
Evaluating Verification and Validation Methods in
Knowledge Engineering

Alun Preece

University of Aberdeen, Computing Science Department, Aberdeen AB24 3UE, Scotland
Email: apreece@csd.abdn.ac.uk

Abstract: Verification and validation (V&V) techniques have always been an essential part
of the knowledge engineering process, because they offer the only way to judge the success
(or otherwise) of a knowledge base development project. This remains true in the context of
knowledge management: V&V techniques provide ways to measure the quality of
knowledge in a knowledge base, and to indicate where work needs to be done to rectify
anomalous knowledge. This paper provides a critical assessment of the state of the practice
in knowledge base V&V, including a survey of available evidence as to the effectiveness of
various V&V techniques in real-world knowledge base development projects. For the
knowledge management practitioner, this paper offers guidance and recommendations for
the use of V&V techniques; for researchers in knowledge management, the paper offers
pointers to areas where further work needs to be done on developing more effective V&V
techniques.

1. The Art of Knowledge Engineering

Knowledge-based systems (KBS) have proven to be an effective technology for
solving many kinds of problem in business and industry. KBS succeed in solving
problems where solutions are derived from the application of a substantial body of
knowledge, rather than by the application of an imperative algorithm. In the 1980s,
KBS technology was widely applied to solve stand-alone problems. Classic
examples of the successful use of the technology were in diagnostic problem-
solving (for example, in medicine or engineering), provision of advice (for
example, in "help-desk" applications), and construction/configuration (for example,
product manufacturing and transportation loading).

In the 1990s, many organisations identified their collective knowledge as their
most important resource, and are applying KBS technology in knowledge
management: to capture and exploit these "knowledge assets" in a systematic
manner [1]. The primary advantage of using KBS technology in this context is that
the knowledge is then queryable in a rich way, so that users can pose complex

questions to the organisation’s knowledge bases, and directly use the knowledge in
decision support and problem-solving.

The characteristic feature of problem domains where KBS technology is suitable
is that the problems are ill-defined: they are not amenable to solution by algorithmic
means; instead, the knowledge in the knowledge base of the KBS is used in some
way to search for a solution. Often, the domain is such that there can be no
guarantee that a solution will be found, or that found solutions will be optimal.
Many KBS offer a "best effort" solution, which is good enough when the
application requirements permit this (that is, the system is not safety or mission-
critical). This is true of knowledge management applications: the knowledge is only
as good as the human experts that supplied it, but this is typically considered good
enough.

The literature on knowledge engineering recommends that the requirements for a
KBS be divided into minimum and desired functionality [2]: minimum requirements
will often dictate what a system must never do (for example, a vehicle loading
application must never produce a configuration that is unbalanced to the point of
being dangerous to vehicle operators), while desired requirements will attempt to
specify the quality of solutions (for example, that at least 90% of the configurations
produced by the vehicle loading application should be within 15% of optimal). In
practice, desired requirements will be difficult to specify, due to the ill-defined
nature of the problem to be solved (for example, in the vehicle loading application,
it may be very difficult to determine what constitutes an "optimal solution" for the
desired requirements) [3]. This is unsurprising; from a software engineering point-
of-view, given the fact that the problem is ill-defined, it follows that the user
requirements will be ill-defined also.

Knowledge engineering can be viewed as a special instance of software
engineering, where the overall development strategy typically must employ
exploratory prototyping: the requirements will typically be ill-defined at the outset,
and it will take some effort in acquiring knowledge, and building prototype models,
before the requirements can become more clearly defined. The knowledge engineer
will have the hardest task when the domain knowledge itself is not well-understood;
for example, when the knowledge is locked up in the heads of human experts who
are not able to articulate it clearly. It is not unusual for a knowledge engineer to
face a situation in which the users will be unable to say what they really want,
experts will be unable to say what they really know, and somehow a KBS must be
built! Building KBS is something of an art.

