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RF Sensor Networks for Device-Free Localization:
Measurements, Models and Algorithms

Neal Patwari and Joey Wilson

Abstract—We discuss the emerging application of device-free labeled as real-time location systems (RTLS), which resjuir
localization using wireless sensor networks, which find pge each person or object to be attached to a radio transmitter
and objects in the environment in which the network is deplogd, tag, which is then located based on the signals received from

even in buildings and through walls. These networks are terrad that t t ltivle oth 41 H . it
“RF sensor networks” because the wireless network itself ishe at tag at multiple other sensors [4]. However, in security

sensor, using RF signals to probe the deployment area. Deeic Of emergency applications, one cannot expect all people of

free localization in cluttered multipath environments has been interest to be wearing a radio tag.

shown to be feasib!e, and in.fact benefits from rich multipath With these advantages, DFL has several applications. DFL

channels. We describe modalities of measurements made by RFachnologies may complement existing localization system

sensors, the statistical models which relate a person’s pitisn . . . o

to channel measurements, and describe research progresstims which use tags to locate and identify people by comb_lnlng RF

area. sensor measurements from two sources: (1) from signals re-
ceived from the transmitter tag, and (2) measurements legtwe
the static RF sensors. As such, DFL may improve existing

. INTRODUCTION RTLS systems. As another example, DFL techniques may
’\ﬂ, useful for police or emergency responders approaching a

Wireless networks are ubiquitous. Wherever we are, we = . , )
angerous building. Prior to entering, they may wish to dgpl

interacting with radio frequency (RF) electromagnetic (E - : .
waves. In this article, we review efforts to use the chang sRF sensor network around the building, either indepeident

caused by people’s interaction with the RF EM wave fiel oml,) c_)lg_ln c_orEcerttIYIV|th, an emstggl_vxtnrerl]es_s net\;vorlk Int
to infer their position. We call the static wireless device € bullding. Then, they can use ecnniques o focate
" because they are ug&gi track people moving within the building. As another

used for this purpose “RF sensors”, 7
to measure the signal on each link between devices. S mple, RF sensor networks may be deployed within large
uilldings and facilities, as an alternative to more invasiv

a network we call aRF sensor networkas opposed to the ~. i : s
ideo camera networks, in order to ensure compliance with

term “wireless sensor network”, which refers to a genera\f d v rules. Th work Kin co
purpose network of sensors. This area of research is al ety and security rules. These networks may work in cancer

called “device-free” localization (DFL) [1] to emphasizeat With_ context-aware computi_ng and (_:ontrol s_ystems to preven
a persoh does not need to be carrying a wireless device to ﬁgc'delz?lis' and protect Cl?nff'fden.t'all information. .
detected and located, or “sensorless sensing” becausersen hn sensor ne;wor € ecnvel_y linet?sures many s?ctlg_n s
network researchers typically do not consider the radiceta b 0 t e.enV|ronment ecause many 1inks etween. bairs orsadio
sensor [2]. With or without a radio transmitter (TX) or regsi exist in an area, and each link measures a different section
(RX) on them, a person’s presence at a location impacts t@fe space. Thus the wordomography defined as imaging
radio waves nearby. This area is related to radar, includling

y sections, applies to estimation in RF sensor networks.
wideband (UWB) and multiple-input multiple-output (MIMO)However, RF radio wave propagation is not solely by line-
radar systems, but is not limited to these frameworks.

of-sight (LOS) propagation [5]. In fact, we typically expec
: : [ -line-of-sight (NLOS) paths to dominate,
There is an advantage to sensing RF energy as oppogé%i pOwWer in non .
to light, infrared, or thermal energy when attempting teeinf except in unobstructed short-range links [6]. Thus congbute
people’s movements. Visible light cameras largely depemd

Bomography (CT) techniques developed for x-ray scanners,
daylight; light and infrared do not penetrate smoke. Rad hich assume that each measurement is along a straight line

frequency waves can penetrate non-metal walls and sm(g.éough the medium [7], do not directly apply — we cannot

[3], unlike light, thermal, or mm-wave energy. Thus RF-bhseS'mply scale up the size of an area, scale down the frequency
' ! ' f emission, and achieve proportional results.

DFL is a complementary security technology which does n8 Vet d be in this articl anificant ity of
require floodlights to work at night, and can locate people in €l, as we describe n this article, a signiicant quantity o
a smoke-filled building, or from the exterior of the bu"dingresearch has shown results that locate people in buildsiggu

- N : - - RF sensor measurements [2], [8], [9], [1], [10], [11], [1RA]3]
Other radio-based localization technologies exist, somest P ’ P
9 [14], [15], [16], [17]. Results have been presented whichnto
N. Patwari and J. Wilson are with the Department of Electriaad the number of people moving [9], estimate a person’s logatio
Computer Engineering, University of Utah, Salt Lake CitgAl This material [18], [13], [17], [14], and image the movements in an area
is based upon work supported by the National Science Foondatder Grant ; ; _ ;
No. #0748206. E-mails: npatwari@ece.utah.edu, and joey@sm.com. of IntereSt [11]' [12]’ [13.]' [15]’. all .In real \.Nork.j mUItm,h
Lin this paper, we use “person” to refer generically eithea toerson or a environments. Both location estimation (estimating a ge'ss

mobile object. coordinate at one time) and tracking (estimating a person’s
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velocity and sequence of positions over a duration of timef the ith multipath. For example, if the path was assumed

have been reported, with accuracy of less than one metert@fresult from a single “bounce’i.e., change in direction,

average error [8], [14], [13] or less than two meters mediahen that object that caused the bounce is located somewhere

error over a 1500 tharea [17]; these results are at least asn an ellipse of a certain size, with the TX and RX as

good as reported location error when locating radio taggéati [20]. When time delay is measured on multiple links,

objects [4], [19], so the accuracy is surprising. the intersection between ellipses is an estimate of thecbbje
How are these systems able to counteract the effectslagation.

