Using Learning Automata
for Tuning Fuzzy Membership Functions
in Learning Driver Preferences

Narges Afshordi

Mohammad Reza Meybodi

AmirKabir University of Technology
{afshordi @cic.aut.ac.ir, mmeybodi @aut.ac.ir}

Abstract-With the growth of car navigation systems
technology come a variety of enhancements aiming to increase
user comfort and satisfaction. One such application is the
appearance of methods for learning a driver’s preferences in
making a choice between several routes. A driver may know
his/her basic and most important factors in making such a
decision, but may have these factors weighing in differently.
Hence, machine learning methods can be applied to model the
driver’s preferences, thus predicting the result of the decision
process. This paper proposes a new method which combines a
fuzzy expert system approach with learning automata.

L INTRODUCTION

Car navigation systems have made great progress in the
recent years, making route planning faster and easier. These
systems are normally designed to find the optimum route
between a given source and destination. Often, the optimum
route is either the route with the shortest distance or the
shortest time, meaning only one parameter such as distance is
taken in as a deciding factor. This can be somewhat limiting,
as the driver may want to prefer a route that has less traffic to
one that is longer in distance. A survey [1] carried out in
London, Paris and Munich showed that users find a system
that chooses a route making a tradeoff between route time and
route distance just as appealing as one that would choose only
based on route time, if not more desirable.

Due to this, more research has been channeled towards
introducing different factors into the process, leading to multi-
objective route planning. Another step forward and we are
able to interact with each user as an individual and learn
his/her preferences. To do this, we must be able to apply a
learning method that would adaptively keep track of the user’s
choices, and deductively be able to make choices similar to
those of the user in future route selections.

A. Literature review

Different methods of modeling the user’s behaviour have
been proposed. Rogers et al [2, 3] introduced a method that
comprises of a simple perceptronic model. For each given
source and destination, the user is given several routes. A cost,
which is the weighted sum of its attributes, is assigned to each
route. The system tries to find the best weights. A user model
consists of the weights’ vector consistent with the user.

Fuzzy logic methods have been greatly used in route
selection. Teodorovic and Kikuchi were the first to propose an
adaptive routing algorithm for car navigation systems [4].
They inspected the user’s behavior when choosing between
two possible routes. Further improvements on the method
were proposed in [5] and [6]. Vythoulkas then proposed a
method for describing the choice between using car or train
for a specified route [7]. Henn also constructed a Fuzzy
version of a deterministic choice model which could be used
for route choice [8]. Ridwan proposes a method which makes
use of the user’s route knowledge in choosing routes [9].

An important work was contributed by Pang et al [10] in
their Fuzzy-Neural approach to solving this problem. Their
system initially asked the user to indicate the importance of
different parameters. From this information a set of fuzzy
rules is made, which is implemented by using a fuzzy neural
network. This network takes the real values of the different
parameters, fuzzifies them, applies the rules, and assigns a
score to the route as the output. The network is tested against
user choices. If the system’s choice differs from that of the
user, the weights are recalculated. The user model in this
method is the weights for the neural network connections.

On the other hand, methods have been proposed for tuning
fuzzy membership functions in fuzzy logic controllers. Berenji
and Khedkar [11] proposed the GARIC structure which uses a
fuzzy-neural network to implement a fuzzy rule base. It also
makes use of another neural network serving as an internal
critic in the task of tuning the membership functions. This
internal critic enables the system to use reinforcement learning
methods as a means for reducing the controller’s error.

B. Learning Automata Approach

This paper proposes a new method for learning a driver’s
preferences in making a choice between several available
routes. It uses a fuzzy expert system approach, linked together
with learning automata. Fig. 1 shows the general structure of
our system. The proposed system is made of three major
elements. The first deals with the map and finding routes
between a given source and destination. The second element is
a fuzzy expert system and the final part consists of learning
automata, introduced to tune the membership functions of the
fuzzy variables, and to enhance the scoring precision of the
fuzzy expert system. The learning automata can be considered
as embedded in the fuzzy expert system because their



functionality is closely interlocked. Feedback from the
environment causes changes in the learning automata, which
in turn results in changes in the membership functions.

