
Using Learning Automata

for Tuning Fuzzy Membership Functions

 in Learning Driver Preferences

Narges Afshordi Mohammad Reza Meybodi

AmirKabir University of Technology

{afshordi@cic.aut.ac.ir, mmeybodi@aut.ac.ir}

Abstract-With the growth of car navigation systems

technology come a variety of enhancements aiming to increase

user comfort and satisfaction. One such application is the

appearance of methods for learning a driver’s preferences in

making a choice between several routes. A driver may know

his/her basic and most important factors in making such a

decision, but may have these factors weighing in differently.

Hence, machine learning methods can be applied to model the

driver’s preferences, thus predicting the result of the decision

process. This paper proposes a new method which combines a

fuzzy expert system approach with learning automata.

I. INTRODUCTION

Car navigation systems have made great progress in the

recent years, making route planning faster and easier. These

systems are normally designed to find the optimum route

between a given source and destination. Often, the optimum

route is either the route with the shortest distance or the

shortest time, meaning only one parameter such as distance is

taken in as a deciding factor. This can be somewhat limiting,

as the driver may want to prefer a route that has less traffic to

one that is longer in distance. A survey [1] carried out in

London, Paris and Munich showed that users find a system

that chooses a route making a tradeoff between route time and

route distance just as appealing as one that would choose only

based on route time, if not more desirable.

Due to this, more research has been channeled towards

introducing different factors into the process, leading to multi-

objective route planning. Another step forward and we are

able to interact with each user as an individual and learn

his/her preferences. To do this, we must be able to apply a

learning method that would adaptively keep track of the user’s

choices, and deductively be able to make choices similar to

those of the user in future route selections.

A. Literature review

Different methods of modeling the user’s behaviour have

been proposed. Rogers et al [2, 3] introduced a method that

comprises of a simple perceptronic model. For each given

source and destination, the user is given several routes. A cost,

which is the weighted sum of its attributes, is assigned to each

route. The system tries to find the best weights. A user model

consists of the weights’ vector consistent with the user.

Fuzzy logic methods have been greatly used in route

selection. Teodorovic and Kikuchi were the first to propose an

adaptive routing algorithm for car navigation systems [4].

They inspected the user’s behavior when choosing between

two possible routes. Further improvements on the method

were proposed in [5] and [6]. Vythoulkas then proposed a

method for describing the choice between using car or train

for a specified route [7]. Henn also constructed a Fuzzy

version of a deterministic choice model which could be used

for route choice [8]. Ridwan proposes a method which makes

use of the user’s route knowledge in choosing routes [9].

An important work was contributed by Pang et al [10] in

their Fuzzy-Neural approach to solving this problem. Their

system initially asked the user to indicate the importance of

different parameters. From this information a set of fuzzy

rules is made, which is implemented by using a fuzzy neural

network. This network takes the real values of the different

parameters, fuzzifies them, applies the rules, and assigns a

score to the route as the output. The network is tested against

user choices. If the system’s choice differs from that of the

user, the weights are recalculated. The user model in this

method is the weights for the neural network connections.

On the other hand, methods have been proposed for tuning

fuzzy membership functions in fuzzy logic controllers. Berenji

and Khedkar [11] proposed the GARIC structure which uses a

fuzzy-neural network to implement a fuzzy rule base. It also

makes use of another neural network serving as an internal

critic in the task of tuning the membership functions. This

internal critic enables the system to use reinforcement learning

methods as a means for reducing the controller’s error.

B. Learning Automata Approach

This paper proposes a new method for learning a driver’s

preferences in making a choice between several available

routes. It uses a fuzzy expert system approach, linked together

with learning automata. Fig. 1 shows the general structure of

our system. The proposed system is made of three major

elements. The first deals with the map and finding routes

between a given source and destination. The second element is

a fuzzy expert system and the final part consists of learning

automata, introduced to tune the membership functions of the

fuzzy variables, and to enhance the scoring precision of the

fuzzy expert system. The learning automata can be considered

as embedded in the fuzzy expert system because their

functionality is closely interlocked. Feedback from the

environment causes changes in the learning automata, which

in turn results in changes in the membership functions.

