Section 4 of the present paper.
With respect to the fact that the analysis and design approaches
for the two methods are different, the profile of � vs. the delay is
unpredictable in terms of its behavior. One point of comparison
is the maximum allowable size of delay for which the H∞ filter
exists. These values and the corresponding induced norms are
provided in Table 1. The table shows that our proposed filter
design methodology in this paper handles delay sizes more than
twice the size of those covered by the method suggested in [9].
The worst case performance of the method given in [9] is a bit
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Table 1
Worst case performance of available techniques vs. maximum allowable state delay

Method Maximum allowable delay (hmax) Worst case performance (�)

Method in [9] 1.712 2.1736
Proposed method in this paper 3.62 2.2153

0 0.5 1 1.5 2 2.5 3 3.5

0

1

2

3

4

5

6

delay/sec.

γ lp
v

Fig. 3. Profile of the worst case robust performance of the system (�lpv) for
delayed filter (solid line), and for memoryless filter (dotted line).

better for delay sizes h < 1.62 s, whereas the suggested filtering
method in this paper considerably outperforms the previous one
from the L2-gain performance viewpoint for h > 1.62 s.

As a third example, consider a time varying plant given by

A =
[

0 1 + 0.2 sin(t/2)

−2 −3 + 0.1 sin(t/2)

]
,

Ah =
[

0.2 sin(t/2) 0.1
−0.2 + 0.1 sin(t/2) −0.3

]
, B1 =

[−0.2
−0.2

]
,

C1 =
[

0.3 0.5 sin(t/2)

−0.4 − 0.5 sin(t/2) 0.75

]
,

C1h =
[

0 −0.45
2.5 −0.15

]
, D11 =

[
0
0

]
,

C2 =
[

0 1
0.5 0

]
, C2h =

[
0 1
0 0.7

]
, D21 =

[
0
1

]
.

Similar to previous example, we define �(t) = sin(t/2) and re-
formulate the original system as a state-delayed LPV system
with parameter �(t). Note that the parameter space and the
parameter derivative space are [−1, 1] and [−0.5, 0.5], respec-
tively. We solve the synthesis problems for both the memory-
less filter and the delayed filter using Theorems 4 and 5, and
compare the results. To solve the LMIs, we select the same
affine form for the matrix functions as in the previous example
using the basis functions in (28).

Fig. 3 shows the worst case L2-gain performance �lpv of
the system for the two filters vs. a constant value of the time
delay. The plot illustrates that the delayed filter outperforms the
memoryless filter from the L2-gain performance viewpoint.

Fig. 4 illustrates the results of the time-domain simulation
for a constant time delay h= 1 s in the presence of a uniformly
distributed random signal varying in the interval [−1, 1]. The
figure shows the estimation error e(t) obtained using the two
classes of filters. It is observed that the estimation error of the
delayed filter is smaller compared to that of the memoryless
filter. Nevertheless, both the delayed and the memoryless filters
have satisfactory performance in tracking the plant outputs.
Improved estimation performance using the delayed filter can
be observed as expected.

Finally, we compare our LPV H∞ filter design with corre-
sponding robust H∞ filters assuming that an uncertain time-
delayed linear system with bounds on its uncertain parameter
is given. There are some recent methods [4,15,11] in the liter-
ature to analyze such systems and to design robust H∞ filters.
In the above methods, the uncertain parameters are assumed
to reside in a polytope. For comparison purposes, we treat the
uncertain plant also as an LPV system, where the uncertain pa-
rameters are taken into consideration as the LPV parameters.
The objective is to compare the performance of our filter de-
sign methodologies with the ones proposed in [4,15]. We con-
sider the following linear uncertain system that includes a state
delay. The example is borrowed from [15] and modified here.

ẋ(t) =
[

0 3 + �
−4 −5

]
x(t) +

[−0.1 0
0.2 −0.2 + �

]
x(t − h)

+
[−0.4545

0.9090

]
w(t),

y(t) = [0 100]x(t) + [0 10]x(t − h) + w(t),

z(t) = [0 100]x(t).

We assume that the uncertain real parameter � varies in the
region |�| < 0.3 that defines a two-vertex uncertainty domain.
We compute the minimum noise attenuation level using the re-
sults of this paper and the previous work in [4,15] for different
constant time delays. For different delay sizes, Fig. 5 illustrates
the worst case L2-gain performance � that is achieved from
the filtering error system using (i) the delay-independent con-
ditions of [15], (ii) the robust filter proposed in [4], and (iii) the
memoryless and delayed parameter-dependent filters proposed
in the present paper. The disturbance attenuation levels illus-
trated in Fig. 5 show the improved performance and decreased
conservatism of our design methodology compared to those of
[4,15]. It should be pointed out, however, that the computa-
tional complexity for solving the optimization problems of this
paper is higher than that of the optimization problems of [4,15]
because of the larger number of LMI decision variables. The
reason is that the descriptor form (8) adds extra states to the
state vector of the original time-delay system.
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Fig. 4. Estimation results (for h = 1 s): estimation error of the memoryless filter (dotted line), and error of the delayed filter (solid line).
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Fig. 5. Profile of worst case performance level of the filtering error system (�) for results of [15] (dashed line), robust filter of [4] (solid line), our memoryless
filter (dotted line), and our delayed filter (dash-dotted line).

6. Conclusion

We have presented a methodology to design two classes of
parameter-dependent H∞ filters for estimation of noisy out-
puts in state-delayed systems whose state–space information is
parameter dependent. Based on our results, we have consid-
ered memoryless filters, as well as, filters whose dynamics is
time delayed and infinite-dimensional. We have formulated the

synthesis conditions to guarantee asymptotic stability and H∞
performance in terms of LMIs which can be readily solved us-
ing available software packages. The various examples illus-
trate the superiority of the delayed filter because of providing
more degrees of freedom and consequently reducing the con-
servatism in the design. We have also provided a comparison
of our designs to other recently developed methods to show the
qualifications of the proposed method.
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