The new method proposed in this paper is different as it
makes use of reinforcement learning methods to deal with an
environment that is not always transparent and clear. Such
methods had not been used for adaptive routing prior to this.
Furthermore, many of the previous endeavors using fuzzy
reasoning focused on being able to describe and model user
behavior, rather than finding a way to predict it. They were
also less intent on exploring the different parameters that may
be involved in the process of making the decision. The new
system also shows flexibility as it can build a new and
individualized rule base for each user, in contrast with more
rigid and fixed rule bases that are usually used.

Implementation results show that the proposed method
shows better prediction ability and less error when dealing
with new situations. The rest of the paper is as follows, section
2 will deal with search methods, and section 3 with the fuzzy
expert system. Then section 4 will explain the mechanism of
the learning automata. The results are discussed in section 5,
and concluding notes are mentioned in section 6.
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Fig. 1. General structure of the system

II. SEARCH MODULE

Our system is designed and implemented on the city of
Tehran. The city map is first vectorized, and is then stored in
the form of a directed graph, with each edge representing a
strip of road between two junctions, and each node
representing a junction. As Tehran is a relatively large city,
the graph in question is also quite big, consisting of more than
28,000 nodes. This graph is used for searching. Each edge has
several attributes associated with it. One of these is the road
type which shows whether the edge is on a highway, a main
road, or a minor road.

The source of a trip may be set to be the place the car is in at
that moment, meaning it is discovered through the use of the
map matching module of the car navigation system. It may
also be entered by the user, along with the destination. There
are many algorithms for finding the k-shortest routes in a
graph [12]. In this system a generalized version of the Dijkstra
algorithm [13] is used to find several routes between the
source and destination. This algorithm first uses Dijkstra to
find one route. Then all edges on that route are given a
relatively high cost, so as prevent the second route from
passing through them again, unless absolutely necessary. The
resulting routes will be given to the fuzzy expert system.

III. FUZZY EXPERT SYSTEM

The second element is a fuzzy expert system that gives each
route a score. These systems have been accepted as efficient
decision support systems. But first, as with any multi-
objective optimization process, the first step is specifying the
different parameters. Previous methods have used several
parameters for making this choice. Route distance and route
time are very common characteristics, but there are also a
number of other parameters. Rogers et al [2] used number of
turns and number of intersections. Pang et al [10] made use of
the degree of congestion, toll, degree of difficulty and scenery.

Some parameters are more appropriate for out of city trips.
For example, scenery might not be much of an option in a
busy and crowded city, such as Tehran. Considering the
different aspects of each parameter, the ones chosen for being
used are:

Distance: The total distance of a route can be calculated as
the addition of the distance of its constituting edges.

Time: The time for a route can also be estimated. Time is
clearly a very important parameter.

Congestion: Cost is assigned to congested subparts of a
route. If there is no congestion, the cost will be 0.

Number of intersections: Intersections between main roads
are only taken into account, as passage through them requires
more focus and attention on the driver’s part.

* Degree of passage through highways: This parameter
shows what fraction of the route passes through highways.

* Degree of passage through main roads: This parameter
is similar to the last one, only it shows what fraction of the
route passes through main roads.

* Degree of passage through minor roads: This parameter
is of interest, as minor roads such as alleys are usually less
congested, and can provide a fast way out of traffic.

These parameters are included and computable for a route in
the system, but this does not mean the user has to use all of
them. A wuser usually has a fairly good idea about the
parameters most critical in his/her decision making. This
information is valuable because the system needs to be able to
learn quickly. Each trip that is supported by the system
provides it with only one set of data, meaning that learning
needs to occur using relatively limited amounts of data. Thus,
any prior information about a specific user will be useful in
reducing learning time and effort. In order to get this
information, a new user is asked to indicate the degree of
importance he/she links to each characteristic. The choice is
between these:

* Very important: This means that this characteristic
should have a lot of influence in making the rules, and that
changes is such a characteristic are important.

* Important: The characteristic is important, but not as
much as a very important one.

* Slightly important: This characteristic is not important.
Only great changes in it will cause a difference in the result.

* Don’t care: This characteristic has no influence on the
rules.



Each one of these characteristics is considered to be a
linguistic variable. Therefore the importance of these
characteristics helps in the building the fuzzy rule set. Before
explaining the mechanism of the rules however, it is important
to specify the different labels for each linguistic variable,
which are available in Table I. There is also an output
characteristic that will show the route quality. Unlike the input
variables, this one has 5 labels, which are: very bad, bad,
average, good, and very good.