2. The Importance of Validation and Verification

Validation and verification (V&V) comprise a set of techniques used in software
engineering (and, therefore, in knowledge engineering) to evaluate the quality of
software systems (including KBS). There is often confusion about the distinction
between validation and verification, but the conventional view is that verification is
the process of checking whether the software system meets the specified
requirements of the users, while validation is the process of checking whether the

software system meets the actual requirements of the users. Boehm memorably
characterised the difference as follows [4]:

Ver ification is building the system right.

Validation is building the right system.

Verification can be viewed as a part of validation: it is unlikely that a system that is
not "built right" to be the "right system". However, verification is unlikely to be the
whole of validation, due to the difficulty of capturing specifying user requirements.
As noted above, this is a particularly important distinction in knowledge
engineering. Of course, the goal in software/knowledge engineering is to try to
ensure that the system is both "built right" and the "right system"; that is, the goal is
to build "the right system, right".

This is no less important where KBS technology is used in knowledge
management: V&V techniques provide ways to measure the quality of knowledge in
a knowledge base, and to indicate where work needs to be done to rectify
anomalous knowledge. In this context, verification tells us whether or not the
knowledge bases are flawed as software artifacts, while validation tells us whether
or not the content of the knowledge base accurately represents the knowledge of the
human experts that supplied it. Both are clearly important. It is worth noting in this
context that verification is essentially an objective test: there are absolute measures
of the correctness of a piece of software. However, validation is typically subjective
to a certain extent, where we must compare formally-represented knowledge to
informal statements.

In software engineering, efforts have been made to formalise the development
process so that user requirements may be stated as a fully-formal specification, from
which it can be proven that the implemented software system meets the
requirements. While formal methods are desirable - even essential - in some cases
(notably safety and mission-critical systems), these methods are unsuitable in large
classes of software applications:
• Where requirements are amenable to formal specification, it may be too difficult

to create the specification within project time and budgetary constraints.
• There are many kinds of requirement that are not amenable to formal

specification (for example, the "usability" of a graphical user interface).

The extent to which formal methods can be applied in knowledge engineering is
debatable [5], but it is certainly unrealistic to expect formal verification to serve as
the only V&V technique in a KBS development project, because it will rarely be
possible to ensure that the formal specification is a complete and correct statement
of the users' requirements. Therefore, KBS V&V will typically need to involve
multiple techniques, including formal verification against formal specifications
(where possible), and empirical validation (including running test cases and
evaluating the system in the operational environment) [6]. This is especially
important in the context of knowledge management, where a large part of validation
will be fundamentally subjective: checking that the represented knowledge
accurately captures what’s going on in an expert’s head.

Given that knowledge engineering is an inexact art, the most fundamental
measures of the success of a KBS project would seem to be:

Did we get it r ight? That is, does it meet the users' actual requirements.

Can we keep it r ight? That is, is it sufficiently maintainable for anticipated future
changes.

Can we do it again? That is, is the process repeatable to ensure success with future
projects.

The final point refers to the capability of the knowledge engineers, and reflects the
modern view of software quality being determined primarily by the quality of the
development process [7].

While verification and validation are only part of the overall development
process, they are extremely important because they are the only way to produce an
answer to the first of the three questions above ("Did we get it right?"), and provide
partial answers to the other two questions: V&V techniques assist in measuring
maintainability, and a repeatable V&V capability is a prerequisite for success in
knowledge engineering. Maintainability is also of enormous importance in
knowledge management, where an organisation’s knowledge bases will typically
evolve over the organisation’s lifetime.

Consideration of the importance of V&V to successful knowledge engineering
and knowledge management raises another question: how effective are the KBS
V&V techniques in current use? Obviously, if the techniques are incomplete or
unsound, then they cannot be trusted to provide measurement of software quality
and project success. The goal of this paper is to reflect upon studies which have
been done to assess the effectiveness of current KBS V&V techniques, and to:
• summarise what the studies tell us about the current state-of-the-practice in KBS

V&V;
• identify ways to improve the state of knowledge engineers' own knowledge about

available KBS V&V techniques.

