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Recent advances in the ‘omics’ technologies, scientific

computing and mathematical modeling of biological processes

have started to fundamentally impact the way we approach

drug discovery. Recent years have witnessed the development

of genome-scale functional screens, large collections of

reagents, protein microarrays, databases and algorithms for

data and text mining. Taken together, they enable the

unprecedented descriptions of complex biological systems,

which are testable by mathematical modeling and simulation.

While the methods and tools are advancing, it is their iterative

and combinatorial application that defines the systems biology

approach.
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Introduction
Drug discovery is a complex undertaking facing many
challenges [1!], not the least of which is a high attrition
rate as many promising candidates prove ineffective or
toxic in the clinic owing to a poor understanding of the
diseases, and thus the biological systems, they target.
Therefore, it is broadly agreed that to increase the pro-
ductivity of drug discovery one needs a far deeper under-
standing of the molecular mechanisms of diseases, taking
into account the full biological context of the drug target
and moving beyond individual genes and proteins [2–5].
Systems biology, and especially the elucidation and

dynamic analysis of cellular signaling pathways, provides
a new grammar [2], or framework, for drug discovery.

Systems biology is the ‘systematic’ interrogation of the
biological processes within the complex, physiological
milieu in which they function. Insight into the combined
behavior of these many, diverse, interacting components
is achieved through the integration of experimental,
mathematical and computational sciences in an iterative
approach (Figure 1). Through this contextual understand-
ing of the molecular mechanisms of disease, a systems
approach has the potential to further facilitate the iden-
tification and validation of the therapeutic modulation of
regulatory and metabolic networks and hence help iden-
tify targets and biomarkers, as well as ‘off-target’ and side
effects of drug candidates [3–5].

Here, we focus on selected recent advances in the dis-
ciplines of systems biology (Box 1) that are relevant to
drug discovery.

Experimental methods
Experimental approaches in systems biology are gener-
ally aimed at identifying the components of a system and
their interactions, and monitoring the effect of perturba-
tions on these components. Recent advances in proteo-
mics, genomics and metabolomics [6,7] and their
integration [8] are radically transforming the drug dis-
covery process. For instance, the identification of protein
network components and the characterization of their
post-translational modifications has recently reached
new levels of scale and complexity as exemplified by
the analysis of the insulin receptor substrate 1 serine/
threonine phosphorylation sites [9] and the interactome
analysis of the human TNFa/NFkB network members
[10], and the ErbB/EGF receptors [11,12]. This has been
enabled not only by the rapidly maturing MS-based
proteomics methods [9–11] but also by protein arrays
[12], which have much progressed over the past few years
[13,14,15!,16]. Although protein forward arrays have been
successfully applied in a number of settings [12–14,15!],
including to the profiling receptor tyrosine kinase activa-
tion [14], reverse protein arrays are arguably the most
broadly applicable technology. They are based on the
principle that complex protein mixtures (such as a cell
lysates) are spotted in an array format and probed with
selected antibodies in a multiplexed manner. Reverse
arrays have been used to analyze cell lines for potential
biomarkers [17], profile molecular pathways in cells
excised from cancer tissue by laser capture micro-dissec-
tion [15!,18,19], and detect auto-antibodies in serum
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[16,20!], which opens new opportunities for their applica-
tion to screening in a clinical setting [20!]. Furthermore,
reverse arrays are particularly well suited to monitor
dynamic network responses (Figure 2) to compound-
induced perturbations. This compound-based systems
response profiling [5], or structure pathway activity rela-
tionship (Figure 3) has the potential to provide early
indications about possible off-target and toxic effects of
drug candidates. The availability of highly specific anti-
bodies is, however, a prerequisite for reverse arrays.
Whereas a reasonable fraction of commercially available
antibodies appears to be suitable following validation, the
generalization of reverse arrays will depend on the gen-
eration of broad collections of high-quality antibodies
[15!]. For instance, the Human Protein Atlas Initiative
(http://www.proteinatlas.org), part of the Human Anti-
body Initiative of the Human Proteome Organization
(HUPO), has started a systematic approach to the

generation and validation of antibodies [21,22]. It is,
however, noteworthy that molecular recognition is not
limited to immunoglobulin domains, and proteomics may
soon benefit from newly engineered protein-binding
domains such as designed ankyrin-repeat proteins (DAR-
Pins) [23]. While protein arrays provide data for the
average content of a sample (e.g., cell lysates), recent
developments in flow cytometry-based single-cell proteo-
mics can further complement these technologies in that a
limited number of signaling events and surface markers
can be measured simultaneously in the same cell and
hence enable discrimination between various cell popu-
lations in rare samples and biopsies [24].