TABLE I
LABELS FOR ROUTE PARAMETERS
Parameter Value #1 Value #2 Value #3 Value #4
Distance Very short Short Long Very long
Time Very short Short Long Very long
Congestion None Light Heavy Very heavy
.Number. of A few Several Many Too many
intersections
1 *
Highway None Some Alot Total
passage

* The same labels are applied to the parameters: Main road passage,
Minor road passage.

In order to build the rule base, we need a set of rules for
making the rules. They are explained here:

1. If the input parameter is marked as very important, then
even slight changes in its value will result in change in the
output. Poor values for it will cause poor values in the output,
and vice versa.

2. If the input variable is marked as important, a poor value
for this variable will result in the worst cast. However the best
value for this variable will not invoke the best output.

3. If the input variable is marked as slightly important, a
poor value for this variable will result in a poor (but not worst)
value for the output. For better values of it, the route will only
be regarded as average.

Table IT sums up the rules explained above.

TABLE II
RULES FOR EXTRACTING Fuzzy RULES
Input Output for Output for Output for Output for
importance value #1 value #2 value #3 value #4

Very
important Very good Good Bad Very bad
important Good Good Bad Very bad
. Slightly Average Average Bad Bad
1important

An example of applying these rules is given here. If the
distance variable is very important, the rules below will be
extracted:

* If route distance is very short, route is very good.

* If route distance is short, route is good.

« If route distance is long, route is bad.

* If route distance is very long, route is very bad.

The majority of the rules have a simple antecedent,
consisting of only one condition. There is however an
exception. In situations where there are two or more variables
marked as important, there will be a rule with two conditions

in the antecedent, joined by the junction AND. This rule will
make sure that the best values for both of these variables will
result in the best value for the output.

To apply the fuzzy rule base, several points need to be
cleared. The min operator is used for determining the degree
of support for a rule with more than one condition in the
antecedent. If there arises a situation in which there are two or
more rules being fired at the same time, a method similar to
that of Berenji and Khedkar’s [10] is used for conflict
resolution. For defuzzification purposes, smallest of maximum
(SOM) method is used.

The variables being used in the problem have a membership
function for each of their labels. The type of membership
function chosen for them are triangular shaped. Triangular
membership functions are both simple and have been proved
to be sufficient in scores of application domains [10]. It is
worth mentioning that the first and last membership function
for each variable is a trapezoidal membership function, to
allow for complete membership of extremely small or large
values.

In addition Gaussian membership functions are also
separately implemented and tested at a later stage.

IVv. THE LEARNING AUTOMATA

The layout of the membership functions is very important.
The reason for tuning the membership functions is to arrive at
a layout which fits the driver. A lot of people might consider a
route with a short time to be a good one, but their idea of what
is a short route, and what is not a short route, can be very
different. The learning automata will help in finding that exact
layout for each person. All input and output variables are
normalized to the [0, 1] range. The general layout for each
input variable is chosen from a set of 10 different layouts.
There is another set of 10 layouts for the output variable, route
quality. The layout is chosen randomly at each iteration of
execution, with each layout having a fixed probability of 0.1.

For each variable, its membership functions are further
customized by choosing the position of the center. The center
position is considered to be relative to the start, and is chosen
from the set below

(1) R={02,04,05,0.6,0.8)
Fig. 2 shows several membership functions with the same

start and end points, but with different center positions chosen
from the set R.

Membership Degree

oL~ :
0 0.2 0.4 0.6
Fig.2. Membership functions with different centers



The choice of the center is very important and this is where
the learning automata are put into action. For each variable
label, there will be a variable structure stochastic automaton,
providing a choice for the center. The choice of one of the
members of R is an action for the automata. As R has 5
members, each member of R has an initial action probability
of 0.2.

At the beginning of dealing with a new user, the system asks
for the importance of each variable and builds the rule base. In
the first trip, the system provides the user with several routes.
If the route chosen by the user is also the system’s chosen one,
nothing is done at this moment. If otherwise, the scores
attributed to the routes are reversed, so that the user’s choice
has the best score. Then the learning automata have a set of
data that it can use to tune the membership functions.

The general algorithm for the system is given below:

1. Sete =0.01.

2. Choose layouts for the input and output variables, and a
center for each membership function randomly.

3. Take in the source and destination as inputs.

4. Search module provides the fuzzy expert system with
possible routes, {Rpony } -

5. Apply fuzzy rules and acquire a score for the routes,
{sl s 8 }.
6. If the user chooses the route with the best score go to 3.