multipath in an effort to track movement? The answer to this

guestion is that successful DFL systems have been designed t

take advantage of the effects of multipath propagatiomerat B. Narrowband

than try to counteract them. Multipath fading becomes the Next, we discuss narrowband channel measurements for

signal, not the noise. We show in this review article howurposes of DFL. Narrowband receivers cannot provide infor

multipath fading is used for the benefit of DFL systems. Weation about individual multipath, only the signal magdiu

present the results of the growing literature for DFL in threand phase as a whole. However, narrowband transceivers are

parts, first discussing the RF sensor measurement modalifieoduced in high quantity for commercial applications,sthu

in Section Il, then presenting models for the measurementstheir low cost is a key part of enabling large scale RF sensor

Section Ill, and then presenting the algorithms and resualts networks.

Section IV. Finally, we conclude in Section VI. Narrowband wireless devices simply measure the sum of the
contributions of all multipath. We consider a continuousve
[I. MEASUREMENTS (CW) signal, which results in a received complex baseband
. o ._voltage,V, of
Device-free localization (DFL) employs networks which
measure properties of the radio channel between many dairs o ~ N N
RF sensors. Changes in channel properties provide infasmat V="Vr Z a;(t) = Z Vi(t) 2
about the position of objects in the environmaithat types of i=1 i=1

radio channel measurements are most appropriate for DFL? \yhere 1. is the complex baseband voltage at the TX, and
this section, we introduce several modalities of measumsney (1) — V;q,(t) is the complex baseband voltage of compo-
of radio channel characteristics which can be used to ilr thant; at the RX [5].
location of people and objects in a building. We discuss the There s information about position containedin First,
advantages, and disadvantages of these modalities. the information in the magnitude &f will be discussed below.
Secondly,V, when compared to th€ measured at other RX
A. Ultra-Wideband (UWB) locations or at multiple antennas, provides informationtdb
First, we discuss the use of UWB measurements for pdp—e azimuth or elevation angles-of-arrival of the multipsig-
poses of DFL. Ultra-wideband receivers measure the amprfels [.21]’ and can be used_m mult_|ple wave field reconstoucti
tudes, time delays, and phases of the multipath signalshNh}gChm_(meS as _d|scussegl In Section IV-B. . .
exist in the radio channel. Measured at multiple probingem Typical .d|.str|buted W|rgles§ sensors have difficulty with
t, UWB measurements and the changes between them furate timing synchronization .[22].’ ar.1d for cpherentsnha
be used to infer both the properties of the static propagati@easgrer_nents, phase synchron|z§t|on Is required. Phase sy
environment, and the changes in the environment which mi{rnrongtlon means that the carrier used by_ two d|ﬁeren_t
indicate a moving person or object. UWB transceivers a(ﬁnscelvers must have the same phase. Since the carrier

certainly more cost-prohibitive than narrowband trangesrs, phasg Ch_anges from 0 m; each <r:]a|r rier cycle, tln;]lng syn-
but the ability to distinguish time delay is a key benefit. ¢ ron|zat|o_n errors must be much less thify., where fc .
is the carrier frequency. For example, at 900 MHz, timing

Transmitting and receiving an UWB pulse (or for that mal b h ller th 4 A fut
ter, high bandwidth signal) allows one to measure the cHanﬁgors must be much smatler than oné nanosecond. A future
allenge in DFL is to either provide practical means for

impulse response (CIR). Assume at timeN (¢t) multipath Ch h ¢ S0kt di ‘ h
components arrive at the RX, with thith component having phase-coherent measurements/oat disparateé Sensors, suc

complex amplitude gain of; () and time delayr (). As a as interferometric methods [23], or to achieve some of the

complex valuea;(t) can be written asa; ()] explj Lo (t)]. benefits of prt\ase—coherent measurements using non-coheren
The CIR is [5], measurements.

N
h(t,7) = Z a;(t)o(T — 7i(t)) (1) C. Received Signal Strength (RSS)

i=1 In this section, we consider measurements of RSS for

whered(-) is the Dirac impulse function. purposes of DFL. Compared to the narrowband measurements
The knowledge of time delay provides important informgpresented above, RSS is a magnitude-only measurement. Mea-
tion about position. Comparing the delay(t) to the line-of- surements of RSS are ubiquitous in nearly all wireless @svic
sight time delay (assuming it is known) indicates the exce$fe received power is the squared magnitude of the complex
delay, which gives some knowledge of the spatial incidenbaseband voltagd’. What we typically call the “received
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signal strength” (RSS) is a measurement of the received poW& location x; and RX locationx,., as depicted in Figures 1
in decibel terms. For a narrowband receiver, this power is and 2. In this section, we consider models for the relatignsh
between changes caused to the multipath components by the

N . . -
Rin = 2010 V] = Pr + 2010 it 3) person, and coordinate of the persep, Certainly, if changes
4B g0 V| = Pr 810 ; ® G are not a function ofx,, we have no ability to locate the

person. It is thus critical to have models to describe the
where Pr = 201log, [V7|. changes in measurements as a function of positian

One source of information iR, is its magnitude. For links There are generally two views on the formulation of this
with a strong LOS component, when that strong compone&gsition dependence.

is blocked,R;p tends to decrease. This is called shadowing,
and a sharp decrease ity can be used to infer that a person
or object is located along the LOS path [11].