In doing this, the objective is not to propose new V&V techniques, but to determine
what can be done with the existing techniques, and propose further ways of
measuring the effectiveness of current (and future) V&V techniques.

3. Knowledge Engineering = Method + Measurement

The previous section emphasised the importance of V&V as measurement
techniques for the knowledge engineering process. Knowledge engineering (and
software engineering) can be seen as a combination of methods and measurement:
the methods used in requirements specification, knowledge acquisition, system
design, and system implementation result in the production of a series of artifacts
[7] (Preece, 1995), each of which is amenable to some form of measurement (either
individually or in combination). V&V techniques provide the means of obtaining
the measurements. The following artifacts are of particular importance in the KBS
development process:

Requirements Specification The requirements specification document states the
minimum and desired user requirements (as described in Section 1), typically in
natural language (or, less usually, in some restricted or semi-structured natural
language subset). A framework for KBS requirements specification is given by
Batarekh et al [3]. As a natural language document, the requirements specification
is not amenable to analysis by V&V techniques - instead, it is used to establish the
needs for V&V.

Conceptual M odel The conceptual model describes the knowledge content of the
KBS in terms of real-world entities and relations. This description is entirely
independent of the ways in which the KBS may be designed or implemented: the
idea is to allow the knowledge engineer to perform a knowledge-level
(epistemological) analysis of the required system before making any design or
implementation choices. The best-known framework for defining KBS conceptual
models is KADS [8] (Wielinga, Schreiber and Breuker, 1992), in which models
may be initially defined using a semi-formal, largely diagrammatic representation,
from which a refined, formal model can be derived. The conceptual model forms
the basis of the design model.

Design M odel The design model serves to "operationalise" the conceptual model
into an executable KBS; it describes the required system in terms of computational
entities: data structures, processes, and so forth. For example, the design model may
specify that a particular conceptual task is to be performed by a backward-chaining
search, or that a concept taxonomy is to be represented using a frame hierarchy. The
KBS specification language DESIRE is particularly well-suited to the
representation of design models [9]. The design model dictates the form of the
implemented system.

Implemented System This is the final product of the development process: the
KBS itself. Once the design issues have been explored in the design model, the
system may be implemented in any programming language, although typically a
special-purpose KBS language is used.

In the context of knowledge management, it is worth noting that all of these stages
are still necessary if a knowledge base is to be created that can be processed by an
inference engine in response to users’ queries, for example in decision support or
problem-solving. Alternatively, if the knowledge is only to be captured for
interpretation by humans, for example using a browser, then it may be sufficient to
develop only a conceptual model, as described in [10].

There are many V&V techniques that have been developed for use on KBS -
Gupta [11] and Ayel and Laurent [12] provide good entry-points to the KBS V&V
literature. Five of the most common approaches are listed below.

Inspection According to a survey of developers of KBS in business applications,
inspection is the most commonly-employed V&V technique [13]. Arguably, it is
also the least reliable, as it essentially involves nothing more than human proof-
reading the text of the various artifacts. Typically, a domain expert is asked to

check the statements in the knowledge base; since the formal languages used in the
design model and implemented system will be unfamiliar to domain experts, this
technique is better-suited to use with the semi-formal conceptual model (which will
typically use a more "reader-friendly" graphical representation).

Inspection is a highly-relevant technique to use in the context of knowledge
management, where human experts need to review (“proofread”) knowledge
aquired from them. It is also the minimal form of validation that should always be
applied in any knowledge management project.

Static Ver ification Static verification consists of checking the knowledge base of
the KBS for logical anomalies. Frameworks for anomalies in rule-based KBS have
been well-explored, and software tools exist to detect them [14]. The most
commonly-identified anomalies - and the ones detected by most of the available
tools - are redundancy and conflict. Redundancy occurs when a knowledge base
contains logical statements that play no purpose in the problem-solving behaviour
of the system; this typically indicates that the system is incomplete in some way.
Conflict occurs when there are logical statements that are mutually inconsistent, and
would therefore cause the system to exhibit erroneous behaviour. Anomalies may
exist in any of the formal artifacts: the implemented system, the design model, and -
if it is defined formally - the conceptual model.