Beyond monitoring the effect of perturbations on pre-
defined network components, systems biology relies on
the systematic analysis of gene function in signaling
pathways and cellular processes. This has recently been
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Figure 1

Process diagram of systems biology.
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made possible by the development of cell-based genome-
scale approaches, where over 20 000 individual genes can
be interrogated in highly multiplexed experiment. These
technologies aim to quantify the effects of either the
overexpression of individual proteins using full length
cDNAs [25,26] (Figure 4), or the inhibition of gene
expression by RNAi molecules [27–29] (Figure 4). They
are enabled by the creation of genome-scale collections of
reagents [25,30,31!!] and their optimization through com-
putational approaches [32]. These genome-scale screens
produce systems-level activity data for each gene, provid-
ing rich databases that can be mined to predict the
physiological and biochemical function of individual pro-
teins as well as the regulatory networks and pathways
underpinning distinct phenotypes. In one early set of
experiments performed in mammalian cells, data from
several cDNA overexpression screens were used to pre-
dict the biochemical activity of a gene of previously
unknown function [25]. In a later example, this approach
was applied to identify genes and pathways capable of
inducing nuclear TORC accumulation [26]. The gen-
ome-scale RNAi-based screen was developed in

Drosophila melanogaster cell cultures and used to exam-
ine the role of 21 000 genes in cell growth [33]. This
approach has since been applied to a number of signal
transduction and cell-based processes in D. melanogaster
and mammalian cell systems [34–36] as well as in vivo
using the nematode Caenorhabditis elegans [34,37].
Furthermore, similar approaches have recently been used
to globally assess the role of non-coding RNAs on path-
way function in mammalian cells [38]. Although high-
throughput functional systems level analysis provides
quantitative data about gene activity and functional inter-
actions, it expected that new technologies and areas of
investigation, such as microRNA biology [39,40], will
emerge and further complement our understanding of
biological systems.

Data mining and pathway informatics
The evolution of these genomic and proteomic methods
has necessitated the development of new algorithms to
analyze the resulting data in the context of drug discovery
[41]. In particular, integrating data from different experi-
ments is a challenge that is being successfully addressed.
For example, a Bayesian inference of sub-networks from a
set of 300 microarray experiments has been used to
uncover a number of pathways [42], and methods have
been developed to overlay gene expression data with
genome-wide transcription factor location data obtained
by ChIP-on-Chip experiments [43], leading to the iden-
tification of previously unknown regulatory networks
using data obtained from rapamycin treated S. cerevisiae
[43]. Besides methods that infer pathways and regulatory
networks, there is a growing number (>150) of databases
[3] — of which KEGG [44] (http://www.genome.jp/keg/
kegg2.html) is probably the best known — that collect
such information from scientific publications using litera-
ture mining and manual curation. Such databases can be
used to overlay functional and pathway information onto
rank-ordered gene lists derived from differential expres-
sion experiments [45!!]. This approach— called gene set
enrichment analysis (GSEA) — removes the undue bias
of selecting individual up-regulated genes by focusing on
entire sets of genes [45!!]. GSEA led to the discovery of
several other disease-relevant pathways including in can-
cer [46], Huntington’s disease [47] and myoblast differ-
entiation [48], with potential implication for drug and
biomarker discovery. By further combining signature-
based predictions across several pathways, one can identify
coordinated patterns of pathway deregulations. Such pat-
terns were shown to distinguish specific cancers and tumor
subtypes [49!] and to reflect the biology and outcome of
specific cancers. Furthermore, in cell lines, these patterns
predict their sensitivity to therapeutic agents [49!] and may
help reposition or extend the application of existing drugs.

Literature mining
The scientific literature (which includes patents) is where
the key knowledge and facts relevant to systems biology
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Box 1 Systems biology is interdisciplinary.

