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Abstract-With the growth of car navigation systems 

technology come a variety of enhancements aiming to increase 

user comfort and satisfaction.  One such application is the 

appearance of methods for learning a driver’s preferences in 

making a choice between several routes.  A driver may know 

his/her basic and most important factors in making such a 

decision, but may have these factors weighing in differently.  

Hence, machine learning methods can be applied to model the 

driver’s preferences, thus predicting the result of the decision 

process.  This paper proposes a new method which combines a 

fuzzy expert system approach with learning automata.  

I. INTRODUCTION 

Car navigation systems have made great progress in the 

recent years, making route planning faster and easier. These 

systems are normally designed to find the optimum route 

between a given source and destination. Often, the optimum 

route is either the route with the shortest distance or the 

shortest time, meaning only one parameter such as distance is 

taken in as a deciding factor. This can be somewhat limiting, 

as the driver may want to prefer a route that has less traffic to 

one that is longer in distance. A survey [1] carried out in 

London, Paris and Munich showed that users find a system 

that chooses a route making a tradeoff between route time and 

route distance just as appealing as one that would choose only 

based on route time, if not more desirable. 

Due to this, more research has been channeled towards 

introducing different factors into the process, leading to multi-

objective route planning. Another step forward and we are 

able to interact with each user as an individual and learn 

his/her preferences. To do this, we must be able to apply a 

learning method that would adaptively keep track of the user’s 

choices, and deductively be able to make choices similar to 

those of the user in future route selections. 

A. Literature review 

Different methods of modeling the user’s behaviour have 

been proposed. Rogers et al [2, 3] introduced a method that 

comprises of a simple perceptronic model. For each given 

source and destination, the user is given several routes. A cost, 

which is the weighted sum of its attributes, is assigned to each 

route. The system tries to find the best weights. A user model 

consists of the weights’ vector consistent with the user. 

Fuzzy logic methods have been greatly used in route 

selection. Teodorovic and Kikuchi were the first to propose an 

adaptive routing algorithm for car navigation systems [4]. 

They inspected the user’s behavior when choosing between 

two possible routes. Further improvements on the method 

were proposed in [5] and [6]. Vythoulkas then proposed a 

method for describing the choice between using car or train 

for a specified route [7]. Henn also constructed a Fuzzy 

version of a deterministic choice model which could be used 

for route choice [8]. Ridwan proposes a method which makes 

use of the user’s route knowledge in choosing routes [9]. 

An important work was contributed by Pang et al [10] in 

their Fuzzy-Neural approach to solving this problem. Their 

system initially asked the user to indicate the importance of 

different parameters. From this information a set of fuzzy 

rules is made, which is implemented by using a fuzzy neural 

network. This network takes the real values of the different 

parameters, fuzzifies them, applies the rules, and assigns a 

score to the route as the output. The network is tested against 

user choices. If the system’s choice differs from that of the 

user, the weights are recalculated. The user model in this 

method is the weights for the neural network connections. 

On the other hand, methods have been proposed for tuning 

fuzzy membership functions in fuzzy logic controllers. Berenji 

and Khedkar [11] proposed the GARIC structure which uses a 

fuzzy-neural network to implement a fuzzy rule base. It also 

makes use of another neural network serving as an internal 

critic in the task of tuning the membership functions. This 

internal critic enables the system to use reinforcement learning 

methods as a means for reducing the controller’s error. 

B. Learning Automata Approach 

This paper proposes a new method for learning a driver’s 

preferences in making a choice between several available 

routes. It uses a fuzzy expert system approach, linked together 

with learning automata. Fig. 1 shows the general structure of 

our system. The proposed system is made of three major 

elements. The first deals with the map and finding routes 

between a given source and destination. The second element is 

a fuzzy expert system and the final part consists of learning 

automata, introduced to tune the membership functions of the 

fuzzy variables, and to enhance the scoring precision of the 

fuzzy expert system. The learning automata can be considered 

as embedded in the fuzzy expert system because their 



functionality is closely interlocked. Feedback from the 

environment causes changes in the learning automata, which 

in turn results in changes in the membership functions.  

The new method proposed in this paper is different as it 

makes use of reinforcement learning methods to deal with an 

environment that is not always transparent and clear. Such 

methods had not been used for adaptive routing prior to this. 

Furthermore, many of the previous endeavors using fuzzy 

reasoning focused on being able to describe and model user 

behavior, rather than finding a way to predict it. They were 

also less intent on exploring the different parameters that may 

be involved in the process of making the decision. The new 

system also shows flexibility as it can build a new and 

individualized rule base for each user, in contrast with more 

rigid and fixed rule bases that are usually used.  