One novel application of this kind of checking in the context of knowledge
management lies in checking for conflicts between statements made by different
experts. While it may not be necessary or even desirable to remove such conflicts
(different opinions may be tolerable and often are useful) it is likely that they will
reveal insights to the way an organisation applies its knowledge [15].

Formal Proof Formal proof is a more thorough form of logical analysis of the
(formal) artifacts in the development process than that provided by static
verification. As described in Section 1, where requirements are amenable to formal
specification, proof techniques can be employed to verify that the formal artifact
meets the specified requirements. A review of opportunities to use formal methods
in knowledge engineering is provided by Meseguer and Preece [5]. In practice,
however, while there are many formal specification languages for KBS, there are
few documented examples of the use of proof techniques to very user requirements.

Formal proof is only likely to be applicable in knowledge management applications
where organisational knowledge will be applied in safety-critical or costly mission-
critical situations for decision-making or decision support.

Cross-Reference Ver ification When there exists descriptions of the KBS at
different "levels", it is desirable to perform cross-checking between these, to ensure
consistency and completeness. For example, we would expect the concepts that are
specified as being required at the conceptual level to be realised in terms of
concrete entities at the design level, and in terms of concrete data structures in the
implemented system. Therefore, the most appropriate uses of cross-reference
verification are to check correspondence between:

• conceptual model and design model;
• design model and implemented system.

A useful product of cross-reference verification in knowledge management lies in
the linking of knowledge described at different levels of formality. Once a
correspondence has been established between, for example, semi-formal statements
in the conceptual model and formal statements in the implemented system, then
users can use hyperlinking tools to move from one to the other. In one direction,
users can move from formal to semi-formal in order to obtain a more
understandable statement of the same knowledge; in the other direction, users can
move from semi-formal to formal in order to apply some knowledge in automated
decision support.

Empir ical Testing All software testing involves running the system with test cases,
and analysing the results. The software testing literature distinguishes between
function-based testing and structure-based testing. Function-based testing bases the
selection of test cases upon the functional requirements of the system, without
regard for how the system is implemented. The success of function-based testing is
dependent upon the existence of a "representative" set of test cases. In structure-
based testing, test cases are selected on the basis of which structural components of
the system they are expected to exercise; the objective is to show that the system
produces acceptable results for a set of test cases that exercise all structural
components of the system. Testing can be applied only to the executable artifacts:
typically only the implemented system.

In knowledge management, testing often takes the form of systematically asking
questions of an implemented KBS, the goal being to assess the acceptability of the
responses in terms of both completeness and correctness.

Table 1 summarises the applicability of the various types of V&V technique to the
KBS development artifacts. The table shows only potential applicability of
techniques to artifacts. The really important questions go beyond this, to ask:
• How effective is each of the techniques listed in Table 1, to provide some

measurement of the quality of the appropriate artifact(s)?
• What combination of V&V techniques work best to provide the most cost-

effective assurance of high quality for each artifact?
• What V&V techniques work best with which method for creating the artifacts?

The last question acknowledges the fact that not all V&V techniques can be used
with all methods. For example, static verification to detect logical anomalies can be
applied to the implemented system only if the implementation is created using a
suitable programming language (one for which logical anomalies can be defined).
Similarly, formal proofs can be applied to the design model only if an appropriate
proof theory exists for the modelling language.

The following section examines the available data to discover to what extent the
above questions can be answered now.

4. KBS V&V: How Well Are We Doing?

Surprisingly few studies are known to have been performed to evaluate the
effectiveness of KBS V&V techniques. This section examines the results of five
studies:
1. A comparative evaluation of several KBS verification and testing techniques,

conducted at the University of Minnesota, USA (referred to here as "the
Minnesota study").

