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ABSTRACT

It is crucial to study basic principles that support adaptive
and scalable retrieval functions in large networked environ-
ments such as the Web, where information is distributed
among dynamic systems. We conducted experiments on de-
centralized IR operations on various scales of information
networks and analyzed effectiveness, efficiency, and scala-
bility of various search methods. Results showed network
structure, i.e., how distributed systems connect to one an-
other, is crucial for retrieval performance. Relying on partial
indexes of distributed systems, some level of network cluster-
ing enabled very efficient and effective discovery of relevant
information in large scale networks. For a given network
clustering level, search time was well explained by a poly-
logarithmic relation to network size (i.e., the number of dis-
tributed systems), indicating a high scalability potential for
searching in a growing information space. In addition, net-
work clustering only involved local self-organization and re-
quired no global control — clustering time remained roughly
constant across the various scales of networks.

Categories and Subject Descriptors

H.3.4 [Information storage and retrieval]: Systems and
Software— Distributed systems, Information networks

General Terms

Algorithms, Performance, Experimentation

Keywords

distributed IR, scalability, network clustering, decentralized
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1. INTRODUCTION

In today’s digital environments, there exist a variety of in-
formation networks where information is distributed among
dynamic systems. On the Web, for example, individual web
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sites host diverse information topics and form a network by
means of hyperlinks. Likewise, digital libraries interoperate
with one another and serve information distributed across
collections in a network. For reasons such as copyright and
privacy, lots of information cannot be fully collected and in-
dexed in advance for retrieval purposes. In addition to this
is the dynamics of many environments such as the deep web
and peer-to-peer networks, in which it is not only difficult
to gather information but also challenging to keep an index
up to date.

Centralized IR solutions can hardly survive the continued
growth of today’s information spaces — they are vulnerable
to scalability demands [3]. A distributed architecture is de-
sirable and, due to many constraints, is often the only choice.
Distributed (federated) IR research is a response to the chal-
lenge of retrieving information from distributed sources. Re-
cent distributed IR research has focused on intra-system re-
trieval fusion/federation, cross-system communication, and
distributed information storage and retrieval algorithms [9,
23].

Classic distributed information retrieval has shown some
potential of efficiently and effectively bringing distributed in-
formation together. However, the reliance on centralization
of a metasearch server will continue to suffer from critical
problems such as scalability, single point failure, and fault
tolerance. Further decentralization of meta search models
will involve issues beyond the main focus of federated IR
research.

Research has been done under the theme of peer-to-peer
information retrieval (P2P-IR) and, more recently, large scale
distributed systems for IR (LSDS-IR) [5, 10, 16, 11]. While
classic distributed IR often focuses on tens, if not hundreds,
of distributed collections, P2P- or LSDS-IR usually envisions
an IR problem situated in thousands and even millions of
distributed, dynamic systems. The magnitude, distribution,
and dynamics of information in such an environment remain
a great challenge in IR. Applications of this research include
not only search in peer-to-peer environments but also infor-
mation retrieval in digital libraries, intelligent information
discovery on the deep web, distributed desktop search, and
agent-assisted web surfing etc.

Finding relevant information in distributed networked en-
vironments transforms into a problem concerning informa-
tion retrieval and complex networks. In this study, we focus
on how relevant information can be effectively and efficiently
found in large scale information networks, where no central-
ized index can possibly be built. We investigate the impact
of network structure/topology on the effectiveness and effi-



ciency of decentralized IR operations relying on distributed
indexes. We test the proposed retrieval methods in a grow-
ing information space and examine the scalability potential.

2. RELATED WORK

While traditional IR and distributed IR research provides
basic tools for attacking decentralized search problems, the
evolving dynamics and heterogeneity of today’s networked
environments challenge the sufficiency of classic methods
and call for new innovations [3]. Whereas peer-to-peer of-
fers a new type of architecture for application-level questions
and techniques to be tested, research on complex networks
studies related questions in their basic forms [2, 23].

2.1 P2P Information Retrieval

In an open, dynamic information space such as a peer-
to-peer network, people, information, and technologies are
all mobile and changing entities. Identifying where relevant
collections are for the retrieval of information is essential.
Without global information, decentralized IR methods have
to rely on individual indexes in distributed nodes and their
limited local intelligence to collectively construct paths to
desired information.