Further, multipath fading is a source of location inforroati
Depending on the phases of eakl¢), the sum in (2) may
be destructive (with opposite phases) or constructiveh(wit

similar phases). Measurements of fading are one source 05) Absolute position dependencehe channel parameter
information about the location or number of moving people dependence cannot be simplified using the relative po-
in the environment, as discussed in Section IV. Fading can be sitions ofx,, x;, andx, [1], [18], [17], [10].
guantified, for example, with the variance &f;z [13], [9],
by the absolute value of differences [8], [24], or even timd li
quality indicator (LQI) [9].

The variance ofR;5 has been shown to be approximatel
linearly related to the total power in multipath componen
affected by the movement in the environment [25]. We wi

discuss what is meant by “affected” and provide models f easurements are required, at a high density of positigns

the effect in Section III-D. For multiple people, the channel will have to be measured

Although individual RSS measurements are less informatiy& all combinations of human locations. Algorithms which
about person location than UWB measurements, for examp“ed

. ) ve this perspective are called fingerprint-based DFL, and
the low cost of RSS-only narrowband radios will allow morg discusged IF;] Section IV-A gerp

nodes for a given price. Since measurements are made betweqj}om the relative position dependence perspective, a sta-

pairs ;)f RF sensors, the number of measurements increasessa| model describes the relationship between the mhlan
@ (N ) and the overall capability of the RF sensor networ}gham‘:]eS experienced on a given link ang relative tox;

can be very significant. andx,.. If knowledge about environmental objects is available
(e.g, wall locations) their relative positions w.rx; and x,
D. Polarization can also be used in the propagation model [27]. While not

Finally, we consider the DFL information contained in th&VerY link will experience the same changes given identical

polarization of the EM wave at the RX. The polarizatioh€!2tiveé position information, if measured for many linkis¢
is useful to detect movement in the environment [26]. Th@stnbuuon of changes should be characterized by the inode

polarization of an EM wave at the RX will change due tuch a statistical model could be generated from theory, or

environmental changes just as the phase of the signal Wiffm many sets of measurementg. . .

change. Using two orthogonally-polarized antennas, a RX ca We c_jo not suppose that a _stat|st_|cal model is a_ccura;e for
measure both relative amplitudes and the phase between E{Heenvgq?n;]ents. True_ EM_S|muIa(;|on or ray-ftrag!ng m_|ghrt1
two signals. Just like in (2), each polarized received Signge used 1 the properties, size, and position of objects &n t
has multipath component amplitudes and phases. These ironment were known. Or, perhaps these parameters can be

measurements determine a point on a Poincaré sphere. 3 sidered "C"%ttef" and measured so thataspa_ttererlﬁmrms
“differential polarization” can be determined by findingeth can be determined regardless [28], [29]. Statistical noedet

angular change from an original polarization state to tH&q”'rEd l;/vhen the c?mdplexny_oféyrjal\(lzal ?tﬁ“c enr\1/_|rﬁn(;ment
current state. This differential can be calculated eithéh w €1 ot be accurately determined. Algorithms which do not

a time-average, or a frequency domain sub-band average. ﬂ?eske multipath propagation assumptions are discussdtefurt
[

latter is shown in [26] to provide a higher signal-to-noigéiag " ection IV-B. . . .
for detection of hl[Jmlm-cZused changges g To formulate multipath channel models which provide po-

sition dependence, we primarily need to consider theiriapat
impact, rather than time delay and amplitude [25]. We denote
Si(t) as the spatial filter of path at time ¢. Generally, we

All of the measurements described in Section Il mamodelS;(t) as series of connected line segments, representing
changes in multipath components in order to locate and coanplane wave changing direction at discrete points. Finsdly
the number of moving people (or objects) in the environmersimplify the language, we simply refer to all objects which
Consider a person located at coordinatg and a link with interact with a wave via transmission, diffraction, refient or

1) Relative position dependencéhe channel parameters
are only a function of the relative position of, to
TX and RX positionsx; and x,.. For example, the
parameters may only be a function of the distances
|x, —x:|| and||x, —x,||. These assumptions are used in
the algorithms presented in Sections IV-B through 1V-H.

In the latter case, the dependence of the measurement on
x, must be determined for every link (and thxs and

x,), and for the entire range aof,, for each environment.

¥hannel measurements are very sensitive to the placement
nd EM properties of all objects in the environment, andehes
ositions and properties are highly likely to be unknownugh

IIl. M ODELS
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\

scattering, as “scatterers”, regardless of the actualggaton

mechanism. RX

A. Related Research

Fading models for static links dependent on the position
of moving people are less prevalent than those for frequency
dependent fading or for space-dependent (small-scal@)dgad
models. However, the reported literature has observations
relevant to DFL, which we relate in this section.

