
1

A Tree Based Recursive Information Hiding Scheme
Abhishek Parakh and Subhash Kak

Computer Science Department, Oklahoma State University
Stillwater, OK 74078

Abstract—This paper presents a k-out-of-n recursive
information hiding scheme based on an n-ary tree data
structure. In recursive hiding of information, the user encodes
additional information in the shares of the secret intendedto be
originally shared without an expansion in the size of the latter.
The proposed scheme has applications in secure distributed
storage and information dispersal protocols. It may be usedas
a steganographic channel to transmit hidden information, which
may be used for authentication and verification of shares and
the reconstructed secret itself.

Keywords. Recursive hiding of information, secret sharing,
visual cryptography.

I. I NTRODUCTION

Information theoretically secure secret sharing schemes [1],
[2], [3], [4], [5], [6], are space inefficient. For example, ak-
out-of-n, denoted as(k, n), secret sharing scheme expands
a secret ofb bits into n shares each of at leastb bits in
size. Furthermore, since onlyk of these shares are needed
to recreate the secret, each bit of any share, in a threshold
secret sharing scheme, effectively conveys at most⌈ 1

k
⌉ bits of

secret. Ifk = n, as in the case of a non-threshold scheme,
where all the shares must be brought together to recreate the
secret, the effective information conveyed by each bit of any
share is⌈ 1

n
⌉ bits of the secret.

One way to improve space efficiency is to distribute shares
smaller in size than the secret itself, however at the cost of
reduction in security. Computational secret sharing techniques
have been developed to achieve this [18], [19], [20], [21],
[22], in which a symmetric key is used to encrypt the original
secret and the encrypted secret is divided into pieces to which
redundancy is added by the use of block error correction
techniques [22], [23], [24]. The encryption key is split into
shares using information theoretically secure methods of secret
sharing. This leads to ann-fold increase in key size, shares
of which have to be stored with every piece of the encrypted
secret, hence incurring an overhead [22].

An extension of secret sharing schemes is visual cryptog-
raphy [1] that aims at dividing an image into two or more
shares such that when a predetermined number of shares are
aligned and stacked together, the secret image is revealed
[1], [8], [9], without the requirement of any computation.
However, information theoretically secure approaches to visual
cryptography also suffer from inefficiency in terms of number
of bits of secret conveyed per bit of share.

A number of multi-image hiding schemes have been de-
veloped [10], [11], [12], [13]. However, the implementation
in [11] does not hide the information using “real” visual
cryptography, in the sense that computation needs to be

performed to extract the hidden information. Lou et. al. [10]
use a secret key to generate a permutation order and the key
needs to be conveyed in addition to the shares, becoming a
overhead and also amounts to computation, which was to be
avoided by visual cryptography. In [12], two watermarks are
hidden, one during half-toning of original image and second
while creating shares, however, both these hiding techniques
do not conform to visual cryptography because, to extract
first hidden image, an exclusive OR reconstruction of the
image needs to be performed, which is never done in visual
cryptography and the extraction of the second hidden image
requires additional XOR operations. Fang and Lin [13] hide
only integer from 0 to 6, which has very limited applications
and again the integers are not decoded visually but require
computation to be extracted.

Wu and Chen [14] propose a scheme to hide two images
at a rotation angle of 90 degrees while Wu and Chang [15]
discuss hiding multiple images using circular shares at a
limited number of rotation angles. Hsu et. al. [16] extendedthe
scheme to allow arbitrary rotation angle by rolling shares into
rings. However, circular shares distort the aspect ratio ofthe
original image. Further knowing how and by what degree the
shares are to be rotated requires additional side information to
be supplied along with the share. Also pixel expansion is an
issue, for example in [17], which encodes two or more secrets
into circular shares, the pixel expansion is proportional to the
number of secrets being hidden.

Recursive hiding of secrets was proposed in [7] to serve as
a steganographic channel, with applications to binary images
and binary text but was only limited to a (2,2) secret sharing.
The idea involved is recursive hiding of smaller images in
shares of larger secrets with secret sizes doubling at every
step, thereby increasing the information that every bit of share
conveys to(n−1)

n
bit of secret i.e. nearly 100%.

In this paper we present a generalk-out-of-n scheme for
hiding additional information in the shares of the secret. We
also present a 2-out-of-3 recursive information hiding scheme
for visual cryptography.

The proposed recursive information hiding scheme has
applications in distributed online storage of informationdis-
cussed in [23], [24].

II. A C OMPARISON BASED (2, 3) RECURSIVE SCHEME

For text represented as a binary sequence, a 2 out of 3 secret
sharing scheme can be developed using a simple comparison
based algorithm as follows: we divide a secret bit into 3 shares
p1, p2, andp3 such thatp1 = p2 = p3 if we wish to encode
bit 0, andp1 6= p2 6= p3 if we wish to encode bit 1. To satisfy

2

these conditions we would need at least 3 symbols, say 0, 1
and 2. Therefore to encode bit 0 we could create piecesp1p2p3

as 000, 111, or 222. Whereas the candidates to encode bit 1
would be 012 and all possible permutations of it, i.e. 021, 102,
120, 210, and 201.