Implementation results show that the proposed method 

shows better prediction ability and less error when dealing 

with new situations. The rest of the paper is as follows, section 

2 will deal with search methods, and section 3 with the fuzzy 

expert system. Then section 4 will explain the mechanism of 

the learning automata. The results are discussed in section 5, 

and concluding notes are mentioned in section 6. 

 

 
Fig. 1. General structure of the system 

II. SEARCH MODULE 

Our system is designed and implemented on the city of 

Tehran. The city map is first vectorized, and is then stored in 

the form of a directed graph, with each edge representing a 

strip of road between two junctions, and each node 

representing a junction. As Tehran is a relatively large city, 

the graph in question is also quite big, consisting of more than 

28,000 nodes. This graph is used for searching. Each edge has 

several attributes associated with it. One of these is the road 

type which shows whether the edge is on a highway, a main 

road, or a minor road. 

The source of a trip may be set to be the place the car is in at 

that moment, meaning it is discovered through the use of the 

map matching module of the car navigation system. It may 

also be entered by the user, along with the destination. There 

are many algorithms for finding the k-shortest routes in a 

graph [12]. In this system a generalized version of the Dijkstra 

algorithm [13] is used to find several routes between the 

source and destination. This algorithm first uses Dijkstra to 

find one route. Then all edges on that route are given a 

relatively high cost, so as prevent the second route from 

passing through them again, unless absolutely necessary. The 

resulting routes will be given to the fuzzy expert system. 

III. FUZZY EXPERT SYSTEM 

The second element is a fuzzy expert system that gives each 

route a score. These systems have been accepted as efficient 

decision support systems. But first, as with any multi-

objective optimization process, the first step is specifying the 

different parameters. Previous methods have used several 

parameters for making this choice. Route distance and route 

time are very common characteristics, but there are also a 

number of other parameters. Rogers et al [2] used number of 

turns and number of intersections. Pang et al [10] made use of 

the degree of congestion, toll, degree of difficulty and scenery.  

Some parameters are more appropriate for out of city trips. 

For example, scenery might not be much of an option in a 

busy and crowded city, such as Tehran. Considering the 

different aspects of each parameter, the ones chosen for being 

used are: 

Distance: The total distance of a route can be calculated as 

the addition of the distance of its constituting edges. 

Time: The time for a route can also be estimated. Time is 

clearly a very important parameter. 

Congestion: Cost is assigned to congested subparts of a 

route. If there is no congestion, the cost will be 0. 

Number of intersections: Intersections between main roads 

are only taken into account, as passage through them requires 

more focus and attention on the driver’s part. 

• Degree of passage through highways: This parameter 

shows what fraction of the route passes through highways.  

• Degree of passage through main roads: This parameter 

is similar to the last one, only it shows what fraction of the 

route passes through main roads.  

• Degree of passage through minor roads: This parameter 

is of interest, as minor roads such as alleys are usually less 

congested, and can provide a fast way out of traffic. 

 

These parameters are included and computable for a route in 

the system, but this does not mean the user has to use all of 

them. A user usually has a fairly good idea about the 

parameters most critical in his/her decision making. This 

information is valuable because the system needs to be able to 

learn quickly. Each trip that is supported by the system 

provides it with only one set of data, meaning that learning 

needs to occur using relatively limited amounts of data. Thus, 

any prior information about a specific user will be useful in 

reducing learning time and effort. In order to get this 

information, a new user is asked to indicate the degree of 

importance he/she links to each characteristic. The choice is 

between these: 

• Very important: This means that this characteristic 

should have a lot of influence in making the rules, and that 

changes is such a characteristic are important.  

• Important: The characteristic is important, but not as 

much as a very important one. 

• Slightly important: This characteristic is not important. 

Only great changes in it will cause a difference in the result. 

• Don’t care: This characteristic has no influence on the 

rules. 



Each one of these characteristics is considered to be a 

linguistic variable. Therefore the importance of these 

characteristics helps in the building the fuzzy rule set. Before 

explaining the mechanism of the rules however, it is important 

to specify the different labels for each linguistic variable, 

which are available in Table I. There is also an output 

characteristic that will show the route quality. Unlike the input 

variables, this one has 5 labels, which are: very bad, bad, 

average, good, and very good.  

 

TABLE I 

LABELS FOR ROUTE PARAMETERS 
 

Parameter Value #1 Value #2 Value #3 Value #4 

Distance Very short Short Long Very long 

Time Very short Short Long Very long 

Congestion None Light Heavy Very heavy 

Number of 

intersections 
A few Several Many Too many 

Highway* 

passage 
None Some A lot Total 

* The same labels are applied to the parameters: Main road  passage, 

Minor road passage. 