2. A study comparing the effectiveness of an automatic rule base verification tool
with manual testing techniques, conducted at SRI, USA ("the SRI study").

3. An examination of the utility of an anomaly detection tool, conducted at
Concordia University, Canada ("the Concordia study").

4. A comparative evaluation of several KBS verification tools/techniques,
conducted by SAIC, USA ("the SAIC study").

5. A comparative evaluation of KBS verification and testing techniques, conducted
at the University of Savoie, France ("the Savoie study").

Table 1: Applicability of V&V techniques to KBS development artifacts.

Artifact V&V techniques
Conceptual model Inspection, Static verification (if formalised), Cross-ref

verification (against Design model)
Design model Inspection, Static verification, Formal proof, Cross-ref

verification (against Conceptual model, Implemented
system)

Implemented system Inspection, Static verification, Testing, Cross-ref
verification (against Design model)

4.1 The Minnesota study

Kirani, Zualkernan and Tsai [16] at the University of Minnesota, USA, report on
the application of several V&V techniques to a sample KBS in the domain of VLSI
manufacturing. With the exception of a simple static verification (anomaly
detection) tool, all of the methods used were manual testing techniques. The KBS
itself was a 41-rule production system based upon well-understood physical
properties of semiconductors, into which a variety of plausible faults were seeded.
Interestingly, efforts were made to introduce faults at several different phases in the
development process: at specification time, at design time, and at implementation
time. A summary of the results is presented in Table 2.

The results of the study showed that the manual testing techniques, though
labour-intensive, were highly effective, while the static verification tool performed
poorly in detecting the seeded faults. Unfortunately, the success of the manual

testing techniques could be attributed to the fact that this KBS application was
exhaustively testable - which is rarely the case for industrial-scale KBS
applications. Furthermore, given that the anomaly detection tool employed was of
only the most basic type (able to compare pairs of rules only for conflict and
redundancy), it is unsurprising that it performed poorly. Therefore, this study does
not provide clear evidence - positive or negative - for the utility of modern KBS
verification tools. Moreover, the study did not consider the complementary effects
of the tools: no data was provided on which faults were detected by more than one
V&V technique.

Table 2: Summary of results of the Minnesota study: percentage of faults found for each
phase by each V&V method.

V&V method

Development phase

 Specification Design Implementation
Static
verification

38% 27% 19%

Structure-
based testing

54% 68% 74%

Function-based
testing

75% 92% 62%

4.2 The SRI study

Rushby and Crow [17] at SRI, USA, like the Minnesota study, compared manual
testing techniques with a simple static verification tool. The application used was a
100-rule forward-chaining production system in an aerospace domain, but the
structure of the system was largely "flat" and very simple. Faults were not seeded in
this study - instead, actual faults were discovered in the real application! - so there
was no way to control the results. While interesting, this study does not yield
reliable evidence as to the effectiveness of the V&V techniques employed.

4.3 The Concordia study

Preece and Shinghal [18] at Concordia University, Canada, examined the use of a
particular static verification tool, COVER, on a variety of KBS in different
domains. The anomalies detected by COVER are as follows:

Redundancy Redundancy occurs when a KBS contains components which can be
removed without effecting any of the behaviour of the system. This includes
logically subsumed rules (i f p and q t hen r , i f p t hen r) rules which cannot
be fired in any real situation, and rules which do not infer any usable conclusion.

Conflict Conflict occurs when it is possible to derive incompatible information
from valid input. Conflicting rules (i f p t hen q, i f p t hen not q) are the most
typical case of conflict.

Circular ity Circularity occurs when a chain of inference in a KB forms a cycle (i f

p t hen q, i f q t hen p).

Deficiency Deficiency occurs when there are valid inputs to the KB for which no
rules apply (p is a valid input but there is no rule with p in the antecedent).