7. If the user chooses another route, replace the score for the
user’s route and the best route. The resulting pairs {(r,s,),

(r,,s,)} are tuning data.

8. Choose layouts and centers for the input and output
variables randomly.

9. Apply fuzzy rules to the tuning data.

a. If (error < €) go to 3.

b. If (error > €) and feedback is positive reward the
chosen center positions.

c. If (error > €) and feedback is don’t do anything.

d. Go to 8.

Several issues should be cleared at this point about the
algorithm. Randomly choosing a layout is not exactly random.
For choosing a layout a random number is generated between
0 and 1. Each of the ten possible layouts has a 0.1 chance of
being chosen, therefore the space [0,1] is divided into ten
smaller intervals. A layout is chosen depending on whether the
random number falls into its interval or not. A similar process
is followed for choosing a center for a membership function.
As mentioned, the initial probability for each center position is
0.2, however this will change in the course of step 9.

The error is the average for the error on each of the tuning
data. The error on each data is the difference between the
score it should have and the score returned by the fuzzy expert
system.

To assess the feedback, the degree of support for a rule is
compared to the degree of membership in the output variable.
These should be ideally equivalent. If this difference is below
a certain threshold, positive feedback is given to the learning
automata, and vice versa.

The learning method

There are several widely common linear methods used for
updating the action probabilities of a learning automaton. is
one such method [14]. If there is a positive feedback the
chosen action will be rewarded, and the remaining actions that
were not chosen will be penalized. On the other hand, if there
is a negative feedback, the chosen action will be penalized and
the other actions will be rewarded. Rewarding in these
updating methods always means increasing that action’s
probabilities, while penalizing will mean decreasing it. This
process will continue until one of the action probabilities
reaches 1, causing the learning automaton to converge.

This method was applied to this problem, but the learning
automata did not always converge, and showed poor and slow
results when it did.

L., is another linear method[14], where the chosen action is

rewarded in the case of positive feedback and the other actions
are penalized. The difference with the previous method is
when the system receives negative feedback. This method
chooses inaction in this case, making no changes to the action
probabilities. Equation 2 shows the updated probability for an
action that has resulted in a positive feedback, where a is the
reward coefficient, chosen from (0, 1). Equation 3 shows the
updated probability for other actions that were not chosen.

@ P =p@+all—pm)]
3) p,(n+)=(-a)p,(n), j#i

When a negative feedback occurs, the probability for any
action will remain at its previous value.

“4) p(n+D)=pn)

This method has shown to be efficient in this problem.

V. RESULTS

Implementation was done using MATLAB, and all tests
were run on a 1.60GHz processor. An acceptable result
consists of a permutation of membership functions and their
centers, so that the error is less than €. If there are no learning
automata, this permutation can still be reached through
numerous samplings. In this case it normally takes an average
711.5 epochs of sampling, and an average time of 9.71
seconds. The results show that the learning automata fully
converge after an average of around 200 epochs. However, the
condition for reaching a result is not necessarily convergence,
and may happen even sooner, meaning that the maximum
probability will not be unity, but very close to it. The learning
automata method reaches an answer in an average 166.7
epochs, taking 2.29 seconds.

Fig. 3 shows the membership functions at the beginning for
a user who has chosen distance, time and congestion to have
influence on the route choice. Fig. 4 shows the result
membership functions. The GARIC structure proposed in [11]
was also implemented and fitted to the problem. In



comparison, the learning automata method is both faster and
also shows smaller errors. As mentioned before, the same
method was also implemented using Gaussian membership
functions. In this version the learning automata tuned the
membership function through making changes is ¢ and &. The
first method is faster in comparison to this version too, and
yields better results. Fig. 5 shows Gaussian membership
functions after learning.

VL CONCLUSION

A new approach for tuning fuzzy membership functions in a
fuzzy expert system was introduced in this paper, providing a
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Fig.3 Membership functions before tuning

new alternative for modeling each individual user in an
environment with a small number of available data. It was
shown that this method can be useful in designing adaptive
routing systems. The method was applied and implemented to
the problem of learning a driver’s preferences in choosing a
route in the city of Tehran.

The flexibility of the proposed method in building and
implementing each user’s individual rules gives it an
advantage. Implementation results also show better
performance in comparison with older methods.
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