 

In order to build the rule base, we need a set of rules for 

making the rules. They are explained here: 

1. If the input parameter is marked as very important, then 

even slight changes in its value will result in change in the 

output. Poor values for it will cause poor values in the output, 

and vice versa. 

2. If the input variable is marked as important, a poor value 

for this variable will result in the worst cast. However the best 

value for this variable will not invoke the best output. 

3. If the input variable is marked as slightly important, a 

poor value for this variable will result in a poor (but not worst) 

value for the output. For better values of it, the route will only 

be regarded as average. 

Table II sums up the rules explained above. 

 

TABLE II 

RULES FOR EXTRACTING FUZZY RULES 
 

Input 

importance 

Output for 

value #1 

Output for 

value #2 

Output for 

value #3 

Output for 

value #4 

Very 

important 
Very good Good Bad Very bad 

important Good Good Bad Very bad 

Slightly 

important 
Average Average Bad Bad 

 

An example of applying these rules is given here. If the 

distance variable is very important, the rules below will be 

extracted: 

• If route distance is very short, route is very good. 

• If route distance is short, route is good. 

• If route distance is long, route is bad. 

• If route distance is very long, route is very bad. 

 

The majority of the rules have a simple antecedent, 

consisting of only one condition. There is however an 

exception. In situations where there are two or more variables 

marked as important, there will be a rule with two conditions 

in the antecedent, joined by the junction AND. This rule will 

make sure that the best values for both of these variables will 

result in the best value for the output. 

To apply the fuzzy rule base, several points need to be 

cleared. The min operator is used for determining the degree 

of support for a rule with more than one condition in the 

antecedent. If there arises a situation in which there are two or 

more rules being fired at the same time, a method similar to 

that of Berenji and Khedkar’s [10] is used for conflict 

resolution. For defuzzification purposes, smallest of maximum 

(SOM) method is used. 

The variables being used in the problem have a membership 

function for each of their labels. The type of membership 

function chosen for them are triangular shaped. Triangular 

membership functions are both simple and have been proved 

to be sufficient in scores of application domains [10]. It is 

worth mentioning that the first and last membership function 

for each variable is a trapezoidal membership function, to 

allow for complete membership of extremely small or large 

values. 

In addition Gaussian membership functions are also 

separately implemented and tested at a later stage. 

 

IV. THE LEARNING AUTOMATA 

The layout of the membership functions is very important. 

The reason for tuning the membership functions is to arrive at 

a layout which fits the driver. A lot of people might consider a 

route with a short time to be a good one, but their idea of what 

is a short route, and what is not a short route, can be very 

different. The learning automata will help in finding that exact 

layout for each person. All input and output variables are 

normalized to the [0, 1] range. The general layout for each 

input variable is chosen from a set of 10 different layouts. 

There is another set of 10 layouts for the output variable, route 

quality. The layout is chosen randomly at each iteration of 

execution, with each layout having a fixed probability of 0.1. 

For each variable, its membership functions are further 

customized by choosing the position of the center. The center 

position is considered to be relative to the start, and is chosen 

from the set below 

 

(1)                R = {0.2, 0.4, 0.5, 0.6, 0.8}  

 

Fig. 2 shows several membership functions with the same 

start and end points, but with different center positions chosen 

from the set R. 

 

 
Fig. 2. Membership functions with different centers 



The choice of the center is very important and this is where 

the learning automata are put into action. For each variable 

label, there will be a variable structure stochastic automaton, 

providing a choice for the center. The choice of one of the 

members of R is an action for the automata. As R has 5 

members, each member of R has an initial action probability 

of 0.2. 

At the beginning of dealing with a new user, the system asks 

for the importance of each variable and builds the rule base. In 

the first trip, the system provides the user with several routes. 

If the route chosen by the user is also the system’s chosen one, 

nothing is done at this moment. If otherwise, the scores 

attributed to the routes are reversed, so that the user’s choice 

has the best score. Then the learning automata have a set of 

data that it can use to tune the membership functions.  

The general algorithm for the system is given below: 

1. Set ε = 0.01. 

2. Choose layouts for the input and output variables, and a 

center for each membership function randomly. 

3. Take in the source and destination as inputs. 

4. Search module provides the fuzzy expert system with 

possible routes,  },...,
1

{
n

rr . 

5. Apply fuzzy rules and acquire a score for the routes,  

},...,1{ nss . 

6. If the user chooses the route with the best score go to 3. 

7. If the user chooses another route, replace the score for the 

user’s route and the best route. The resulting pairs {(
11, sr ), 

(
22 , sr )} are tuning data. 

