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Abstract. Many Web documents such as HTML files and XML files
have no rigid structure and are called semistructured data. In general,
such semistructured Web documents are represented by rooted trees with
ordered children. We propose a new method for discovering frequent tree
structured patterns in semistructured Web documents by using a tag tree
pattern as a hypothesis. A tag tree pattern is an edge labeled tree with
ordered children which has structured variables. An edge label is a tag
or a keyword in such Web documents, and a variable can be substituted
by an arbitrary tree. So a tag tree pattern is suited for representing tree
structured patterns in such Web documents. First we show that it is
hard to compute the optimum frequent tag tree pattern. So we present
an algorithm for generating all maximally frequent tag tree patterns and
give the correctness of it. Finally, we report some experimental results
on our algorithm. Although this algorithm is not efficient, experiments
show that we can extract characteristic tree structured patterns in those
data.

1 Introduction

Background: Due to the rapid growth of Internet usage, Web documents
have been rapidly increasing. Then, avoiding inappropriate Internet contents
and searching interesting contents for users become more and more important.
We need to extract the common characteristics among interesting contents for
users. Then, the aim of this paper is to present a data mining technique of
extracting meaningful and hidden knowledge from Web documents.

Data mining problems and main results: Web documents such as HTML
files and XML files have no rigid structure. Such documents are called semistruc-
tured data. Abiteboul et al. [1] presented Object Exchange Model (OEM, for
short) for representing semistructured data. Many semistructured data are rep-
resented by rooted trees with ordered children, which are called tree structured
data. For example, in Fig. 1, the rooted ordered tree T represents the structure
which the XML file xml sample has. Then, in this paper, we use tree structured
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Fig. 1. An XML file xml sample and a rooted ordered tree T as its OEM data.

data as OEM data. To formulate a schema on such tree structured data, we
define an ordered tag tree pattern, or simply a tag tree pattern, as a rooted tree
pattern with ordered children consisting of tree structures and structured vari-
ables. A tree is a rooted tree with ordered children and no variable. A variable
can be substituted by an arbitrary tree.

Since a variable can be replaced by an arbitrary tree, overgeneralized pat-
terns explaining given data are meaningless. Then, in order to extract meaningful
knowledge from irregular or incomplete tree structured data such as semistruc-
tured Web documents, it is necessary to find a tag tree pattern t such that t can
explain more data of given tree structured data than a user-specified threshold
but any tag tree pattern obtained from t by substituting a variable of t can not.
That is, we need to find one of the least generalized tag tree patterns. For ex-
ample, consider to find one of the least generalized tag tree patterns explaining
at least two OEM data in {T1, T2, T} where T1 and T2 are OEM data in Fig. 2
and T in Fig. 1. The tag tree pattern t in Fig. 2 can explain all OEM data in
{T1, T2, T}, that is OEM data T1, T2 and T are obtained from t by substituting
the variable of t with a tree. But t is an overgeneralized pattern and is mean-
ingless. On the other hand, the tag tree pattern t′ in Fig. 2 is one of the least
generalized tag tree patterns explaining two OEM data T and T2 but not T1.
For example, T is obtained from t′ by substituting the variables x1, x2 and x3

with the trees g1, g2 and g3 in Fig. 2, respectively.
In this paper, we consider three computational problems, Frequent Tag

Tree Pattern of Maximum Tree-size, Frequent Tag Tree Pattern of
Minimum Variable-size, and All Maximally Frequent Tag Tree Pat-
terns over tag tree patterns. Frequent Tag Tree Pattern of Maximum Tree-size
is the problem to find the maximum tag tree pattern t with respect to the number
of vertices such that t can explain more data of input data than a user-specified
threshold. This problem is based on the idea that the tag tree pattern, which has
more vertices than any other tag tree patterns, gives more meaningful knowl-
edge to us. In a similar motivation, we consider the second problem Frequent
Tag Tree Pattern of Minimum Variable-size, which is the problem of finding the
minimum tag tree pattern t with respect to the number of variables such that t
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Fig. 2. A tag tree pattern t explains OEM data T1, T2 and T in Fig.1. A tag tree
pattern t′ is one of the least generalized tag tree patterns which explain OEM data T
and T2 but not T1. A variable is represented by a box with lines to its elements. The
label of a box is the variable label of the variable.