Recent years have seen growing popularity of peer-to-peer
(P2P) networks for large scale information sharing and re-
trieval [17]. There have been ongoing discussions on the
applicability of existing P2P search models for IR, the ef-
ficiency and scalability challenges, and the effectiveness of
traditional IR models in such environments [23]. Some re-
searchers applied Distributed Hashing Tables (DHTS) tech-
niques to structured P2P environments for distributed re-
trieval and focused on building an efficient indexing struc-
ture over peers (7, 18, 21].

Others, however, questioned the sufficiency of DHTs for
dealing with high dimensionality of IR (e.g., a large number
of terms for document representation) in dynamic P2P envi-
ronments [5, 17, 16]. For retrieval with a large feature space,
which often requires frequent updates to cope with a tran-
sient population, it is challenging for distributed hashing to
work in a traffic- and space-efficient manner. Unstructured
overlay systems work in an nondeterministic manner and
have received increased popularity for being fault tolerant
and adaptive to evolving system dynamics [17].

2.2 Decentralized Search in Networks

Research on complex networks provides valuable princi-
ples for searching/navigation in distributed systems. Not
only do many information networks such as the Web share
the common phenomenon of small world but they also ap-
pear to be searchable [2]. Particularly, studies showed that
without global information about where targets are, mem-
bers of a very large network are able to collectively construct
short paths (if not the shortest) to destinations [15, 22, 8].

The implication in IR is that relevant information, in var-
ious networked environments, is very likely a small number
of connections/links away from the one who needs it and is
potentially findable. This indicates potentials for decentral-
ized retrieval algorithms to traverse an information network
to find relevant information efficiently. However, this is not
an easy task because not only relevant information is a few
degrees/connects away but so is all information.

To find relevance in a densely-packed “small world” net-
work remains very challenging. Nonetheless, research has

demonstrated how nodes connect to one another and the
structure of the network they thus form have critical impacts
on how searches function. Network clustering, sometimes by
means of semantic overlay, can significantly improve effec-
tiveness and efficiency of IR operations in an information
network.

Clustering, the process of bringing similar entities together,
is useful for information retrieval. Traditional IR research
utilized document-level clustering to support exploratory
searching and to improve retrieval effectiveness. In large
scale distributed IR, topical clustering techniques such as
semantic overlay networks (SONs) have been widely used, in
which systems containing similar information form semantic
groups for efficient searches [5, 10, 16].

Research indicated that a proper degree of network clus-
tering with some presence of remote connections has to be
maintained for efficient searches [15, 20]. Clustering reduces
the number of “irrelevant” links and aids in creating topi-
cal segments useful for orienting searches. With very strong
clustering, however, a network tends to be fragmented into
local communities with abundant strong ties but few weak
ties to bridge remote parts [12]. Although searches might
be able to move gradually toward targets, necessary “hops”
become unavailable. We refer to this phenomenon as the
Clustering Paradoz, in which neither strong clustering nor
weak clustering is desirable. The Clustering Paradoz has re-
ceived attention in complex network research and requires
further scrutiny in a decentralized IR context [15, 14].

3. EXPERIMENTAL SYSTEM

We have developed a multi-agent decentralized search ar-
chitecture named TranSeen for finding relevant information
distributed in networked environments. We illustrate the
conceptual model in Figure 1 (a) and major components in
Figure 1 (b). The TranSeen system is an implementation
in Java, based on two well-known open-source platforms:
1) JADE, a multi-agent system/middle-ware that complies
with the FIPA (the Foundation for Intelligent Physical Agents)
specifications [6], and 2) Lucene, a high-performance library
for full-text search [13].
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Figure 1: Conceptual Framework. (a) Global View
of agents working together to route a query in the
network space. (b) Agent Internal View of how com-
ponents function within an agent.

Assume that agents, representatives of distributed infor-
mation systems, reside in an n dimensional (hypersphere)
space. An agent’s location in the space represents its infor-
mation topicality. Therefore, finding relevant sources for an
information need is to route the query to agents in the rel-
evant topical space. To simplify the discussion, assume all



agents can be characterized using a two-dimensional space.
Figure 1 (a) visualizes a 2D circle (1-sphere) representation
of the information space. Let agent A, be the system that
receives a query from the user whereas agent A, has the
relevant information. The problem becomes how agents in
the connected society, without global information, can col-
lectively construct a short path to A, so that relevant in-
formation can be retrieved from there. In Figure 1 (a), the
query traverses a search path A, — A, — A, — Aqg — A,
to reach the target. While agents A, and Agq help move
the query toward the target gradually (through strong ties),
agent A. has a remote connection (weak tie) for the query
to “jump.”