In past studies, fading due to human motion was quantified
to aid in the design of static communications systems which
operate among moving peopteg, indoor WLANS [30], [31], Fig. 2. TX, RX, plane containing scatterers, and the newquers
[32], [33]. For indoor communications links, fading on at&ta
link typically follows a Ricean mixture distribution, witha
high variance when people are moving in and around the area components ag,. Fori € 7,, S;(t;) has altered to
of the link, and a low variance when they are not [30]. The  diffract around the person, or to transmit through the
Ricean K -factor depends on the power in “stationary” paths ~ person, for example. We include the possibility that
vs. power in “time-varying” paths due to motion [31]. Two- lai| = 0 if the component is shadowed.
state Markov models have been used for simulation of static3) New Some multipath components are created by the
links, to account for this human-caused change in variance new person. In this caseéy(t;) has increased, and we
[32]. Researchers have observed that the motion of people denote these new indices #&s. These new components
near either the TX or RX impacts measured fading statistics, ~ are likely to be the result of scattering or reflecting from
and in fact, when the number of people moving in proximity the new person.
of TX or RX is increased, fading increases [33]. For examplen the next two sections, we discuss the characteristicewf n
the Rician K-factor decreases as the number of moving peopled affected multipath as a function &f. First, in Section
in the area increases [34]. l1I-C, we discuss models for new multipath. Next, we discuss

These general results show that human movement is magected multipath in Section 11I-D.
sureable, and is generally a function of relative positiod a
number of people. However, they do not provide a model for

the fading as a function of the position of the moving peoplg,' New Multipath

Scatterer

Scatterer Plane

with respect to the TX and RX coordinates. Here, we discuss the new multipath created by the appear-
ance of a person in the environment. It is typically assumed i
B. Classification the radar literature that an object appearing in the enwiemt

causes a new path from the TX to RX based on scattering

Consider that at time,, a person did not exist in the ) . ,
from the object [35]. It is also assumed that this scattéin-pa

environment, and that at time, the person is located at. - . T
position x,, as drawn in Figure 1. This section classifie¥ single-bounce, that is, the only change in direction ia th

multipath based on the changes to the multipath from tinﬁ’@th is due to the scattering. This model has appeared imindo
propagation models as well [36]. ¥, is the person location,

to to timet;. . . o
the received power of the new scattered multipath is given by
Ps(x,), where
Cs
Pi(x) = 4
% R P R @
(a) wherec; is a constant. The product of the squared distances in

Fig. 1. (a) Example multipath components between Txcatand RX at (e denominator results from the scattering model, whigfs sa
x.. (b) When a person appearssa, there are additional paths {- -) and that the scatterer absorbs the incident power, and reeadiiat
alterations to existing multipath {-). in all directions, leading to a product of two Friis path loss
] -~ ) equations.
The change in position of the person will affect some, but e note that it is also possible that the new path is due to
not all, of the amplitudesy;(¢) and time delaysr;(t), and refiection. In this case, models such as [37] similarly assam

it will affect the number of multipath componenté(t). We  gjngle-hounce path and state that the received power is give
classify the changes in the channel into three categories: by P,(x,), where

1) Unaffected Some multipath components are unaffected. .
T

We denote the set of unaffected component§.as-or P.(x) = — (5)
. — — P
i € T, the pathS;(ty) does not intersect the person at (e = e[| + [l — 1)
X,. where ¢, is a constant, and, is the path loss exponent.

2) Affected Other multipath components change in amEffectively, the only difference in received power comuhre
plitude and/or phase. We denote the set of affectéd a line-of-sight path is due to the additional path lengiid
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perhaps a constant reflection loss contained within thetanhs
Cp-

In the scattering case, the locus of points whétgx, ) | 6
is a constant is called a Cassini oval [35]. Cassini ovals are oaf
shown in Figure 3(a), which shows a contour plotRf(x).

In contrast, for reflection, the locus of points whefe(x,)

is a constant is an ellipse. The lesson is that when the new
multipath is caused by scattering, it has highest power when
the person is near the TX or RX. But when the new path

is from reflection, it has highest power when the person is

anywhere in between the TX and RX. -0t

Y (normalized)
o
>
.
17
N
=
AN
(o]
N
]
AN
o
L ]

-1.0 -0.5 0.0 0.5 1.0
X (normalized)

D. Affected Multipath

In this section, we discuss models for the power in affect&d- 4i' dEXPi”trr‘:etﬂttﬁ' 5)363_ Vlariaft‘cg \tfxol fgeaSLé“t?ﬁ i?xa_b?‘Jksfoée’
multipath as a function of the person’s position. A multrpatgfr(Tg)'Z[ESSfuc at the RX(is located at (-1, 0) and the TXXs locate
component is affected when its path crosses near the person

at x,. For example, the component may diffract around the
person, increasing the path length, thus changing its pdrace approximately linear relationship with the ensemble mefin o
increasing its time delay. An example geometry is shown {Re variance ofR,5 [25]. Thus we can use measurements of
Figure 2, in which a person or object (with region of impacfariance ofR, in order to validate spatial models fét [P, ].
coarsely represented as a cylinder) will affect the mulipa Three measurement studies report the variance (or a related
shown if either the line from the TX to scatterer, or from thetatistic) of R;5 as a function ofx, [24], [25], [8]. In two
scatterer to RX, cross through the person. studies, measurements are conducted with RF sensors at body
As mentioned in Section II-C, when measuring RSS vafievel in indoor environments with many scatterers, in arceffi
ance, an important statistic is the total power in affectgfl4] and in a bookstore [25]. In these studies, the variafce

multipath, Rgp, and the “variation” (sum of absolute value of differences
P, = Z Vi |? (6) in a window of the time series) dR;p are shown in Figures
i€T, 4 and 5(a), respectively. Both results show highest chaimges