The new method proposed in this paper is different as it

makes use of reinforcement learning methods to deal with an

environment that is not always transparent and clear. Such

methods had not been used for adaptive routing prior to this.

Furthermore, many of the previous endeavors using fuzzy

reasoning focused on being able to describe and model user

behavior, rather than finding a way to predict it. They were

also less intent on exploring the different parameters that may

be involved in the process of making the decision. The new

system also shows flexibility as it can build a new and

individualized rule base for each user, in contrast with more

rigid and fixed rule bases that are usually used.

Implementation results show that the proposed method

shows better prediction ability and less error when dealing

with new situations. The rest of the paper is as follows, section

2 will deal with search methods, and section 3 with the fuzzy

expert system. Then section 4 will explain the mechanism of

the learning automata. The results are discussed in section 5,

and concluding notes are mentioned in section 6.

Fig. 1. General structure of the system

II. SEARCH MODULE

Our system is designed and implemented on the city of

Tehran. The city map is first vectorized, and is then stored in

the form of a directed graph, with each edge representing a

strip of road between two junctions, and each node

representing a junction. As Tehran is a relatively large city,

the graph in question is also quite big, consisting of more than

28,000 nodes. This graph is used for searching. Each edge has

several attributes associated with it. One of these is the road

type which shows whether the edge is on a highway, a main

road, or a minor road.

The source of a trip may be set to be the place the car is in at

that moment, meaning it is discovered through the use of the

map matching module of the car navigation system. It may

also be entered by the user, along with the destination. There

are many algorithms for finding the k-shortest routes in a

graph [12]. In this system a generalized version of the Dijkstra

algorithm [13] is used to find several routes between the

source and destination. This algorithm first uses Dijkstra to

find one route. Then all edges on that route are given a

relatively high cost, so as prevent the second route from

passing through them again, unless absolutely necessary. The

resulting routes will be given to the fuzzy expert system.

III. FUZZY EXPERT SYSTEM

The second element is a fuzzy expert system that gives each

route a score. These systems have been accepted as efficient

decision support systems. But first, as with any multi-

objective optimization process, the first step is specifying the

different parameters. Previous methods have used several

parameters for making this choice. Route distance and route

time are very common characteristics, but there are also a

number of other parameters. Rogers et al [2] used number of

turns and number of intersections. Pang et al [10] made use of

the degree of congestion, toll, degree of difficulty and scenery.

Some parameters are more appropriate for out of city trips.

For example, scenery might not be much of an option in a

busy and crowded city, such as Tehran. Considering the

different aspects of each parameter, the ones chosen for being

used are:

Distance: The total distance of a route can be calculated as

the addition of the distance of its constituting edges.

Time: The time for a route can also be estimated. Time is

clearly a very important parameter.

Congestion: Cost is assigned to congested subparts of a

route. If there is no congestion, the cost will be 0.

Number of intersections: Intersections between main roads

are only taken into account, as passage through them requires

more focus and attention on the driver’s part.

• Degree of passage through highways: This parameter

shows what fraction of the route passes through highways.

• Degree of passage through main roads: This parameter

is similar to the last one, only it shows what fraction of the

route passes through main roads.

• Degree of passage through minor roads: This parameter

is of interest, as minor roads such as alleys are usually less

congested, and can provide a fast way out of traffic.

These parameters are included and computable for a route in

the system, but this does not mean the user has to use all of

them. A user usually has a fairly good idea about the

parameters most critical in his/her decision making. This

information is valuable because the system needs to be able to

learn quickly. Each trip that is supported by the system

provides it with only one set of data, meaning that learning

needs to occur using relatively limited amounts of data. Thus,

any prior information about a specific user will be useful in

reducing learning time and effort. In order to get this

information, a new user is asked to indicate the degree of

importance he/she links to each characteristic. The choice is

between these:

• Very important: This means that this characteristic

should have a lot of influence in making the rules, and that

changes is such a characteristic are important.

• Important: The characteristic is important, but not as

much as a very important one.

• Slightly important: This characteristic is not important.

Only great changes in it will cause a difference in the result.