can explain more data of input data than a user-specified threshold. Firstly, we
show that Frequent Tag Tree Pattern of Maximum Tree-size and Frequent Tag
Tree Pattern of Minimum Variable-size are NP-complete. This indicates that it
is hard to find the optimum tag tree pattern representing given data. Next, All
Maximally Frequent Tag Tree Patterns is the problem to generate all maximally
frequent tag tree patterns. This problem is based on the idea that meaningless
tag tree patterns are excluded and all possible useful tag tree pattern are not
missed. We present a data mining method from semistructured Web documents
by giving an algorithm for solving All Maximally Frequent Tag Tree Patterns
and show the correctness of our method.

Related works: As knowledge representations for tree structured data, a tree-
expression pattern [11] and a regular path expression [4] were proposed. In our
previous works [7, 8], we presented the concept of a tag tree pattern with un-
ordered children from the view point of the semantics of OEM data. A tag tree
pattern is different from such representations in that a tag tree pattern has
structured variables which can be substituted by arbitrary trees. Several Data
mining methods for discovering characteristic schema from semistructured data
were proposed. In [11], Wang and Liu presented the algorithm for finding maxi-
mally frequent tree-expression patterns from semistructured data. In [2], Asai et
al. presented an efficient algorithm for discovering frequent substructures from
a large collection of semistructured data. In [4], Fernandez and Suciu presented
the algorithm for finding optimal regular path expressions from semistructured
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data. In [7], we proposed a data mining method over an unordered tag tree pat-
tern and reported experimental results of the method. In this work, we focus on
the syntactic features of OEM data. In order to apply our method to information
extraction [6, 3] from semistructured data, we present a concept of an ordered
tag tree pattern.

Organization: This paper is organized as follows. In Section 2, we introduce tag
tree patterns as tree structured patterns. Also we define All Maximally Frequent
Tag Tree Patterns over tag tree patterns as a data mining problem. In Section
3, we discuss Frequent Tag Tree Pattern of Maximum Tree-size and Frequent
Tag Tree Pattern of Minimum Variable-size. In Section 4, we give an algorithm
for solving All Maximally Frequent Tag Tree Patterns and show the correctness
of our algorithm. In Section 5, we report some experimental results on XML
documents.

2 Preliminaries

2.1 Term Trees as Tree Structured Patterns

Let T = (VT , ET ) be a rooted tree with ordered children (or simply a tree) which
has a set VT of vertices and a set ET of edges. Let Eg and Hg be a partition of ET ,
i.e., Eg∪Hg = ET and Eg∩Hg = ∅. And let Vg = VT . A triplet g = (Vg, Eg,Hg)
is called a term tree, and elements in Vg, Eg and Hg are called a vertex, an edge
and a variable, respectively. We assume that every edges and variables of a term
tree are labeled with some words from specified languages. A label of a variable
is called a variable label. Λ and X denote a set of edge labels and a set of variable
labels, respectively, where Λ ∩X = φ. For a set S, the number of elements in S
is denoted by |S|. For a term tree g and its vertices v1 and vi, a path from v1

to vi is a sequence v1, v2, . . . , vi of distinct vertices of g such that for any j with
1 ≤ j < i, there exists an edge or a variable which consists of vj and vj+1. If
there is an edge or a variable which consists of v and v′ such that v lies on the
path from the root to v′, then v is said to be the parent of v′ and v′ is a child
of v. We use a notation [v, v′] to represent a variable {v, v′} ∈ Hg such that v is
the parent of v′. Then we call v the parent port of [v, v′] and v′ the child port of
[v, v′]. A term tree g is called ordered if every internal vertex u in g has a total
ordering on all children of u. The ordering on the children of u is denoted by
<g

u. An ordered term tree g is called regular if all variables in Hg have mutually
distinct variable labels in X.