3.1 Decentralized Search

When an agent receives a query, it first conducts local
search operations to retrieve relevant information from its
individual document collection. If local results are unsatis-
factory, e.g., relevance/similarity scores do not reach a pre-
defined threshold, the agent will contact its neighbors for
help. Therefore, there requires a mechanism for matching
query representation with potential good neighbors — either
the neighboring agent is more likely to have relevant infor-
mation to answer the query directly or more likely to con-
nected with relevant targets. Agents explore their neighbor-
hoods through interactions (e.g., query-based sampling), de-
velop some knowledge about neighbors’ topicality and con-
nectivity, and serve as local decision makers in the search
process. They are essentially metasearch systems for one
another.

3.2 Network Structure & Local Clustering

As discussed earlier, network structure plays an important
role in decentralized search. We used a parameter called the
clustering exponent « to guide network clustering for decen-
tralized search: the probability p, of two nodes being con-
nected/linked is proportional to r~<, where r is the pairwise
topical distance and « the clustering exponent.
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Figure 2: Function of Clustering Exponent «

The clustering exponent o, as shown in Figure 2, describes
a correlation between the network (topological) space and
the search (topical) space [15, 8]. When « is small, con-
nectivity has little dependence on topical closeness — local
segments become less visible as the network is built on in-
creased randomness. As shown in Figure 3 (c), the network
is a random graph given a uniform connectivity distribution

at @« = 0. When « is large, weak ties (long-distance connec-
tions) are rare and strong ties dominate [12]. The network
becomes highly segmented. As shown in Figure 3 (a), when
a — 00, the network is very regular (highly clustered) given
that it is extremely unlikely for remote pairs to connect.
Given a moderate « value, as shown in Figure 3 (b), the
network becomes a narrowly defined small world, in which
both local and remote connections present.

(c) Random

(a) Segmented (b) Small World
Figure 3: Network Clustering: Impact of Clustering
Exponent a.

The clustering exponent v influences the emergence of lo-
cal segments and overall network clustering. In complex
network research, it has been shown that only with some
particular value of «, search time (i.e., search path length)
is optimal and bounded by a poly-logarithmic function of
network size [15]. One important aspect of this research is
to study the impact of network structure on decentralized
IR effectiveness and efficiency.

4. ALGORITHMS

This section elaborates on specific algorithms used in the
research. Section 4.1 presents the basic functions for infor-
mation representation, neighbor representation, and similar-
ity measurement. Section 4.2 describes four search (neighbor
selection) algorithms based on neighbor similarity and/or
connectivity. Section 4.3 elaborates on the function for agent
rewiring (clustering) based on the clustering ezponent a.

4.1 Basic Functions

4.1.1 TF*IDF Information Representation

We used the Vector-Space Model (VSM) for information
(document and query) representation [4]. Given that infor-
mation was highly distributed, a global term space was not
assumed. Instead, each agent processed information it in-
dividually had and produced a local term space, which was
used to represent each information item using the TF*IDF
(Term Frequency * Inverse Document Frequency) weight-
ing scheme. An information item was then converted to a
numerical vector where a item ¢ was computed by:

N

W(t) = tf(t) log(df(t)) (1)
where ¢ f(¢) is the frequency of the term ¢ of the term space
in the information item, N is the total number of informa-
tion items (e.g., documents) in an agent’s local collection,
and df (t) is the number of information items in the set con-
taining the term ¢ of the term space. We refer to log(dfi(t))
as IDF. IDF values were computed within the information

space of an agent given no global information.



4.1.2 DF*INF Agent Representation

Following a simple federated IR model, we allowed agents
to collect document frequency (DF) information from neighors
(distributed systems) and to use it to create metadocuments
for neighbor representation [19]. Treating each metadocu-
ment as a normal document, it was then straightforward to
calculate neighbor frequency (NF) values of terms, i.e., the
number of metadocuments (neighbors) containing a particu-
lar term. A metadocument (neighbor) was then represented
as a vector where a term ¢ was computed by:

N/

! !