This total powerP, varies depending on the particular envithe areas nearest the TX and RX and next highest changes in

ronment (where scatterers are located). If we have a gtatistthe line between TX and RX. The third study performed a test

model for the locations of scatterers and the propagatitha building, but in an empty area, with RF sensors mounted

mechanism, we can derive a statistical model for. For on the ceiling, height 2.4 m [8]. This study found a different

example, in [25], we use two indoor propagation models, [3Zharacteristic, that “dynamic” (average absolute valu¢hef

and [36], which model scatterer locations as a Poissonaspafifference from the static mean) is highest in an oval ceuter

process across a plane, and model multipath as a singlesbolat the midpoint of the line between the two nodes, as shown

phenomena. We apply these models to derive expressionsifoFFigure 5(b). It was shown in [25] that when the scattering

the ensemble mean of total affected power (ETAP)EGP,]. plane is far separated from the RF sensor plane,AH&, ]

For the two cases where the mechanism of propagationsiyface becomes highest in the midpoint of the line between

either all scattering or all reflection, Figures 3(b) and)3(d X and RX, and falls with distance away from that point. Thus

show numerical results faP, for an example link [25]. the results of [8] can be explained using analysis of affécte
Compared to the power in new multipath, the spatial chanultipath.

acteristics of reflection and scattering are reverse forgoomw

affected multipath. For affected reflected multipath, toever IV. ALGORITHMS

is highest closest to the TX and RX, similar in shape to _.

the Cassini oval, compared to new multipath power, which G|v§n thgt mea§urements of the channel are CO”eCteq as

is highest in the line between the TX and RX. For aﬁectegiescr'b?d in Section I, and can bg_modelled as dgscnbed

scattered multipath, the power is highest near the line detw in Section ll, how should the positions of people in the

the TX and RX, compared to new scattered multipath, Whlcjpwronmder_lt ?he' estlr?atedv.v This is ttrt]r? |m;ere_r;ﬁe p;ci)blje_m
have highest power close to the TX and RX. Iscussed in this section. We present the algorithms sludie

in the literature, and provide a sample of the results obtiin

E. Measurement Verification

Since the theoretical models presented in the above sectiéh Fingerprint-based Methods
require simplifying assumptions, it is critical to valigahem  We describe in Section Il the absolute position dependence
via measurements. In this section, we present experimergatspective. From this perspective, localization is fdated
evidence that has appeared in the literature. as a fingerprint-matching problem [1], [18], [17], [10], [38
As we mentioned in Section 1I-C, we have shown thatsing a database of training measurements. During theeonlin
the ensemble mean of total affected power,FP,], has an phase, the current state is estimated by comparison with
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Y Coordinate

0
X Coordinate

Fig. 3.

(b)

(with n, = 3). TX and RX locations are shown &

Fig. 5.
(PL) slices, where MPL is the line between the TX and RX and M¥Iperpendicular to MPL at its midpoint, which is labelledQ)0[8].

Y Coordinate

Y Coordinate

-1

0
X Coordinate

0
X Coordinate

()

(a) Ps(x0) in dB relative to the maximum contour line; (b) and (c) ETAPdB relative to the maximum [25] for (b) scattering, and (djeetion

Dynamic of RSSI(B)

——MPL
PL(1m to MPL) | 18}
—— PL(2m to MPL)

PL(3m to MPL) | |

MvL

VL{O.75m to MVL)

—— VL(L.5mtoMVL)
< VL(2.25m to MVL) ||

Dynamic of RSS! (3B}

(b)

Algorithm Measurement Position
Dependence
Fingerprint-Matching [1], [17], [10] RSS Absolute
SVM [18], [38] RSS Absolute
Field Reconstruction [39] Narrowband Relative
Ultra-Narrowband [40], [41], [42],| Narrowband Relative
[43], [44]
MIMO Radar [45] Narrowband Relative
or RSS
Geometric UWB [20], [35] UuwB Relative
Probabilistic UWB [46], [47] UuwB Relative
Mapping [48], [49] UuwB Relative
Tomographic Imaging [50], [11], RSS Relative
[15], [13]
Compressed Sensing [51], [52] RSS Relative
[15]
Tracking from RSS [2], [13] RSS Relative
Motion Detection [16], [24] RSS n/a
Motion Detection [26] Polarization n/a
People Counting [9] RSS n/a
TABLE |

ALGORITHMS, MEASUREMENTS AND POSITIONDEPENDENCE

2 1

- 0 1 2 3 3 2 -1 0 1 2 3
Distance to midpoint (m) Distance to midpoint (m)

Measured statistics as a functionxof of (a) fading signal “variation” from [24], and (b) RSS “dymaéc” for vertical line (VL) and parallel line

This is extended in [17] to measure an RSS histogram on each
link for many possible positions of a person in a buildingaare
Then, in the online phase, the maximum likelihood estimate
(MLE) of the user’s position is returned. B-nearest neighbor
“center of mass” technique is used to achieve a median efror o
1.8 m. In [18], [38], the training data is used to train a suppo
vector machine (SVM). Then, during the classification stage
the SVM classifier chooses the cell (small square area) from
among all possible cells which is most likely to include the
person based on the current RSS measurements.