Definition 1. In this paper, we treat only regular ordered term trees, and then
we call a regular ordered term tree a term tree simply. In particular, an ordered
term tree with no variable is called a ground term tree and considered to be
a tree with ordered children. Let Λ be a set of edge labels. OT Λ denotes the set
of all ground term trees whose edge labels are in Λ. OTT Λ denotes the set of all
term trees whose edge labels are in Λ.
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Let f = (Vf , Ef ,Hf ) and g = (Vg, Eg,Hg) be term trees. We say that f and
g are isomorphic, denoted by f ≡ g, if there is a bijection ϕ from Vf to Vg such
that (i) the root of f is mapped to the root of g by ϕ, (ii) {u, v} ∈ Ef if and only
if {ϕ(u), ϕ(v)} ∈ Eg and the two edges have the same edge label, (iii) [u, v] ∈ Hf

if and only if [ϕ(u), ϕ(v)] ∈ Hg, and (iv) for any internal vertex u in f which has
more than one child, and for any two children u′ and u′′ of u, u′ <f

u u′′ if and
only if ϕ(u′) <g

ϕ(u) ϕ(u′′).
Let f and g be term trees with at least two vertices. Let σ = [u, u′] be a list

of two distinct vertices in g where u is the root of g and u′ is a leaf of g. The form
x := [g, σ] is called a binding for x. A new term tree f{x := [g, σ]} is obtained
by applying the binding x := [g, σ] to f in the following way. Let e = [v, v′] be
a variable in f with the variable label x. Let g′ be one copy of g and w,w′ the
vertices of g′ corresponding to u, u′ of g, respectively. For the variable e = [v, v′],
we attach g′ to f by removing the variable e from Hf and by identifying the
vertices v, v′ with the vertices w,w′ of g′, respectively. A substitution θ is a finite
collection of bindings {x1 := [g1, σ1], · · · , xn := [gn, σn]}, where xi’s are mutually
distinct variable labels in X.

The term tree fθ, called the instance of f by θ, is obtained by applying the
all bindings xi := [gi, σi] on f simultaneously. Further we define a new total
ordering <fθ

v on every vertex v of fθ in a natural way. Suppose that v has more
than one child and let u′ and u′′ be two children of v of fθ. If v is the parent port
of variables [v, v1], . . . , [v, vk] of f with v1 <f

v · · · <f
v vk, we have the following

four cases. Let gi be a term tree which is substituted for [v, vi] for i = 1, . . . , k.
Case 1 : If u′, u′′ ∈ Vf and u′ <f

v u′′, then u′ <fθ
v u′′. Case 2 : If u′, u′′ ∈ Vgi and

u′ <gi
v u′′ for some i, then u′ <fθ

v u′′. Case 3 : If u′ ∈ Vgi , u′′ ∈ Vf , and vi <f
v u′′

(resp. u′′ <f
v vi), then u′ <fθ

v u′′ (resp. u′′ <fθ
v u′). Case 4 : If u′ ∈ Vgi , u′′ ∈ Vgj

(i 6= j), and vi <f
v vj , then u′ <fθ

v u′′. If v is not a parent port of any variable,
then u′, u′′ ∈ Vf , therefore we have u′ <fθ

v u′′ if u′ <f
v u′′. Lastly we define the

root of the resulting term tree fθ as the root of f .

Example 1. Let t and t′ be two term trees described in Fig. 2. Let θ = {x1 :=
[g1, {u1, w1}], x2 := [g2, {u2, w2}], x3 := [g3, {u3, w3}]} be a substitution, where
g1, g2 and g3 are trees in Fig. 2. Then the instance t′θ of the term tree t′ by θ
is the tree T in Fig. 1.