Experimental sciences: Direct systemic interrogation. Large scale
genomics, proteomics and metabolite measurements are used to
monitor gene translation, protein expression, signaling events and
metabolite fluxes induced by the systematic perturbation of a
biological system by biological, genetic or chemical factors.
Furthermore, large-scale experimental methods are used to identify
the nodes of signaling networks, through the comprehensive
identification of interaction partners and protein modifications (e.g.,
phosphorylations). The comparison of samples from a disease state
with those of matched normal donors and the creation of animal
models of disease (through the knock-out of selected genes and/or
the introduction of specific mutations) represents a well established
approach to study a system through the analysis of naturally
occurring perturbations.
Data analysis and pathway informatics: Analysis and under-
standing of data in the context of larger systems. Statistical and
computational methods are used to analyze and interpret large
experimental data sets with the aim to identify molecular species
significantly affected by the experimental conditions (perturbations).
Databases and software tools are used to store, manage and
visualize expression data in the context of cellular network and
pathway information. This information is assembled from literature by
hand or using mining techniques.
Literature mining: Discovery, extraction and synthesis of current
knowledge. Entity recognition (identifying substances), information
extraction (identifying relationships between biological entities) and
natural language processing (combination of syntax and semantics
analysis to extract relationships from complex sentences) are used
to extract known facts such as protein–protein interactions, protein
phosphorylation, regulatory relationships between molecular entities
and genotype–phenotype relationships from the scientific literature.
Text mining enables the inference of relationships between extracted
entities and facts that are not formally enunciated in a sentence.
Mathematical modeling: Extrapolation and prediction to test
understanding. Mathematical modeling and simulation is used to
identify assumptions (iterating with literature mining) and gaps in
understanding (iterating with additional analysis or data), and to
generate new and experimentally verifiable hypotheses, thereby
closing the iteration loop.
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are stored and reported [50!]. This resource is, however,
growing and diversifying at a staggering pace. As a con-
sequence, computational tools designed to efficiently
extract entities and their relationships (biological facts)
will play a pivotal role in systems biology [51,52!]. Indeed,
model building starts with the identification of the com-
ponents of a system and how they interact (Figure 1), facts
that are then formalized in a diagram from which a
mathematical model will be derived [53]. The best
approach to identify protein and gene entities in text is
to use a carefully curated list of synonyms [54] and
recently developed methods for synonym extraction
[55] and terminology disambiguation [56–58]. The con-
secutive extraction of the interactions between these

entities relies on entity co-occurrence analysis [59–61]
and natural language processing [62–67]. These methods
have been successfully applied to the reconstruction of
networks [67,68!] relevant to drug discovery and to the
analysis of biological data [68!,69!] and bioinformatics
databases [70,71!] in the context of literature-derived
information and networks. Furthermore, combining text
mining and statistical approaches enables scientists to
extract significant information about research trends,
emerging fields from patents [72], and infer (potential)
new pathway/target-disease relationships from the scien-
tific literature [67,73]. Recent advances in high-perfor-
mance GRID-based text mining [74] of full text scientific
articles [75] opens new doors for the discovery of scientific
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Figure 2

Sample applications of reverse protein arrays. (a) Monitoring phosphorylation events: Jurkat cells were treated with OKT3 and a-CD28
antibodies for the indicated period (x-axis), lysed and analyzed on reverse protein arrays using an a-ERK (blue circles) and an a-phospho-ERK
antibody (red bars). This demonstrates that transient and rapid phosphorylation events can be measured using reverse protein arrays.
(b) Monitoring other signaling events: untreated and LiCl-treated Jurkat cells were incubated for 16 h with the indicated concentrations of LiCl,
which mimics Wnt pathway/b-catenin signaling by inhibiting GSK3b. Following lysis of the cells, the b-catenin levels were assessed using a
specific antibody. The inhibition of GSK3b-mediated phosphorylation of b-catenin blocks its degradation, leading to the observed accumulation
of b-catenin. (c,d) Monitoring the downstream effect of cell signaling inhibitors. Starved A431 cells were stimulated with insulin and co-treated
with increasing concentrations of an inhibitor of the IGF1- receptor tyrosine kinase. After 30 min of treatment, the cells were lysed and the
phosphorylation levels of Akt and GSK3b were monitored with antibodies specific for (c) Ser473-Phospho-Akt and (d) Ser9-phospho-GSK3b.
By plotting the percent inhibition versus inhibitor concentration, one can derive IC50-like data from such experiments. RFI is the relative
fluorescence intensity.
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facts and interpretations so fundamental to systems biol-
ogy. Finally, integrating text with biological, chemical
and clinical data through text mining and entity-asso-
ciated rules will enable systems biologists to quickly
navigate between scientific data domains that are cur-
rently kept in disconnected databases [76].

Mathematical modeling
The advances in experimental approaches and in data and
literature mining have also accelerated progress in the
development and application of modeling approaches
[53,77]. The most widely applied modeling method is
the deterministic biochemical reaction description. The
formalism, analysis and application that has been reviewed
extensively [78!–80!] has matured to the extent that an

annotation standard has begun to emerge [50!,81]. Emer-
ging graphical ontology standards [82,83] will greatly aid in
harmonizing the academic and commercial software tools
that are available. In drug discovery, thismodelingmethod
has been successfully applied in pharmacokinetics/phar-
macodynamics and dose-response modeling [84,85], and
wider application is anticipated (http://www.fda.gov/oc/
initiatives/criticalpath/stanski/stanski.html).