A challenge in fingerprint-based algorithms is to track mult
ple people simultaneously, since training requiremertieiase
exponentially with the number of people in the environment t
be located, and to date, tests have only been done to track one
person. Another challenge will be to self-correct the fragn
data over time, to account for the changes in RSS histograms
due to changes in the environment. For fingerprint-basde rea
time location service (RTLS) systems (locating radio tags)
accuracy has been shown to degrade by up to 20% thirty days
after training [53]. DFL systems are likely to be more sewnsit

the training measurements [1]. In [1], position estimates ato environmental changes than RTLS systems because they
found to be between 86% and 90% accurate. In [10], tware in fact measuring what an RTLS system would consider
distributions of RSS measurements for each link are foumdh environmental change, that is, the position of a moving
during training, one during motion in between the nodepgrson. Finally, estimation of a histogram requires sdvera
and one without any motion between the nodes. Whenngasurements, for example 26 consecutive RSS measurements
measurement is made during the online phase, a likelihoimd17], or 60 seconds in [1], while a person is standing in one
ratio test is done to determine which state was most likelpcation. In a real-time system, RSS data would need to be
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collected more quickly in order to track a person in motionmost DFL research), frequency-division multiplexing, onee
other orthogonal basis.

The challenge in application of MIMO radar techniques
to DFL in building environments is to account for cluttered

Estimation of the spatio-temporal EM wave field in amultipath channels. MIMO radar research generally comside
environment of interest is a possibility when narrowbanohnly the additional scattering caused by an object, that is,
measurements (of) are performed. If an object affects the7, is assumed to be empty. In remote sensing and airplane
spatio-temporal EM wave field, then its location and track caadar systems, this assumption is reasonable, but DFLmsgste
be seen in this estimate. Electromagnetic wave propagatmperate in a rich multipath environment in which an object
equations can be solved using the measurement of compdgsrupts or blocks other multipath. However, meeting this
baseband voltage around two concentric perimeters arowfdllenge is important to gain the ability to image static
the area of interest [39]. Then, the wave equations can teatures of an environment, which is a benefit of the MIMO
approximated using the conjoint cylindrical wave expansioradar framework.
Phase-synchronous measurement$ adre made by moving
a single antenna to each measurement position. D. UWB Tracking and Data Association

A similar approach [40], [41], [42], [43] is called “ultra- In contrast to narrowband measurements, UWB impulse
narrowband (UNB) radar”, in contrast to UWB, because gtsponse measurements allow separation of multipath elsang
its transmission and reception of a CW signal rather thanag a function of time delay. Chang and Sahai explored DFL
wideband signal. UNB uses phase-coherent measurementasitg a network of single or multiple UWB receivers in
locations surrounding a target and Fourier-based tombgrapaddition to single or multiple UWB transmitters [20]. The
reconstruction to image scattering as a function of spage. Fauthors assume that the changes in the CIR are only those from
example, in [43], measurements are made by placing an objretv multipath, and consider cases whenis either inside,
on a rotating table to simulate what would happen if sensass outside, of the hull of the sensor network. The Cramér-Ra
were placed every two degrees around the object. In thedewer bound (CRLB) is derived and asymptotics presented
a few phase-synchronous transceivers can be used to créatehe case when nodes are uniformly spaced on a circle of
a “virtual tomographic array” which can reposition the phasradius R centered at the origin. The CRLB work assumes one
center of the transmitted signal to points in the convex hulbject in the field, and that the channel impulse response can
of the transceivers [44] which then reduce the need for phase used to pick out the delay of the impulse corresponding to
synchronous transceivers. that sole object. The estimated delay is unbiased and GauJssi

The termmicrowave subsurface tomograpisyused gener- and based on the single-bounce model. They showed that for
ally to refer to methods which image the radar cross-section transmitters and\/ receivers, the Fisher information for
(RCS) of objects behind or below a surface [54], [55] usinthe object location wa®) (7). and that for the far-field
phase-coherent measurements of the EM wave field. Thesse, wa®) (||x,[|?/R?). Chang and Sahai presented a “semi-
methods model the field as described by Green’s function, tleear” object localization algorithm, which is sub-op#irbut
electric field measured due to a line current induced on thas performance which behaves similarly to the lower bound
scattering object [54], [28], [56]. Sensor measurements cas a function ofV andx,. For the case of multiple people, the
be expressed as a Fourier transform of the field of interesithors discuss the data association problem, in which each
[54], [55]. However, it is assumed that sensors form atelay must be associated with exactly one of the people.
antenna array, or equivalently, sensors are phase-symmligso ~ Work by Paolini et. al. [35] further investigates the capabi
Measurement experiments typically use a single transmitiées of the system described in [20]. Importantly, the aush
and receiver automatically moved between antenna locatiatescribe the geometry of the area of detection of a UWB link
[55]. based on amplitude and time delay. When the new multipath
scattered powef’;(x,) falls below a threshold, the system
can no longer effectively identify its time delay. Thxs must
C. MIMO Radar be within a Cassini oval with fock, andx,., as described in