Definition 2. Let Λ be a set of edge labels. The term tree language LΛ(t) of a
term tree t is {s ∈ OT Λ | s ≡ tθ for a substitution θ}. The class OTTLΛ of all
term tree languages is {LΛ(t) | t ∈ OTT Λ}.

2.2 Tag Tree Patterns and Data Mining Problems

Definition 3. Let ΛTag and ΛKW be two languages which consist of infinitely
or finitely many words where ΛTag ∩ΛKW = ∅. We call words in ΛTag and ΛKW

a tag and a keyword, respectively. A tag tree pattern is a term tree such
that each edge label on it is any of a tag, a keyword, and a special symbol “?”.
A tag tree pattern with no variable is called a ground tag tree pattern.
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For an edge {v, v′} of a tag tree pattern and an edge {u, u′} of a tree, we say
that {v, v′} matches {u, u′} if the following conditions (1)-(3) hold: (1) If the
edge label of {v, v′} is a tag, then the edge label of {u, u′} is the same tag or a
tag which is considered to be identical under an equality relation on tags. (2) If
the edge label of {v, v′} is a keyword, then the edge label of {u, u′} is a keyword
and the label of {v, v′} appears as a substring in the edge label of {u, u′}. (3) If
the edge label of {v, v′} is “?”, then we don’t care the edge label of {u, u′}.

A ground tag tree pattern π = (Vπ, Eπ, ∅) matches a tree T = (VT , ET ) if
there exists a bijection ϕ from Vπ to VT such that (i) the root of π is mapped
to the root of T by ϕ, (ii) {v, v′} ∈ Eπ if and only if {ϕ(v), ϕ(v′)} ∈ ET , (iii)
for all {v, v′} ∈ Eπ, {v, v′} matches {ϕ(v), ϕ(v′)}, and (iv) for any two vertices
v′, v′′ ∈ Vπ, v′ is a younger sibling of v′′ if and only if ϕ(v′) is a younger sibling
of ϕ(v′′). A tag tree pattern π matches a tree T if there exists a substitution
θ such that πθ is a ground tag tree pattern and πθ matches T . Then language
LΛ(π), which is the descriptive power of a tag tree pattern π, is defined as
LΛ(π) = {a tree T in OT Λ | π matches T} where Λ = ΛTag ∪ ΛKW .

Data Mining Setting. A set of semistructured data D = {T1, T2, . . . , Tm} is a
set of trees. The matching count of a given tag tree pattern π w.r.t. D, denoted
by matchD(π), is the number of trees Ti ∈ D (1 ≤ i ≤ m) such that π matches
Ti. Then the frequency of π w.r.t. D is defined by suppD(π) = matchD(π)/m.
Let σ be a real number where 0 ≤ σ ≤ 1. A tag tree pattern π is σ-frequent
w.r.t. D if suppD(π) ≥ σ. We denote by Π(Λ′) the set of all tag tree patterns
π such that all edge labels of π are in Λ′ ⊆ Λ = ΛTag ∪ ΛKW . Let Tag be
a finite subset of ΛTag and KW a finite subset of ΛKW . A tag tree pattern
π ∈ Π(Tag ∪ KW ∪ {?}) is maximally σ-frequent w.r.t. D if (1) π is σ-
frequent, and (2) if LΛ(π′) ⊆

/
LΛ(π) then π′ is not σ-frequent for any tag tree

pattern π′ ∈ Π(Tag ∪KW ∪ {?}).
All Maximally Frequent Tag Tree Patterns
Input: A set of semistructured data D, a threshold 0 ≤ σ ≤ 1, and finite
sets of edge labels Tag and KW .
Problem: Generate all maximally σ-frequent tag tree patterns w.r.t. D
in Π(Tag ∪KW ∪ {?}).