COVER was applied to the following KBS (all of these were independently-
developed, real KBS applications, not "toy" systems):
• MMU FDIR: a fault diagnosis/repair KBS developed by NASA/Lockheed);
• TAPES: a "help desk" product recommendation system developed by an

adhesive tape manufacturer;
• DISPLAN: a health care planning system developed by the UK Health Service;
• DMS1: a fault diagnosis/repair KBS developed by Bell Canada).

A summary of the anomalies found by COVER appears in Table 3; the table also
gives a measure of the complexity of each application, in terms of the number of
objects in each knowledge base (rules, frames, or the equivalent, depending on the
actual implementation language employed).

COVER was shown to detect genuine and potentially-serious faults in each
system to which it was applied (in contradiction to the negative results on the use of
this technique in the Minnesota study). Unfortunately, the Concordia study did not
compare the effectiveness of COVER with other kinds of V&V technique.

Table 3: Summary of results of the Concordia study: number of anomalies of each type
found in each KBS.

Anomaly type

KBS

 MMU TAPES DISPLAN DMS1
Redundancy 10 5 5 7
Conflict - 4 40 10
Circularity - - 4 -
Deficiency - 16 17 -
KB size (objects) 170 230 405 1060

4.4 The SAIC study

Miller, Hayes and Mirsky [19] at SAIC, USA, performed a controlled experiment
on two KBS built in the nuclear power domain. Faults were seeded in each system,

and groups of KBS developers and domain experts attempted to locate the faults
using three different V&V techniques: manual inspection, static verification using
the VERITE tool (an enhanced version of COVER [18], and static verification
using MetaCheck, a simulated tool based on a conceptual enhancement of VERITE.
The VERITE tool and the MetaCheck pseudo-tool were shown to provide
significant assistance to both the groups of KBS developers and domain experts in
locating faults:
• Groups using a tool (either VERITE or MetaCheck) found almost twice as many

faults as the groups who did not have a tool, in 18% less time, with half as many
falsely-identified faults.

• Groups using VERITE found 59% of seeded faults correctly.
• Groups using MetaCheck found 69% of seeded faults correctly.

While providing good evidence for the utility of static verification tools, and
confirming the unreliability of manual inspection, the SAIC study did not compare
static verification with empirical testing techniques.

4.5 The Savoie study

Preece, Talbot and Vignollet [20] at the University of Savoie, France, performed a
comparative study of three V&V tools:
• SACCO: a static verification tool performing redundancy and conflict detection;
• COCTO: a static verification tool performing deficiency detection;
• SYCOJET: a structure-based testing tool capable of generating test cases to

provide a specified level of knowledge base test coverage.

SACCO and SYCOJET are described in detail by Ayel and Vignollet [21].

Independently-created sets of plausible faults were seeded into three different
"mutated" versions of a real (207 rule) KBS application in an aerospace fault
diagnosis domain. Each of the three tools was run on each of the three mutated
KBS, and the results were aggregated; in summary:
• In each mutated system, at least 61% of faults were found by the combined effect

of the three tools.
• SACCO always found at least 35% of the seeded faults.
• COCTO always found at least 27% of the seeded faults.
• SYCOJET always lead to the discovery of at least 27% of the seeded faults (with

a test coverage of up to 46% of the rules - a level chosen for reasons of
computational efficiency).

• The three tools were shown to be complementary in effect: less than 29% of
faults detected were found by more than one tool.

Arguably, this study provides the best evidence yet that a combination of V&V
techniques should be employed in any KBS development project. It also provides
some useful evidence on the sensitivity of the different KBS techniques to different
sets of seeded faults; however, three mutated KBS is not sufficient to provide any
statistical confidence.

4.6 Conclusions from the studies

The overall conclusion from the studies is that the collective knowledge on the
effectiveness of KBS V&V techniques is very limited. There is some evidence that
different techniques have complementary effectiveness, and no technique has been
shown to be so weak as to be not worth employing. However, the data that is
available is sparse, being limited to a few instances of KBS and specific
applications of tools or techniques. It is almost impossible to combine the results of
the different studies, because they were run with different types of KBS (for
example, the Minnesota study used a "toy" KBS that was exhaustively testable,
while the Savoie study used a genuine KBS application that was computationally
too costly to attempt exhaustive testing), different instances of V&V techniques (the
static verifiers used in each of the five studies all have different capabilities!), and
different assumptions (for example, while the types of errors seeded in the
Minnesota, SAIC and Savoie studies are similar, there are subtle differences which
make cross-comparison hard).