• Don’t care: This characteristic has no influence on the

rules.

Each one of these characteristics is considered to be a

linguistic variable. Therefore the importance of these

characteristics helps in the building the fuzzy rule set. Before

explaining the mechanism of the rules however, it is important

to specify the different labels for each linguistic variable,

which are available in Table I. There is also an output

characteristic that will show the route quality. Unlike the input

variables, this one has 5 labels, which are: very bad, bad,

average, good, and very good.

TABLE I

LABELS FOR ROUTE PARAMETERS

Parameter Value #1 Value #2 Value #3 Value #4

Distance Very short Short Long Very long

Time Very short Short Long Very long

Congestion None Light Heavy Very heavy

Number of

intersections
A few Several Many Too many

Highway*

passage
None Some A lot Total

* The same labels are applied to the parameters: Main road passage,

Minor road passage.

In order to build the rule base, we need a set of rules for

making the rules. They are explained here:

1. If the input parameter is marked as very important, then

even slight changes in its value will result in change in the

output. Poor values for it will cause poor values in the output,

and vice versa.

2. If the input variable is marked as important, a poor value

for this variable will result in the worst cast. However the best

value for this variable will not invoke the best output.

3. If the input variable is marked as slightly important, a

poor value for this variable will result in a poor (but not worst)

value for the output. For better values of it, the route will only

be regarded as average.

Table II sums up the rules explained above.

TABLE II

RULES FOR EXTRACTING FUZZY RULES

Input

importance

Output for

value #1

Output for

value #2

Output for

value #3

Output for

value #4

Very

important
Very good Good Bad Very bad

important Good Good Bad Very bad

Slightly

important
Average Average Bad Bad

An example of applying these rules is given here. If the

distance variable is very important, the rules below will be

extracted:

• If route distance is very short, route is very good.

• If route distance is short, route is good.

• If route distance is long, route is bad.

• If route distance is very long, route is very bad.

The majority of the rules have a simple antecedent,

consisting of only one condition. There is however an

exception. In situations where there are two or more variables

marked as important, there will be a rule with two conditions

in the antecedent, joined by the junction AND. This rule will

make sure that the best values for both of these variables will

result in the best value for the output.

To apply the fuzzy rule base, several points need to be

cleared. The min operator is used for determining the degree

of support for a rule with more than one condition in the

antecedent. If there arises a situation in which there are two or

more rules being fired at the same time, a method similar to

that of Berenji and Khedkar’s [10] is used for conflict

resolution. For defuzzification purposes, smallest of maximum

(SOM) method is used.

The variables being used in the problem have a membership

function for each of their labels. The type of membership

function chosen for them are triangular shaped. Triangular

membership functions are both simple and have been proved

to be sufficient in scores of application domains [10]. It is

worth mentioning that the first and last membership function

for each variable is a trapezoidal membership function, to

allow for complete membership of extremely small or large

values.

In addition Gaussian membership functions are also

separately implemented and tested at a later stage.

IV. THE LEARNING AUTOMATA

The layout of the membership functions is very important.

The reason for tuning the membership functions is to arrive at

a layout which fits the driver. A lot of people might consider a

route with a short time to be a good one, but their idea of what

is a short route, and what is not a short route, can be very

different. The learning automata will help in finding that exact

layout for each person. All input and output variables are

normalized to the [0, 1] range. The general layout for each

input variable is chosen from a set of 10 different layouts.

There is another set of 10 layouts for the output variable, route

quality. The layout is chosen randomly at each iteration of

execution, with each layout having a fixed probability of 0.1.

For each variable, its membership functions are further

customized by choosing the position of the center. The center

position is considered to be relative to the start, and is chosen

from the set below

(1) R = {0.2, 0.4, 0.5, 0.6, 0.8}

Fig. 2 shows several membership functions with the same

start and end points, but with different center positions chosen

from the set R.

Fig. 2. Membership functions with different centers

The choice of the center is very important and this is where

the learning automata are put into action. For each variable

label, there will be a variable structure stochastic automaton,

providing a choice for the center. The choice of one of the

members of R is an action for the automata. As R has 5

members, each member of R has an initial action probability

of 0.2.