Wi(t) = df (1) -log(nf,(t)) (2)
where df’(t) is the frequency of the term ¢ of the term

space in the metadocument, N’ is the total number of an

agent’s neighbors (metadocuments), and nf’(t) is the num-

ber of neighbors containing the term ¢. We refer to this func-

tion as DF*INF, or document frequency * inverse neighbor

frequency.

4.1.3  Similarity Scoring Function

Based on the TF*IDF (or DF*INF) values obtained above,
pair-wise similarity values can be computed. Given a query
q, the similarity score of a document d matching the query
was computed by :

Z tf(t) - idf*(t) - coord(q,d) - queryNorm(q)  (3)

teq

where tf(t) is term frequency of term ¢ in document d,
idf(t) the inverse document frequency of ¢, coord(q, d) a co-
ordination factor based on the number of terms shared by ¢
and d, and queryNorm(q) a normalization value for query
q given the sum of squared weights of query terms. The
function is a variation of the well-known cosine similarity
measure. Additional details can be found in [13, 4].

4.2 Search Methods

When an agent found no sufficiently relevant information
from its local collection, it forwarded the query to another
agent. We proposed the following four neighbor selection
strategies, i.e., search methods, to be tested and compared
in experiments.

4.2.1 RW: Random Walk

The Random Walk (RW) strategy ignores knowledge about
neighbors and simply forwards a query to a random neigh-
bor. Without any learning module, Random Walk is pre-
sumably neither efficient nor effective. Hence, the Random
Walk served as the search performance lower-bound.

4.2.2  SIM: Similarity-based Search

Let k be the number of neighbors an agent has and S =
[s1,.., Sk] be the vector about neighbors’ similarity scores to
a query. The SIM method sorts the vector and forwards the
query to the neighbor with the highest score. We assumed
that agents were cooperative — that is, they shared with one
another document frequency (DF) values of key terms in
their collections, based on which a meta document were cre-
ated as representative of a neighbor’s topical area. A query
was then compared with each meta document, represented
by DF*INF (see Equation 2), to generate the similarity vec-
tor S.

4.2.3 DEG: Degree-based Search

In the degree-based strategy, information about neigh-
bors’ degrees, i.e., their numbers of neighbors, was known to
the current agent. Let D = [dy,..,dk] denote degrees of an
agent’s neighbors. The DEG method sorts the D vector and
forwards the query to the neighbor with the highest degree,
regardless of what a query is about [1].

4.2.4  SimDeg: Similarity*Degree Search

The SimDeg method combines information about neigh-
bors’ relevance to a query and their degrees. [20] reasoned
that a navigation decision relies on the estimate of a neigh-
bor’s distance from the target, or the probability that the
neighbor links to the target directly, and proposed a measure
based on the product of a degree term (d) and a similarity
term (s) to approximate the expected distance. Following
the same formulation, the SimDeg method used a combined
measure SD = [s1 - di, .., Sk - di] to rank neighbors, given
neighbor relevance vector S = [s1, .., sx] and neighbor de-
gree vector D = [dy, ..,dg]. A query were forwarded to the
neighbor with the highest sd value.

4.3 Agent Rewiring and Network Clustering

We used the clustering exponent « to guide agent self-
organization and network clustering. For each agent, the
first step was to determine how many neighbors it should
have. Given the web collection (Section 5.1) used in this
study, we obtained each agent’s (i.e., a web domain) inde-
gree based on hyperlink analysis and normalized the degree
to a value d € [30,60]. Once agent u determined its degree
dw, a number of random agents were selected for u such that
the total number of random neighbors dr > d., (dr =~ 150 in
this study). Then, the current agent (u) used its metadoc-
ument to query each of the dr neighbors (v) to determine
their topical distance ry,. Finally, the following probability
function was used by the agent to decide who should remain
as neighbors (overlay): pu» o< 7, where a is the clustering
exponent and 1., pairwise topical distance.

S. EXPERIMENTAL SETUP

5.1 Data Collection

We used the ClueWeb09 Category B collection created by
the Language Technologies Institute at CMU for IR exper-
iments, which contains a crawl of 50 million English pages
during Jan - Feb 2009. Analysis of the hyperlink graph pro-
duced Figures 4 (a) in-degree frequency distribution and (b)
Site size (#pages per site) distribution based on 50, 221, 776
pages extracted from 2,777,321 unique domains (treated as
sites) (on log/log coordinates).