Example 2. As examples, we give three OEM data T1 and T2 in Fig. 2 and T in
Fig. 1 and a maximally 2

3 -frequent tag tree pattern t′ in Π({〈Sec1〉, 〈Sec2〉, 〈Sec3〉,
〈Sec4〉},{Introduction, Preliminary,Result I, Conclusion},”?”). The tag tree pat-
tern t′ in Fig. 2 matches T and T2, but t′ does not match T1.

3 Hardness Results of Finding the Optimum Frequent
Tag Tree Pattern

In this section, we discuss two problems of computing an expressive σ-frequent
tag tree pattern. First we show that it is hard to compute the frequent tag tree
pattern of maximum tree-size w.r.t. a set of semistructured data. The formal
definition of the problem is as follows.
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Frequent Tag Tree Pattern of Maximum Tree-size
Instance: A set of semistructured data D = {T1, T2, . . . , Tm}, a real
number σ (0 ≤ σ ≤ 1) and a positive integer K.
Question: Is there a σ-frequent tag tree pattern π = (V,E, H) w.r.t. D
with |V | ≥ K?

Theorem 1. Frequent Tag Tree Pattern of Maximum Tree-size is NP-
complete.

Proof. Membership in NP is obvious. We transform 3-SAT to this problem. Let
U = {x1, . . . , xn} be a set of variables and C = {c1, . . . , cm} a collection of
clauses over U with |cj | = 3 for any j (1 ≤ j ≤ m). For a tree T and a vertex
u of T , we denote the subtree consisting of u and the descendants of u by T [u].
Let P0 be the tree which is described in Fig. 3. The root of P0 has n children.
Let v1, v2, . . . , vn be the n children. For each i (1 ≤ i ≤ n), P0[vi] corresponds
to the truth assignment to xi.

We construct trees T1, . . . , Tm from the tree P0 and c1, . . . , cm in the following
way. Tj (1 ≤ j ≤ n) is described in Fig. 4. The root of Tj has 9 children.
Let vj0, vj1, . . . , vj8 be the 9 children. The inner 7 subtrees Tj [vj1], . . . , Tj [vj7]
correspond to the truth assignments that satisfy cj . Each Tj [vji] (1 ≤ i ≤ 7)
is constructed as follows. Let cj = {`j1, `j2, `j3} where `jk = xnjk

or ¯xnjk
(1 ≤

k ≤ 3, 1 ≤ njk ≤ n). The 7 truth assignments to (xnj1 , xnj2 , xnj3) make cj true.
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Fig. 5. Two truth assignments for (x1, x2, x3) = (true, false, true), (true, false, false)

For the i th truth assignment (1 ≤ i ≤ 7) and all 1 ≤ nj1, nj2, nj3 ≤ n, Pji is
obtained from P0 by removing the right (resp. left) subtree rooted at vnjk

of P0 if
xnjk

is true (resp. false). This resulting tree Pji becomes Tj [vij ]. For example, the
left tree of Fig. 5 represents a truth assignment (x1, x2, x3) = (true, false, true).

Lastly let T be the special tree (Fig. 4) which is constructed from P0. Let
S = {T1, . . . , Tm, T}, σ = 1, and K = 5n + 4. Then we can show the following
two facts.

1. Let π be a σ-frequent tag tree pattern w.r.t. D. Then the root of π has just
three children and the second child of the three children has just n children.

2. Let G1, G2, G3, g1, g2, g3 be trees and tag tree patterns described in Fig. 6,
respectively. Then g1 is σ-frequent w.r.t. {G1, G2, G3}, g2 is σ-frequent w.r.t.
{G1, G3}, and g3 is σ-frequent w.r.t. {G2, G3}.