One drawback of the deterministic reaction approach is
its lack of scalability. Genomic and proteomic approaches
are aimed at identifying signaling networks of tens or
more of molecules. The size, range of reaction parameters
over many orders of magnitude, and extent of unknowns
make thesemodels intractable to computational methods.
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Figure 3

Possible application of reverse protein arrays in systems biology: structure pathway activity relationship (SPAR). (a) Selected cell lines are treated
with appropriate combinations of activating stimuli and treated with either (b) si/shRNA (c) or test compounds. Treated cells are sampled in a
time-dependent manner and lysed before being spotted on reverse protein arrays. The arrays are (d) incubated with pre-defined antibodies and
(e) measurements are taken. The systems response profiles (SRPs) are deduced from (f) the fluorescence intensities and (g) stored in a database
along with pathway information. The treatment with siRNAs allows identification of SRPs caused by well-targeted network perturbations, which
can serve as the reference set against which SRPs caused by drug candidates can be compared. (h) Thereby off-target effects can be deduced.
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New methods such as combinatorial reaction generation
[86], and linear programming [87,88] address this need by
providing automated methods for handling the complex-
ity of large chemical reaction networks.

Other methods are addressing the more fundamental
issue of the limitation of the deterministic approximation,
itself. Stochastic representations account for the effects
of small populations [89]. Rule-based computational
approaches move completely away from a deterministic
description [90–92]. These methods provide a molecule-
centric description and can therefore be a natural bridge
between data-driven inference and predictive models
[93], as are functional inference methods [94]. These
methods are highly scalable and easy to simulate;
however, it is an open question as to how well they will
be able to address questions involving complex non-
linear dynamics.

Finally, there are many systems biology models that do
not resemble reaction networks (for a range of examples
visit http://www.cellml.org). In drug development, the
most successful of these models are cardiac electrophy-
siology (EP) models that have been applied to safety
assessment [95] and, most recently, to provide mechan-
istic rationale supporting the January 2006 US FDA
approval of ranolazine for chronic angina [96] (http://
www.fda.gov/bbs/topics/news/2006/NEW01306.html).

Conclusions
Although the methods and tools are advancing within
each discipline, it is their iterative, combinatorial applica-
tion that defines the systems biology approach. We
believe that the discovery and understanding of complex
disease mechanisms and therapeutic modalities will
increasingly require this approach. This will have a pro-
found impact on the systematic creation of large
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Figure 4

Large-scale genetic screens. Large curated collections of gene-specific cDNAs and RNAi enable highly multiplexed and systematic gain and
loss of function screens. The diagram outlines a hypothetical signal transduction pathway, initiated by a ligand-dependent membrane bound
receptor, which after activation by a ligand leads to the activation of a specific signal transduction pathway. This pathway culminates in a
downstream event such as transcriptional induction, which can be monitored directly or, as most often used in high-throughout genetic screens,
via an enzymatic or fluorescent reporter gene. (a) Gain of function screens are performed by selectively over-expressing a critical pathway
component (grey circles) and are expected to drive the equilibrium of a pathway forward, thus activating the reporter. Conversely, (b) loss of
function screens are based on the elimination of a critical component (X) with an RNAi reagent that will prevent the activation of the pathway
by a stimulus and thus the reporter gene. The phenotypic response, such as the nuclear transport of regulatory molecules, can be quantified
using (c) a microscopy-based method. In this experiment, the effects of over 7000 individual genes on the nuclear import of the TORC1
CREB co-activator were quantified. This allowed the identification of a variety of genes and pathways capable of inducing TORC1 translocation
and CREB activation [21].
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collections of reagents (such as antibodies, RNAi and
cDNA), detection methods and laboratory technology,
computer science and organizational design. Indeed, a
more widespread collaboration between mathematicians,
computer scientists, physicians and experimental scien-
tists will probably improve drug discovery in the next
decade. This will certainly impact research organizations
and the skills needed in research teams, and as a con-
sequence calls for a broader scientific education of drug
discovery scientists, bridging the classical disciplines of
biology, mathematics, chemistry and medicine in an
unprecedented manner. In these ways, systems biology
promises to impact drug discovery significantly and
improve the success rate of discovering crucial medicines.
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