At the beginning of dealing with a new user, the system asks

for the importance of each variable and builds the rule base. In

the first trip, the system provides the user with several routes.

If the route chosen by the user is also the system’s chosen one,

nothing is done at this moment. If otherwise, the scores

attributed to the routes are reversed, so that the user’s choice

has the best score. Then the learning automata have a set of

data that it can use to tune the membership functions.

The general algorithm for the system is given below:

1. Set ε = 0.01.

2. Choose layouts for the input and output variables, and a

center for each membership function randomly.

3. Take in the source and destination as inputs.

4. Search module provides the fuzzy expert system with

possible routes, },...,
1

{
n

rr .

5. Apply fuzzy rules and acquire a score for the routes,

},...,1{ nss .

6. If the user chooses the route with the best score go to 3.

7. If the user chooses another route, replace the score for the

user’s route and the best route. The resulting pairs {(
11, sr),

(
22 , sr)} are tuning data.

8. Choose layouts and centers for the input and output

variables randomly.

9. Apply fuzzy rules to the tuning data.

a. If (error < ε) go to 3.

b. If (error > ε) and feedback is positive reward the

chosen center positions.

c. If (error > ε) and feedback is don’t do anything.

d. Go to 8.

Several issues should be cleared at this point about the

algorithm. Randomly choosing a layout is not exactly random.

For choosing a layout a random number is generated between

0 and 1. Each of the ten possible layouts has a 0.1 chance of

being chosen, therefore the space [0,1] is divided into ten

smaller intervals. A layout is chosen depending on whether the

random number falls into its interval or not. A similar process

is followed for choosing a center for a membership function.

As mentioned, the initial probability for each center position is

0.2, however this will change in the course of step 9.

The error is the average for the error on each of the tuning

data. The error on each data is the difference between the

score it should have and the score returned by the fuzzy expert

system.

To assess the feedback, the degree of support for a rule is

compared to the degree of membership in the output variable.

These should be ideally equivalent. If this difference is below

a certain threshold, positive feedback is given to the learning

automata, and vice versa.

The learning method

There are several widely common linear methods used for

updating the action probabilities of a learning automaton. is

one such method [14]. If there is a positive feedback the

chosen action will be rewarded, and the remaining actions that

were not chosen will be penalized. On the other hand, if there

is a negative feedback, the chosen action will be penalized and

the other actions will be rewarded. Rewarding in these

updating methods always means increasing that action’s

probabilities, while penalizing will mean decreasing it. This

process will continue until one of the action probabilities

reaches 1, causing the learning automaton to converge.

This method was applied to this problem, but the learning

automata did not always converge, and showed poor and slow

results when it did.

IRL

−
 is another linear method[14], where the chosen action is

rewarded in the case of positive feedback and the other actions

are penalized. The difference with the previous method is

when the system receives negative feedback. This method

chooses inaction in this case, making no changes to the action

probabilities. Equation 2 shows the updated probability for an

action that has resulted in a positive feedback, where a is the

reward coefficient, chosen from (0, 1). Equation 3 shows the

updated probability for other actions that were not chosen.

(2))](1[)()1(npanpnp iii −+=+

(3) ijnpanp jj ≠−=+),()1()1(

When a negative feedback occurs, the probability for any

action will remain at its previous value.

(4))()1(npnp ii =+

This method has shown to be efficient in this problem.

V. RESULTS

Implementation was done using MATLAB, and all tests

were run on a 1.60GHz processor. An acceptable result

consists of a permutation of membership functions and their

centers, so that the error is less than ε. If there are no learning

automata, this permutation can still be reached through

numerous samplings. In this case it normally takes an average

711.5 epochs of sampling, and an average time of 9.71

seconds. The results show that the learning automata fully

converge after an average of around 200 epochs. However, the

condition for reaching a result is not necessarily convergence,

and may happen even sooner, meaning that the maximum

probability will not be unity, but very close to it. The learning

automata method reaches an answer in an average 166.7

epochs, taking 2.29 seconds.