The sparse nature of the available data is also evidenced by the fact that there is
no known data for the effectiveness of formal proofs or cross-reference verification.
Moreover, none of the studies apply V&V techniques directly to any artifact except
the implemented system, and the implemented systems are almost exclusively rule-
based.

The following section considers what can be done to improve this situation.

5. KBS V&V: What Do We Need To Do?

Clearly, in order to improve the collective state of knowledge on the effectiveness
of KBS V&V techniques, it is necessary to perform a considerably larger set of
studies. In order to gather a sufficiently complete data set, the following process
would need to be followed:
1. Create a sufficiently complete enumeration of the types of KBS requiring V&V.

For each type of KBS, create instance artifacts at each stage of development
(conceptual model, design model, and implementation), and for each
development method. For example, instances of KBS with various distinct
problem-solving methods would be required, and artifact instances would need
to be created using different methods (and representation languages).

2. Define reference implementations for each V&V technique, either in the form of
well-defined manual procedures, software tool specifications/implementations,
or a combination of the two. Where necessary, variations on the V&V techniques
will need to be defined for different representations used in the reference KBS
artifacts produced in Step 1.

3. Define good fault models, based on observed error phenomena from actual
experience in KBS projects.

4. Mutate the KBS artifacts from Step 1 using the fault models from Step 3 (ideally,
this would be done automatically); then apply each of the V&V techniques

defined in Step 2 to each mutated artifact; repeat for a statistically-significant set
of mutated artifacts.

Such a study would be very ambitious but extremely valuable: it would provide
conclusive evidence as to the effectiveness of each V&V technique for each type of
KBS and development method, individually and in combination. Furthermore, it
would support further research and development of KBS V&V techniques. Of
course, such a study would be very difficult: Step 1 and Step 3 in particular are
made hard by the fact that KBS technology is moving constantly forward: new
kinds of KBS are always emerging - for example, witness the current interest in
multiple-agent KBS [22] - and reliable information on actual error phenomena is
had to come by (partly because knowledge engineers do not wish to advertise
failures). It is worth noting, however, that the artifacts created in Step 1 would be of
wider use that merely in a study of V&V techniques - they could facilitate
complementary studies on the effectiveness of knowledge acquisition and design
methods.

6. Conclusion and Perspective

This paper has argued that V&V techniques are an essential part of the knowledge
engineering process, because they offer the only way to judge the success (or
otherwise) of a KBS development project. This is equally true in the context of
knowledge management, where V&V techniques tell us whether or not the KBS can
be relied upon to accurately embody the knowledge of the human experts that
supplied it.

However, examination of known studies on the effectiveness of existing KBS
V&V techniques has shown, that the state of knowledge in this area is sparse. The
way to improve this situation would be by systematically gathering data from a
representative set of KBS projects and V&V techniques. Without such a study,
knowledge engineering will remain very much an art and, by extension, so will the
use of KBS technology in knowledge management.

In conclusion, however, it should be noted that the state of knowledge in
software engineering is hardly much better! In particular, little is known about the
relative effectiveness of V&V techniques in object-oriented software development.
Despite this lack of knowledge, a huge number of successful, robust software
systems have been created; similarly, a huge number of successful, robust KBS
have been developed without perfect knowledge of the effectiveness of the methods
employed. Clearly, software engineers, knowledge engineers, and knowledge
managers have considerable artistic ability.

References

[1] Liebowitz, J., and Wilcox, L., 1997, Knowledge Management and Its Integrative

Elements. CRC Press, New York.