5.2 Task and Queries

Given the large size of the data collection, it is nearly im-
possible to manually judge the relevance of every document
and to establish a complete relevance base. While previ-
ous research on large scale distributed information retrieval
mainly relied on similarity thresholds to do automatic rele-
vance judgment, such an approach was rather arbitrary and
was biased by the centralized IR system that served as the
gold standard [5, 16].
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Figure 4: ClueWeb09 Category B Statistics

5.2.1 Documents as Queries

Serving diverse users in an open, dynamic environment,
implies that some queries are likely to be narrowly defined.
We reasoned that relevant information is rare when a query
is very specific. In this study, we used documents (web pages
with title and content) as queries to simulate decentralized
searches. We obtained a set of query documents by sam-
pling documents from the 100 most popular web domains.
Removing queries that were too broad or vague resulted in
85 queries.

5.2.2 Task: Exact/Rare Item Search

To make searches more realistic/challenging and auto-
matic evaluation more objective, we considered extreme rar-
ity of relevant documents given very specific information
needs. We decided that, given each query, there was only
one relevant document among all documents distributed in
the network and the task was to find that exact document.
When a query document was issued to a random system/site
in the network, the task involved finding the system who
hosted it. The strength of this task is that relevance judg-
ment was more objective provided the relative unambigu-
ity of a “hosting” relationship. The extreme rarity, however,
posed a great challenge on the proposed decentralized search
methods.

5.3 Evaluation Metrics

This study focused on effectiveness and efficiency of IR op-
erations in networks and scalability of decentralized search.
We emphasized the finding of exact/rare information in large
distributed environments and proposed the use of the follow-
ing evaluation metrics.

5.3.1 Effectiveness

Of various evaluation metrics used in TREC and IR, pre-
cision and recall are the basic forms. Whereas precision P
measures the fraction of retrieved documents being relevant,
recall R evaluates the fraction of relevant documents being
retrieved. The harmonic mean of precision and recall, known

as F1, is computed by Fi = 2}‘,}:_‘11; [4]

5.3.2  Efficiency

In experiments, we measured the search path length L
(i-e., the number of agents involved) and actual time 7 taken
to find relevant information for each query. The average
search length L of all queries was calculated to measure ef-
ficiency. When fewer agents are involved, the entire dis-

tributed system is considered to be more efficient. Likewise,
average search time 7 was calculated to evaluate efficiency.

5.3.3  Scalability

One important objective of this research was to learn how
decentralized IR systems can function and scale in very large
information network. For scalability, we ran experiments on
different network size scales N € [10%,10%,10*). First, we
used the 100 most highly linked web domains to form a 100-
agent network and conducted experiments on it. Then, we
extended the network to 1,000 and 10, 000 systems/sites for
additional experiments. Table 1 shows the total number
of documents on each network scale. After experiments,
we analyzed the functional relationships of effectiveness and
efficiency to network size.

Network Size N | 102 10° 10*
# Documents 0.5M | 1.7M | 4.4M

Table 1: Network Size and Total # Docs

5.4 Simulation Procedures and Setup

Pseudo code in Algorithm 1 illustrates how different ex-
perimental parameters were combined for the simulations.
Experiments were conducted on a Linux cluster of 10 PC
nodes, each having Dual Intel Xeon €5405 (2.0 Ghz) Quad
Core Processors (8 processors), 8 GB fully buffered system
memory, and a Fedora 7 installation. The computer nodes
were connected internally through a dedicated 1Gb network
switch. Agents were distributed among the 80 processors.
The Java Runtime Environment version was 1.6.0_07.

Algorithm 1 Simulation Experiments

1: for each Network Size € [10%,10%,10%] do
2:  for each € [0, ..,15] do
3 rewire network with the a value
4 for each Search Method do
5: for each Query do
6: assign query to a random agent
7 repeat
8 forward query from one another
9 until relevant agent found OR search path L >
Lmaz
10: if sufficient relevant information found then
11: send the results back
12: else
13: send failure message back
14: end if
15: end for
16: measure effectiveness P, R, and F}
17: measure efficiency 7 and L
18: end for
19:  end for
20: end for
6. RESULTS

We conducted experiments on networks of 10, 10®, and
10* systems. We set the max search length length Ly,qq to
20% of network population so that even less effective/efficient
methods will be able to persist in searches. Figures 5 and



6 present results on IR effectiveness (recall, precision, and
F1) while Figures 7, 8, and 9 report on efficiency (search
path length and time) against different network clustering
conditions (guided by clustering exponent «).