Fig. 3 shows the membership functions at the beginning for

a user who has chosen distance, time and congestion to have

influence on the route choice. Fig. 4 shows the result

membership functions. The GARIC structure proposed in [11]

was also implemented and fitted to the problem. In

comparison, the learning automata method is both faster and

also shows smaller errors. As mentioned before, the same

method was also implemented using Gaussian membership

functions. In this version the learning automata tuned the

membership function through making changes is c and δ. The

first method is faster in comparison to this version too, and

yields better results. Fig. 5 shows Gaussian membership

functions after learning.

VI. CONCLUSION

A new approach for tuning fuzzy membership functions in a

fuzzy expert system was introduced in this paper, providing a

new alternative for modeling each individual user in an

environment with a small number of available data. It was

shown that this method can be useful in designing adaptive

routing systems. The method was applied and implemented to

the problem of learning a driver’s preferences in choosing a

route in the city of Tehran.

The flexibility of the proposed method in building and

implementing each user’s individual rules gives it an

advantage. Implementation results also show better

performance in comparison with older methods.

Fig. 3 Membership functions before tuning Fig. 4 Membership functions after tuning

Fig 5. Gaussian membership functions

REFERENCES

[1] P. W. Bonsall and T. Parry, ‘Drivers’ requirements for route guidance,’

in Proc. 3rd Int. Conf. Road Traffic Control, May 1990, pp. 1–5.

[2] S. Rogers and P. Langley, ‘Interactive Refinement of Route Preferences

for Driving,’ Spring Symposium on Interactive and Mixed-Initiative

Decision-Theoretic Systems, March 1998, pp. 109-113.

[3] S. Rogers, C. Fiechter, and P. Langley, “An Adaptive Interactive Agent

for Route Advice,” Autonomous Agents ‘99, ACM, 1999.

[4] D. Teodorovic and S. Kikuchi, “Transportation route choice model using

fuzzy inference technique,” Proceedings of ISUMA ’90, The First

International Symposium on Uncertainty Modeling and Analysis, IEEE

computer Press, College Park, Maryland, pp.140-145, 1990.

[5] T. Akiyama, K. Nakamura and T. Sasaki, “Traffic diversion model on

urban expressway by fuzzy reasoning,” Selected Proceedings of the 6th

World Conference of Transport Research, pp. 1011-1022, 1993.

[6] T. Lotan and H. Koutsopoulos, “Models for Route Choice Behavior in

the Presence of Information Using Concepts from Fuzzy Set Theory and

Approximate Reasoning,” Transportation 20, pp.129-155, 1993.

[7] P. C. Vythoulkas and H. N. Koutsopoulos, “Modeling discrete choice

behaviour using concepts from fuzzy set theory, approximate reasoning

and neural networks,” Research Report (TSU Ref 817), ESRC Transport

Studies Unit, University of Oxford, 1994.

[8] V. Henn, “A Fuzzy Model for User Equilibrium Dynamic Traffic

Assignment,” the 11th Mini-EURO Conference on Artificial Intelligence

in Transportation Systems and Science and 7th EURO-Working Group

Meeting on Transportation, 1999.

[9] M. Ridwan, “Fuzzy Preference Based Route Choice Model,” 82nd Annual

Meeting of the Transportation Research Board, January, 2003.

[10] G.K.H. Pang, K. Takahashi, T. Yokota, and H. Takenaga, “Adaptive

Route Selection for Dynamic Route Guidance System Based on Fuzzy-

Neural Approaches,” IEEE Transactions on Vehicular Technology, Vol.

48, No. 6, November 1999, pp. 2028-2041.

[11] H.R. Berenji, and P. Khedkar, “Learning an Tuning Fuzzy Logic

Controllers Through Reinforcements,” IEEE Transactions on Neural

Networks, Vol. 3, No. 5, September 1992.

[12] D. Eppstein, “Finding the k Shortest Paths,” 35th IEEE Symp.

Foundations of Computer Science., Santa Fe, 1994, pp. 154-165.

[13] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to

algorithms. Cambridge, MA: MIT Press.

[14] K. S. Narendra, and K. S. Thathachar, Learning Automata: An

Introduction. New York: Prentice-Hall, 1989.