G1 G2 G3 g1 g2 g3

Fig. 6. Trees G1, G2, G3 and tag tree patterns g1, g2, g3

From these two facts, if 3-SAT has a truth assignment which satisfies all
clauses in C, there is a σ-frequent tag tree pattern π = (V, E, H) w.r.t. D with
|V | = 5n + 4 = K (Fig. 7). Conversely, if there is a σ-frequent tag tree pattern
π = (V, E, H) w.r.t. D with |V | = 5n + 4, the numbers of the children of the
vertices of depth 5 show one of the truth assignment which satisfies C. 2

Second we show that it is hard to compute the frequent tag tree pattern of
minimum variable-size w.r.t. a set of semistructured data. The formal definition
of the problem is as follows.
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Fig. 7. A tag tree pattern π such that π is σ(= 1)-frequent w.r.t. D

Frequent Tag Tree Pattern of Minimum Variable-size
Instance: A set of semistructured data D = {T1, T2, . . . , Tm}, a real
number σ (0 ≤ σ ≤ 1) and a positive integer K.
Question: Is there a σ-frequent tag tree pattern π = (V,E, H) w.r.t. D
with |H| ≤ K?

Theorem 2. Frequent Tag Tree Pattern of Minimum Variable-size is
NP-complete.

Proof. (Sketch) Membership in NP is obvious. The reduction is the same as the
one in Theorem 1 but K = n + 2. 2

4 Generating All Maximally Frequent Tag Tree Patterns

4.1 Algorithm for Generating All Maximally Frequent Tag Tree
Patterns

In this section, we present an algorithm for solving All Maximally Frequent
Tag Tree Patterns. That is, we give an algorithm which generates all maximally
σ-frequent tag tree patterns. The algorithm uses a polynomial time matching
algorithm for term trees [10] to compute the frequency of a tag tree pattern and
a method for generating all rooted trees with ordered children [9].

Algorithm for solving All Maximally Frequent Tag Tree Patterns
Input: A set of semistructured data D, a threshold 0 ≤ σ ≤ 1, and finite sets
of edge labels Tag and KW .
Output: All maximally σ-frequent tag tree patterns w.r.t. D in Π(Tag∪KW ∪
{?}).

Let n be the maximum number of vertices over all trees in D. We repeat the
following three steps for k = 2, . . . , n. Let Πσ

k be the set of all σ-frequent tag
tree patterns with at most k vertices and no edge. Let Πσ

k (Λ′) be the set of all
σ-frequent tag tree patterns with at most k vertices and edge labels in Λ′ ⊆ Λ.



10

1. Generate all tag tree patterns with k vertices and no edge, by using an
algorithm for generating all rooted trees with ordered children on k vertices
[9]. For each tag tree pattern π with k vertices and no edge, we compute the
frequency of π and if the frequency is greater than or equal to σ then we
add π to Πσ

k .
2. For each π ∈ Πσ

k , we try to substitute variables of π with edges labeled with
“?” as many as possible so that all σ-frequent tag tree patterns in Πσ

k ({?})
are generated. This work can be done in a backtracking way. Then for each
π ∈ Πσ

k ({?}), we try to replace ?’s with labels in Tag ∪ KW as many as
possible so that all σ-frequent tag tree patterns in Πσ

k (Tag∪KW ∪{?}) are
generated. This work can be done in a backtracking way.

3. Finally we check by using the maximality test algorithm in Section 4.2
whether or not π ∈ Πσ

k (Tag ∪KW ∪ {?}) is maximally σ-frequent.

4.2 Correctness of the Generating Algorithm

In this section, we consider the following problem to complete our generating
algorithm in Section 4.1. Let ΛTag and ΛKW be infinite or finite languages of
tags and keywords, respectively.

MAXIMALITY TEST
Instance: A set of semistructured data D, a threshold 0 ≤ σ ≤ 1, and
two finite sets Tag ⊆ ΛTag and KW ⊆ ΛKW , and a tag tree pattern
π ∈ Πσ

k (Tag ∪KW ∪ {?}) satisfying the following conditions:
(i) Any tag tree pattern obtained from π by replacing any variable in π

with an edge which has a label in Tag ∪KW ∪{?} is not σ-frequent
w.r.t. D.

(ii) Any tag tree pattern obtained from π by replacing any edge with a
label “?” in π with an edge which has a label in Tag ∪KW is not
σ-frequent w.r.t. D.