Multiple transmit waveforms, transmit antennas, and rexeiSection IlI-C, to be detectable. Further, the temporalltggEm
antennas can be used in combination to improve radar detéits of the impulse response estimate prevent a scatfener
tion and imaging performance. Because these radar methbdig detected if it is very close to the line of sight pathugh
are similar to MIMO communications systems, the area there is a narrow ellipse with foci at the TX and RX location
termedMIMO radar. MIMO radar with non-coherent receiversin which resolution prevents TOA estimation.
and widely separated antennas enables a type of spatiat diveWork in [46] advanced the field by considering that each
sity that is useful for DFL. The backscatter from a complegerson introduces not just one new multipath component, but
object (an object which scatters from more than one point)several, in a cluster of time delays with the single-bounce
a function of angle, so multiple receivers at different a&sgl path being the shortest. Second, it is not trivial to selbet t
lead to more reliable detection [45]. Transmitters in a MIM®@ew multipath impulse from the measured CIR, which prior
radar system use orthogonal waveforms so that they cantbahe person’s entry already contained many paths. Reiggian
separated at the receivers. These orthogonal waveforms reayal. [46] compared ‘hard’ thresholding and ‘soft’ probish
result from time-division multiplexing (as is typically @d in tic quantification in multinode UWB tracking systems. They

B. EM Wave Field Reconstruction
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also showed a method to adaptively quantify the variance &f Imaging

a distance estimate. This ranging data from multiple nOdeSOne approach to DFL is to estimate an image of the change

i.s used for muiti-target tracking.using an ext_ended Kalmam environment. This image can then be used to infer the
fllter_ (EK_F) bapk. They show, using CIRs obta|.ned from rays, tion and activity within the environment, either by a huma
tracing simulations, that the location accuracy improvégmv OEerator or by an image processing algorithm

using .SOft _mfc_)r_matlon and variance estimates. The_ EKF ban Image estimation from measurements along different dpatia
benefits 5|gn|f_|can_tly from_ r_edtm_dancy — more f||ters_ thamters through a medium is generally referred to as tomo-
scalterers, which is beneficial “since tracking more d.@angraphic image reconstruction. For RF sensors, this is @rme
combinations hglps ?[0 recover all the u§eful cluster alsia radio tomographic imaging (RTI) [50], [11], [15], [13]. A
the dense received impulse responses” [46]. etwork of N static sensors measures up (t@) “slices”

. The work of R)_/dstrbm et. al. shows thg Importance, in mu hrough the medium. Let the measurements on all links be
tiple target tracking, of properly formulating data assdion vectory — [y(1),...,y(L)]", where L is the number of

[47]. In_ this case, data association is the pro‘?'em of agsn ﬂ]easured links. Then, let the vector of voxel values be

each distance megsurement to one ob_j_ect being trapkeqlewxll’: iz(1),...,z(P)]", where P is the number of voxels.

Char!g and Sahai presented an |ntU|t|v_er_ appealing SCOIR linear model fory may be written as,

function [20] for purposes of data association, the methiod o

[47] is based on a weighted least-squares (WLS) cost fumctio y=Ax+n

and a Lagrangian relaxation technique for its optimization

In general, the complexity of the data association problewhereA is anL x P matrix, andn is additive noise. RTI is

is exponential in the number of measurements. Howevéie estimation of image from measurementg.

impossible assignments can be quickly pruned [47]. FurtherIn [11], y is the change iR,z from the historical value

the Lagrangian relaxation algorithm is based on an auctiéf each link, and it is modelled as linear combination of

algorithm which can be solved in polynomial time, thus th#he x, the attenuation in dB caused by each voxel in the

assignment problem can be framed in computationally féasignvironment. This model is called shadowing-based RT&esin

manner. Simulations show that the data association appro&ite measurements effectively measure shadowing losshand t

outperforms the score function of [20]. image estimates are shown to accurately display the latatio
Finally, Rydstrom et. al. note that the accuracy of passi@e or two people in the deployment area [11]. The linear

localization approaches the accuracy possible from actitRodel for shadowing loss is based on correlated shadowing

localization, assuming the same system and device paresnet&odels [57], [50] and earlier linear partition-loss mod@&8].

That is, placing an UWB tag on a person or object allows for Another modality of RTI is termed variance-based RTI, in

better localization, compared to localization of the devicee Which the windowed variance dt;5 on each link is used as

person or object, but not by a large margin. While use of a tdie measurement, andx represents a quantification of the
provides identification in addition to localization, we sitd Mmotion within each voxel [13]. This linear model for varianc

not ignore the capabilities of device-free localizatiorhen has basis in the results described in Section I11-D, in whiieh
identification or tagging is not needed or possible. presence of motion at, causes a certain quantity of multipath

Note the above UWB-based methods do not assume spgwer to be affected, and the measured varianc&0f on
chronization. However, they do assume known node positioadink is approximately linearly related to the total affedt
and that a LOS path exists. Without synchronization, thetimpower.
of-arrival of the LOS path is used to determine the excess tim Experimental tests reported in [13] show that varianceebas
delays corresponding to the scatterers. A challenge for DIRTI can image the motion going on inside a house, when
based on UWB will be to be robust to the case when the LG8nsors are placed only outside of its external walls, asisho
TOA cannot be obtained. in Figure 6(a). In the case of imaging motion through buidin

walls, we can have the problem that the multipath which trave
i around the building can be stronger than the power in paths
E. Mapping which travelled through the building. Analytical resulits[iL3]