6.1 Effectiveness
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Figure 5: Effectiveness on Network 100

As shown in Figures 5 and 6, the similarity-based search
(SIM) and similarity*degree (SimDeg) method performed
very well in terms of effectiveness, showing a very large ad-
vantage in recall over the degree-based (DEG) and random-
walk (RW) methods. When the network was under some
proper clustering conditions (e.g., with o &~ 10 for network
10,000), the SIM and Sim*Deg methods achieved nearly
100% recall. Precision was 1.0 for all conditions because
a document was retrieved only when it exactly matched the
query.
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Figure 6: Effectiveness on Larger Networks

The DEG search method, biased toward highly linked
(popular) sites in the searches, achieved moderate perfor-
mance between SIM and RW methods and had improved
performance in larger networks, e.g., a roughly 0.7 recall
in the 10,000-system network. Random walk (RW) consis-
tently performed below a 0.4 recall across all network sizes
and « conditions.

6.2 Efficiency

Figures 7, 8, and 9 show very high efficiency of the SIM
and SimDeg search methods across the network sizes, espe-
cially under stronger clustering conditions. The efficiency
gap between the SIM/SimDeg and RW/DEG methods in-
creased dramatically as network size increased. For exam-
ple, in the 100-node network, while SIM searched roughly
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5 hops and 150 milliseconds to find exact match for each
query, it took RW more than 15 hops and 400 milliseconds
to reach 20% of targets (a 3-time difference in efficiency).
When the network size increased to 10,000, RW search took
50 seconds and traversed about 1,500 nodes on average to
reach a < 0.4 recall whereas SIM search took less than 4
seconds and roughly 110 nodes to achieve a 1.0 recall — a
more than 10-time difference in efficiency.
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Figures 7 - 9 demonstrate that network structure had a
great impact on decentralized IR performance, particularly
on efficiency in larger networks. While search efficiency (in
terms of search path length and search time) under different
clustering conditions only differed slightly in the 100-agent
network, the difference was much larger in the 10, 000-agent
network (Figure 9). For example, the average search path
length for the SIM method decreased from 6 to 5 (a 20%
difference) when the clustering exponent was changed from
0 (random network) to 10 (strong clustering) in the 100 net-
work. In the 10, 000-agent network, however, the same de-
gree of change in network clustering led to a roughly 200%
difference in search efficiency. Statistical tests indicated that
SIM search achieved significantly better results with a bal-
anced level of network clustering (i.e., at & = 10) than with
over- or weak-clustering networks. The significant differ-
ences not only appeared in the 10,000-system network but
also in the 100- and 1000-system networks.

6.3 Scalability

For each network size, we identified network clustering
conditions under which superior performance was observed
(i-e., at @ = 10) and plotted average search path length (effi-
ciency) against network size in Figure 10. As discussed ear-



i i R R . it L

1000
|

SA- AL

A~ A--A-.A- B A

Network Size: 10000
-8- Similarity Search
-©- Similarity*Degree
o -A- Degree Searc

\ ¥ Random Walk

500

Search Path Length (#hops)

0o—o0

No—o0—°—, o
.\._./._o °

]
2 T T T T T
0 5 10 15 20

Clustering Exponent (ALPHA)

Figure 9: Efficiency on Network 10,000. Y is log
transformed.

lier, SIM and SimDeg searches consistently achieved nearly
1.0 recall and precision across the various network sizes,
much better than DEG and RW methods. DEG search
tended to perform slightly better in larger networks than in
smaller ones. However, as shown in Figure 10, search path
length for RW and DEG dramatically increased in larger
networks, while the increases for SIM and SimDeg were rel-
atively moderate.

o
Q- &~ Similarity Search
] imilarity .
- -~ Similarity*Degree *
-A- Degree Searcl /
-k Random Walk ’
g ’
’
2 ’
*® ’
£ 8 4
j=2) — ’
c =] ,
S =
| ’
E ’
m ’ A
o , ,
= 4
S / ’
© ’ ’
ol
o ’ 4
@ s o ’ 4
s 0 , ,
o d
5] [
‘S ’ ’
E A
w ’
,
/. ]
------- ¥
o |#$==========

100 200 500 1000 2000 5000 10000

Network Size: log(N)

Figure 10: Scalability of all search methods with o =
10. X denotes network size and is log transformed.