Question: Decide whether or not π is a maximally σ-frequent tag tree
pattern w.r.t. D.

We show an algorithm for solving MAXIMALITY TEST. If the target of our
interest is only skeleton of given data, we ignore the edge labels of the data and
find a tag tree pattern in Π({?}). We note that if |Λ| = |ΛTag ∪ ΛKW | = 1 the
label “?” is meaningless. Thus when |Λ| = |ΛTag ∪ ΛKW | = 1 we identify the
unique label in Λ with “?”. Let x2 be a variable such that the siblings just before
and after x2 are variables and x2 has only one child which connects to x2 with a
variable (See the right figure of Fig. 8). We call the variable like x2 a surrounded
variable. We omit the proof of the next lemma.

Lemma 1. Let π′ be a tag tree pattern which has a surrounded variable x2. Let
π be the tag tree pattern obtained from π′ by replacing the variable x2 with an
edge which has a label “?” (Fig. 8). Then LΛ(π′) = LΛ(π).

Our maximality test algorithm consists of the following steps.
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Fig. 8. This center edge of π is replaced with a variable.

1. If π has the substructure like the left figure of Fig. 8, then for all the sub-
structures we replace the center edges with variables (See the right figure of
Fig. 8). Let π′ be the tag tree pattern after the replacements.

θA(x) = {x := [TA, [RA, LA]]}
θB(x) = {x := [TB , [RB , LB ]]}
θC(x) = {x := [TC , [RC , LC ]]}
θD(x) = {x := [TD, [RD, LD]]}
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TA TB TC TD

2. If there exists a variable x in π′ which is not a surrounded variable such
that π′θX(x) is σ-frequent w.r.t. D for any X ∈ {A,B,C, D}, then π is not
maximally σ-frequent w.r.t. D.

3. If there exists a surrounded variable x such that π′θX(x) is σ-frequent w.r.t.
D for any X ∈ {A,B,C}, then π is not maximally σ-frequent w.r.t. D.

4. If both x1 and x2 are surrounded variables (See Fig. 9), we check whether or
not π′θD(x1)θD(x2) is σ-frequent w.r.t. D. If π′θD(x1)θD(x2) is σ-frequent
w.r.t. D, then π is not maximally σ-frequent w.r.t. D.

If π passes all the above tests, π is maximally σ-frequent w.r.t. D.

Lemma 2. Let Λ = ΛTag ∪ ΛKW . Let π = (Vπ, Eπ,Hπ) be an input tag tree
pattern which is decided to be maximally σ-frequent w.r.t. D by the above strategy.
If there is a tag tree pattern π′ = (Vπ′ , Eπ′ ,Hπ′) with no surrounded variable
which is σ-frequent w.r.t. D and moreover LΛ(π′) ⊆ LΛ(π), then π = π′.

Proof. (Sketch) We can show the following claims.

Claim 1. There exists a bijection ξ : Vπ′ → Vπ such that for any u, v ∈ Vπ′ ,
{u, v} ∈ Eπ′ or [u, v] ∈ Hπ′ if and only if {ξ(u), ξ(v)} ∈ Eπ or [ξ(u), ξ(v)] ∈ Hπ.
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Claim 2. Let ξ : Vπ′ → Vπ be a bijection defined in Claim 1. For any u, v ∈ Vπ′ , if
[u, v] ∈ Hπ′ and {ξ(u), ξ(v)} ∈ Eπ then LΛ(π′) 6⊆ LΛ(π). Therefore if LΛ(π′) ⊆
LΛ(π) then [u, v] ∈ Hπ′ implies [ξ(u), ξ(v)] ∈ Hπ.