8. Choose layouts and centers for the input and output 

variables randomly. 

9. Apply fuzzy rules to the tuning data. 

a.  If (error < ε) go to 3. 

b. If (error > ε) and feedback is positive reward the 

chosen center positions. 

c.  If (error > ε) and feedback is don’t do anything. 

d. Go to 8. 

 

Several issues should be cleared at this point about the 

algorithm. Randomly choosing a layout is not exactly random. 

For choosing a layout a random number is generated between 

0 and 1. Each of the ten possible layouts has a 0.1 chance of 

being chosen, therefore the space [0,1] is divided into ten 

smaller intervals. A layout is chosen depending on whether the 

random number falls into its interval or not. A similar process 

is followed for choosing a center for a membership function. 

As mentioned, the initial probability for each center position is 

0.2, however this will change in the course of step 9.  

The error is the average for the error on each of the tuning 

data. The error on each data is the difference between the 

score it should have and the score returned by the fuzzy expert 

system. 

To assess the feedback, the degree of support for a rule is 

compared to the degree of membership in the output variable. 

These should be ideally equivalent. If this difference is below 

a certain threshold, positive feedback is given to the learning 

automata, and vice versa. 

The learning method 

There are several widely common linear methods used for 

updating the action probabilities of a learning  automaton.  is 

one such method [14]. If there is a positive feedback the 

chosen action will be rewarded, and the remaining actions that 

were not chosen will be penalized. On the other hand, if there 

is a negative feedback, the chosen action will be penalized and 

the other actions will be rewarded. Rewarding in these 

updating methods always means increasing that action’s 

probabilities, while penalizing will mean decreasing it. This 

process will continue until one of the action probabilities 

reaches 1, causing the learning automaton to converge. 

This method was applied to this problem, but the learning 

automata did not always converge, and showed poor and slow 

results when it did. 

  
IRL

−
 is another linear method[14], where the chosen action is 

rewarded in the case of positive feedback and the other actions 

are penalized. The difference with the previous method is 

when the system receives negative feedback. This method 

chooses inaction in this case, making no changes to the action 

probabilities. Equation 2 shows the updated probability for an 

action that has resulted in a positive feedback, where a is the 

reward coefficient, chosen from (0, 1). Equation 3 shows the 

updated probability for other actions that were not chosen. 

 

(2)          )](1[)()1( npanpnp iii −+=+  

(3)    ijnpanp jj ≠−=+ ),()1()1(  

When a negative feedback occurs, the probability for any 

action will remain at its previous value. 

 

(4)                           )()1( npnp ii =+  

 
This method has shown to be efficient in this problem. 

V. RESULTS 

Implementation was done using MATLAB, and all tests 

were run on a 1.60GHz processor. An acceptable result 

consists of a permutation of membership functions and their 

centers, so that the error is less than ε. If there are no learning 

automata, this permutation can still be reached through 

numerous samplings. In this case it normally takes an average 

711.5 epochs of sampling, and an average time of 9.71 

seconds. The results show that the learning automata fully 

converge after an average of around 200 epochs. However, the 

condition for reaching a result is not necessarily convergence, 

and may happen even sooner, meaning that the maximum 

probability will not be unity, but very close to it. The learning 

automata method reaches an answer in an average 166.7 

epochs, taking 2.29 seconds. 

Fig. 3 shows the membership functions at the beginning for 

a user who has chosen distance, time and congestion to have 

influence on the route choice. Fig. 4 shows the result 

membership functions. The GARIC structure proposed in [11] 

was also implemented and fitted to the problem. In 



comparison, the learning automata method is both faster and 

also shows smaller errors. As mentioned before, the same 

method was also implemented using Gaussian membership 

functions. In this version the learning automata tuned the 

membership function through making changes is c and δ. The 

first method is faster in comparison to this version too, and 

yields better results. Fig. 5 shows Gaussian membership 

functions after learning. 

VI. CONCLUSION 

A new approach for tuning fuzzy membership functions in a 

fuzzy expert system was introduced in this paper, providing a 

new alternative for modeling each individual user in an 

environment with a small number of available data. It was 

shown that this method can be useful in designing adaptive 

routing systems. The method was applied and implemented to 

the problem of learning a driver’s preferences in choosing a 

route in the city of Tehran. 

The flexibility of the proposed method in building and 

implementing each user’s individual rules gives it an 

advantage. Implementation results also show better 

performance in comparison with older methods.  

 

 
Fig. 3 Membership functions before tuning  Fig. 4 Membership functions after tuning 

 

 
Fig 5. Gaussian membership functions 
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