An advantage of UWB measurements is that they contadnggest that the change in variance can be detected even when
information about the static environment, in addition te inthe power in the affected multipath is 10 dB less than the
formation about the mobile people and objects. Simulatiomultipath which do not go through the building.
based work in [48] presents the capabilities of an UWB radar However, tomography is generally an ill-posed problem, and
to simultaneously track its own movement over time, anegularization is required to reduce the noise in the image
estimate a map of the walls of a room, based on detdys and to achieve “smoothness” or other intuitively desireabl
from measured CIRs measured over timeAn algorithm image properties. In [12], three methods of regularization
which accepts unlabeled delays must first decide from whidlikanov, truncated singular value decomposition (TSVDY a
wall (or which combinations of walls) that path reflectedtotal variation (TV) are applied. Tikanov regularizati@ioth
Then, it may estimate the dimensions and the angles at ttemputationally simple, robust to noise and model mismatch
corners of the room. Such mapping has been demonstrati@ége estimation using Tikanov regularization is a linear
using a set of static UWB TXs and a single mobile UWB RXransform of datgy, and thus is simply a matrix multiplication.
in a cluttered industrial environment [49]. Tikanov and TV regularization are compared in Figure 6(b)
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Fig. 6. Image estimates for (a) through-building variahesed RTI when a moving person is located at ¥1¢13], and mean-based RTI with (b) Tikanov
and (c) total variation regularization, with two people fretarea [12].

and (c). TV regularization can produce sharp images witt-wemultiple stationary links across a hallway. Using the clesnig
defined edges, but require numerical optimization, which &ach link RSS, crossing is inferred, which is used to esémat
more computationally intensive than Tikanov regular@ati the track and velocity of a person walking through the haflwa
Image estimates can be used as an input for tracking
G. Compressed Sensing algorithms. For example, the maximum of an image is a

estimated using a constraingdminimization [52]. Secondly,

the image can be obtained using the LASSO technique [5
and thirdly, using orthogonal matching pursuit (OMP) [60]
[15]. The latter approaches find image estimatby solving,

erson inside of a home with an average error of 0.5 and 1 m
'two experiments.
Zhang et. al. present an algorithm which directly estimates
a human’s track from link measurements [8]. For each link
% = argmin || Ax — y||2 + Al|x|1, (7) Wwhich measures RSS variation above a threshold, the area in
x which the person is likely to be located is approximated as
where )\ is a tunable parameter, arfid ||; and|| - ||, indicate @ rectangle, centered at the midpoint of the line between TX
vectorl, andl, norm, respectively. One benefit of the approac@nd RX. Then a “best-cover algorithm” estimates the pesson’
is that image estimates have sharp contrast, with very fewpPosition, which is input into a tracking filter Experimentsosy
pixels containing non-zero values. Secondly, imaging iregu tracking error as low as 1 m. This work was extended in [14]
fewer links, and thus can require less probing energy @ use a clustering algorithm for multi-object tracking.
be expended. Even when only 25% of links are measured,
the dgtectio_n and imaging performa}n.ce. is .nearly the sameyotion Density Estimation
as with all links [51]. Finally, the minimization of (7) can ,
be distributed on the sensors, using a projection on ConveXSomeUmes, only th_e presence of a person, or_the_ number
sets (POCS) method, which converges quickly [15]. Suéﬁ_ people in an area, is of |mporta_nce for an application. Fpr
distributed algorithms will be important for the deploymenthIS PUrpoSE, We can use RSS fading measurement§ ona link.
of large-scale DFL systems, so that measured data does Iﬂ?kgtsukg, Iwatani, and Katto [9] experimentally derivestr
need to be collected at a central location for processing. '€ /ationships between the RSS mean and variance (or LQI) and
The challenge in application of CS to DFL is to provid(g; ”“”?ber of people_ walk|_ng or Sitting _between two nodes,
sparse images even with the high noise level contained in K usein (_:rowd_ denglty estimation. 'I_'helr results show that
tomographic measurements. Currently, the number of pixé'f%ear relationship exists for a 4.5 m link between the numbe

should be set low in order to improve tracking performanég people (up to nine) and both the fading variance and change
with experimental data [51] In mean. For a longer 8.0 m link, the linear relationship kold

even up to 20 people, although there are saturation effacts i
) some experiments.

H. Tracking from RSS A similar experimental setup in [16] is used to test whether

A step beyond localization is trackinge., the estimation or not a person is walking from one node to the other.
of both position and velocity (and perhaps higher ordéixperiments are conducted in a variety of different indoat a
derivatives of position) over a period of time. The first DFloutdoor environments. The authors show that the diffeence
system using RSS measurements was proposed by Woydtween subsequei; s values have a consistent distribution
Puccinneli, and Haenggi, who coined the term “sensorleissboth cases (motion or no motion), regardless of environ-
sensing” to describe cases when the radio itself is the sens@ent. This consistency can enable more robust detection of
[2]. One sensorless sensor system presented measures RS8ation.
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V. RESEARCHDIRECTIONS location errors lower than 1 meter using only measurements

Considerable future work exists if DFL is to be deploye@ Signal strength; the number of moving people, up to 20, can
for the applications mentioned in the Introduction. We riemt € €stimated from a single link; the movements of multiple
a few open problems here. First, are single-bounce modBRPPle can be tracked using UWB measurements, or imaged

acceptable for DFL in indoor environments? They may
too simplistic in complicated environments. Future worksinu
test multiple-bounce models to determine if they can previd
increased levels of accuracy. Electromagnetic charatiesiof
the objects strongly affect the propagation in the envirenin
Can more complicated electromagnetic models be applie[g]
without prior knowledge of environmental characteri?ics

(1]

Second, tracking and adaptation are important topics.—ProEﬂ
)

agation models may be adapted based on past measureme
in order to learn the geometric paths of multipath compament
and their amplitudes. In addition, multi-target trackingish  [4]
be applied to the cases when measurements are narrowban

gésing RF tomography.
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