Claim 3. Let ξ : Vπ′ → Vπ be a bijection defined in Claim 1. When |Λ| =
|ΛTag ∪ ΛKW | ≥ 2, for any u, v ∈ Vπ′ with {u, v} ∈ Eπ′ , if an edge label of
{u, v} is “?” and {ξ(u), ξ(v)} is an edge in Eπ with a label in Tag ∪KW then
LΛ(π′) 6⊆ LΛ(π). Therefore if |Λ| ≥ 2 and LΛ(π′) ⊆ LΛ(π) then {u, v} ∈ Eπ′

with a label “?” implies {ξ(u), ξ(v)} ∈ Eπ with a label “?” or [ξ(u), ξ(v)] ∈ Hπ.

From the conditions of an input tag tree pattern π of MAXIMALITY TEST,
for any u, v ∈ Vπ′ , if [ξ(u), ξ(v)] ∈ Hπ then [u, v] ∈ Hπ′ , and if {ξ(u), ξ(v)} ∈ Eπ

which has a label “?” then {u, v} ∈ Eπ′ and the label of {u, v} is “?”. Thus we
conclude that π = π′. 2

We can easily see that the above steps 1–4 run in polynomial time by using
a polynomial time matching algorithm for term trees [10].

Theorem 3. MAXIMALITY TEST is computable in polynomial time.

���

���

���������

�
	

Fig. 9. Both x1 and x2 are surrounded variables.

5 Implementation and Experimental Results

We have implemented the algorithm for generating all maximally frequent tag
tree patterns in Section 4 on a DELL workstation PowerEdge 6400 with Xeon
700 MHz CPU. We report some experiments on a sample file of semistructured
data. The sample file is converted from a sample XML file about garment sales
data such as xml sample in Fig. 1. The sample file consists of 172 tree structured
data. The maximum number of vertices over all trees in the file is 11, the maxi-
mum depth is 2 and the maximum number of children over all vertices is 5. In
the experiments described in Fig. 10, we gave the algorithm “<Weeknumber>”
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Fig. 10. Experimental results for generating all maximally frequent tag tree patterns.
A maximally σ-frequent tag tree pattern obtained in the experiment.

and “<Designnumber>” as tags, and “Summer” and “Shirt” as keywords. The
algorithm generated all maximally σ-frequent tag tree patterns w.r.t. the sam-
ple file for a specified minimum frequency σ. We can set the maximum number
(“max # of vertices in TTPs”) of vertices of tag tree patterns in the hypothesis
space.

We explain the results of Fig. 10. “TTP” means a tag tree pattern. In order to
evaluate the usefulness and performance of our data mining method in this paper,
we have two types of experiments. The results of “ordered TTP” are given by
the algorithm for generating all maximally frequent “ordered” tag tree patterns
in this work. The results of “unordered TTP” are given by the algorithm for
generating all maximally frequent “unordered” tag tree patterns in our previous
work [7].

Exp.1 shows the consumed run time (sec) by the two algorithms for var-
ied minimum frequencies and the specified max # of vertices=7. Exp.2 gives
the consumed run time (sec) by the two algorithms for the specified minimum
frequency =0.3 and varied max numbers of vertices of TTP in the hypothesis
spaces. Also, Exp.3 shows the numbers of maximally frequent TTPs obtained by
the two algorithms for the specified minimum frequency =0.3 and varied max
numbers of vertices of TTP in the hypothesis spaces. These experiments show
that the method for generating all maximally frequent “ordered” tag tree pat-
terns is more time-consuming than the one for generating all maximally frequent
“unordered” tag tree patterns. But it is effective as compared with the size of
hypothesis spaces. Also maximally frequent ordered tag tree patterns capture
more precisely characteristic structures than maximally frequent unordered tag
tree patterns.
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6 Conclusions

In this paper, we have studied knowledge discovery from semistructured Web
documents such as HTML/XML files. We have proposed a tag tree pattern
which is suited for representing tree structured patterns in such semistructured
data. We have shown that it is hard to compute the frequent tag tree pattern of
maximum tree-size. So we have given an algorithm for generating all maximally
frequent tag tree patterns. We can improve this algorithm by using the method
in [5].
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