6.3.1 Scalability of SIM Search

SIM and SimDeg methods appeared to be much more scal-
able than RW and DEG methods. To better understand the
scalability of SIM search and to predict how it could per-
form in even larger networks (e.g., a network of millions of
nodes), we conducted further analysis on the relationship of
its efficiency to network size.

Previous research on complex networks suggested that op-
timal network clustering supports scalable searches, in which
search time is a poly-logarithmic function of network size
[15]. We relied on a generalized regression model that mod-
eled search path length L (and search time 7) against log-

transformed network size N. The model was specified to
reach the origin (0,0) because, when log(N) =0 (i.e., N =
1), there is only one node and no effort is needed to search a
network. The best fit for search path length L was produced
by the model in Table 2, in which L = 0.0275-log%,(N) with
a nearly perfect R = 0.997".

| Search Length: L ~ 0+ ﬁlog?o (N), where N is network size. |
Estimate | Standard Error t Pr(> |t])

8| 0.0275 0.0042 65.73 | < 2F7T0 wxx
R? = 0.997 (adj. 0.9968), F = 4320 on 1 and 13 DF

Table 2: Search path length vs. Network size

The same model was also applied to identify a poly-logarithmic

function of search time 7 and network size IV with a smaller
R? = 0.752. Apparently, search time involves other factors
such as machine load fluctuation and is less predictable than
search path length.

Overall, the scalability analysis supports search time as
a poly-logarithmic function of network size — so that when
an information network continues to grow in magnitude, it
is still promising to conduct effective IR and search opera-
tions within a manageable time limit. Although we found
the order of the poly-logarithmic relationship to be roughly
6 in this study, a smaller exponent can be expected when
other factors on network structure and search methods can
be optimized.

6.3.2 Scalability of Network Clustering

Our search methods relied on local indexes and a struc-
ture self-organized by distributed systems in the network.
Without global information and centralized control, net-
work clustering was performed locally — distributed systems
formed the network structure in terms of their limited op-
portunities to interact and individual preferences and con-
straints on building indexes for others. This local mecha-
nism for clustering demonstrated a high level of scalability.
As shown in Figure 11, average clustering time 7. remained
relatively constant, < 1 sec, across all network size scales
N € [10%,10%,10%,10°].

7. CONCLUSION

We conducted experiments on decentralized IR operations
on various scales of information networks and analyzed effec-
tiveness, efficiency, and scalability of proposed search meth-
ods. Results showed network structure, i.e., how distributed
systems connect to one another, is crucial for retrieval per-
formance. With a balanced level of network clustering un-
der local topical guidance, similarity-based search functions
(i.e., SIM and SimDeg) were found to perform very effi-
ciently while maintaining a high level of effectiveness even
in very large networks. For example, in searches for sin-
gle unique documents among the 4.4 million documents dis-
tributed among 10, 000 agents/systems, selectively involving
only 110 agents within 4 seconds yielded 100% precision and
100% recall with a guiding clustering exponent o = 10. Un-
der these conditions, more importantly, search time was well

!Each of the three X levels has multiple data points. Future
work will integrate whether the relationship can be used to
predict search efficiency on larger scales.
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explained by a poly-logarithmic function of network size,
suggesting high scalability of the proposed methods.

In addition, the network clustering function that sup-
ported very high effectiveness and efficiency of IR operations
in large networks is itself scalable. Clustering only involved
local self-organization and required no global control — clus-
tering time remained roughly constant across the various
network sizes N € [10%,10%,10%,10°].

This study provides guidance on how IR operations can
function and scale when today’s information spaces continue
to grow in magnitude. Particularly, we have found that con-
nectivity among distributed systems, based on local network
clustering, is crucial to the scalability of decentralized meth-
ods. The clustering paradox on decentralized search perfor-
mance appears to have a scaling effect and deserves special
attention for IR operations in large scale networks.
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