[2] Rushby, J., 1990, Validation and testing of Knowledge-Based Systems: how bad can it
get? In (Gupta, 1990).

[3] Batarekh, A., Preece, A., Bennett. A., and Grogono, P., 1996, Specifying an expert
system. Expert Systems with Applications, Vol. 2(4).

[4] Boehm, B., 1984, Verifying and validating software requirements and design
specifications. IEEE Software, Vol. 1(1).

[5] Meseguer, P. and Preece, A., 1995, Verification and Validation of Knowledge-Based
Systems with Formal Specifications. Knowledge Engineering Review, Vol. 10(4).

[6] Preece, A., 1990, Towards a methodology for evaluating expert systems. Expert
Systems, Vol. 7(4).

[7] Preece, A., 1995, Towards a Quality Assessment Framework for Knowledge-Based
Systems. Journal of Systems and Software, Vol. 29(3).

[8] Wielinga, B.J., Schreiber, A.Th., and Breuker, J.A., 1992, KADS: a modelling approach
to knowledge engineering. Knowledge Acquisition, Vol. 4(1).

[9] Brazier, F., Keplics, B., Jennings, N. and Treur, J., 1997, DESIRE: Modelling multi-
agent systems in a compositional formal framework. International Journal of
Cooperative Information Systems, Vol. 6(1).

[10] Kingston, J., and Macintosh, A., 1999, Knowledge Management through Multi-
Perspective Modelling, In Research and Development in Intelligent Systems XVI, pages
221-239, Springer-Verlag, Berlin.

[11] Gupta, U.G., 1990, Validating and Verifying Knowledge-based Systems. IEEE Press,
Los Alamitos, CA.

[12] Ayel, M. and Laurent, J-P., Eds., 1991, Verification, Validation and Test of Knowledge-
based Systems. John Wiley & Sons, New York.

[13] O'Leary, D.E., 1991, Design, development and validation of expert systems: a survey of
developers. In (Ayel and Laurent, 1991), pages 3-20.

[14] Preece, A., Shinghal, R. and Batarekh, A., 1992, Principles and practice in verifying
rule-based systems. Knowledge Engineering Review, Vol. 7(2).

[15] O'Leary, D.E., 1998, On a common language for a "best practices" knowledge base. In
Using AI for Knowledge Management and Business Process Reengineering: Papers
from the AAAI-98 Workshop, AAAI Press, 1998..

[16] Kirani, S., Zualkernan, I.A., and Tsai, W.T., 1992, Comparative Evaluation of Expert
System Testing Methods. Technical report TR 92-30, Computer Science Department,
University of Minnesota, Minneapolis.

[17] Rushby, J. and J Crow, J., 1990, Evaluation of an Expert System for Fault Detection,
Isolation, and Recovery in the Manned Maneuvering Unit. NASA Contractor Report
CR-187466, SRI International, Menlo Park CA.

[18] Preece, A. and Shinghal, R., 1994, Foundation and application of knowledge base
verification. International Journal of Intelligent Systems, Vol. 9(8).

[19] Miller, L., Hayes, J., and Mirsky, S., 1993, Evaluation of Knowledge Base Certification
Methods. SAIC Report for U.S. Nuclear Regulatory Commission and Electrical Power
Research Institute NUREG/CR-6316 SAIC-95/1028 Vol. 4.

[20] Preece, A., Talbot, S. and Vignollet, L., 1997, Evaluation of Verification Tools for
Knowledge-Based Systems. International Journal of Human-Computer Studies, Vol.
47.

[21] Ayel, M. and Vignollet, L., 1993, SYCOJET and SACCO, two tools for verifying
expert systems. International Journal of Expert Systems: Research and Applications,
Vol. 6(2).

[22] Fisher, M. and Wooldridge, M., 1993, Specifying and verifying distributed artificial
intelligent systems. In Progress in Artificial Intelligence-Sixth Portugese Conference on
Artificial Intelligence (LNAI Volume 727), pages 13-28, Springer-Verlag, Berlin.