Example 1. If M is a 27 bit long message that we wish to
encode into 3 shares and the threshold is 2, then non-recursive
sharesS1, S2, andS3 may be created as follows:
M : 011011010110110011100101101
S1 : 102012012010201201201020102
S2 : 110020022120111210101221001
S3 : 121001002200021222001122200

Viewed as a ternary alphabet, the efficiency of this system
is 33%. As a comparison, if 0, 1 and 2 are encoded using
prefix coding as 0, 10, and 11 respectively, then we are
effectively mapping each bit of secret into 5 bits of shares
and the efficiency is only 27

27×5 = 1
5 , i.e. 20%. We reduce this

inefficiency by encoding additional information in the shares
of M . We can then hide the following secretsM1, M2, and
M3 in shares ofM as follows (figure 1):

Fig. 1. Recursive hiding of smaller messages in the shares oflarger messages.

Figure 2 illustrates a ternary structure with nodes at each
level giving rise to 3 nodes in the following level, and the
nodes shown in bold are the nodes carried over from the
previous level. The shares are distributed from left to right
one at a time, i.e. if we number the tree leaves starting from
the left as 1,2,3,1,2,3 and so on. Then these numbers denote
the player’s number to whom the shares belong.

Fig. 2. Illustration of recursion tree for example 1 (partial illustration)

Also seen in figure 1 is that using recursive hiding of
messages, we have been able to hide 13 bits ofM1, M2, and
M3 and 27 bits ofM into shares ofM alone. As a result the
efficiency, considering a ternary alphabet, is13+27

3×27 = 40
81 ≈ 1

2
(i.e. 50% compared to 33% in the non-recursive case). If one
considers the binary representations of each character then

each share now conveys13+27
5×27 = 8

27 ≈ 1
3 bits. Compared to

1/5 bits in the conventional approach, this is an almost 40%
increase in efficiency.

III. PROPOSEDk-OUT-OF-n RECURSIVE SECRET SHARING

SCHEME

At each level of recursion, in our proposed scheme, we
use polynomial interpolation and sampling [3]. However, we
will be hiding additional information within the shares of the
original secret. We work in a finite fieldZp, where p is a
prime and it is public knowledge. Further, we assume that a
secretS is represented as string of numbersS = s1s2 . . . sr,
where eachsi ∈ Zp and |S| = r = nh, where |S| denotes
the length of secretS for some integerh. For example, if we
assume that the secret is a text message composed of ASCII
characters, then it can be represented as a string of numbers
less thanp = 257 [23].

Furthermore, assume that we have another string denoted
by M = m1m2 . . . mx, mi ∈ Zp, where|M | = x = nh−1

n−1 ,
to be hidden within the shares of the original secretS. For
instance, in example 1,n = 3, h = 3, and hence in the shares
of the original secret|S| = nh = 33 = 27 bits long we were
able to encoden

h−1
n−1 = 13 additional bits of information.

The upper limit on the number of additional “pieces” of
information that can be encoded within the shares of the
original message of sizenh, in the proposed scheme, is
nh−1
n−1 . A comparison can be made between the efficiency of

conventional secret sharing schemes and tree based recursive
information hiding schemes. In information theoretic secret
sharing schemes, each share of the secret is of the same size
as the secret itself, as a result, for a secret of given size
nh, each of then shares are of sizenh. This results in an
efficiency of ηc = nh

nh·n
= 1

n
, where η denotes efficiency

and subscriptc denotes conventional (information theoretically
secure) scheme.

A tree based recursive scheme hidesnh−1
n−1 pieces of ad-

ditional information within then shares each of sizenh.
Consequently, the efficiency of tree based recursive schemes
is ηr = 1

nh·n · (nh + nh−1
n−1). A recursive tree based secret

sharing improves the efficiency of conventional secret sharing
methods by a factor ofe = 1+ 1

nh ·(nh−1
n−1). Which is one plus

the ratio of the number of additional pieces hidden within the
pieces of the original secret to the number of pieces of the
original secret.

With the above in mind, the proposed scheme works as
follows:
Inputs: Original secret -S = s1s2 . . . sr; message to be hidden
- M = m1m2 . . . mx; n; k and p wheresa, mb ∈ Zp, 1 ≤

a ≤ r, 1 ≤ b ≤ x, r = nh andx = nh−1
n−1 .

Algorithm 1a. Creation of shares
1) Choosek − 1 random numbersrl ∈ Zp, l = 1 to k − 1

uniformly and randomly.

2) Interpolate ak − 1th polynomialp11(x) usingk points
(0, m1) and (l, rl), 1 ≤ l ≤ k − 1. Let pic(x), denotes
thecth polynomial at theith level in the recursion (tree).

3) Samplep11(x) at n points:D1
11, D2

11, . . ., Dn
11, where

in Dk
ic, k refers to the index number of the sample as

3

well as thex-coordinate at which the sample is taken;i

andc are the same as noted in point 2 above.

4) Initialize a = 1, b = 2.

5) For i = 2 to h

a) c = 1

b) For k = 1 to ni−2

For j = 1 to n

if i < h

i) Interpolate pic(x), using points (0, mb),
(j, Dj

(i−1)k) andk−2 randomly and uniformly
chosen numbers.

ii) Sample pic(x) to generate samplesDq
ic, 1 ≤

q ≤ n.

iii) b = b + 1, c = c + 1

else

i) Interpolate pic(x), using points (0, sa),
(j, Dj

(i−1)k) andk−2 randomly and uniformly
chosen numbers.

ii) Sample pic(x) to generate samplesDq
ic, 1 ≤

q ≤ n.

iii) a = a + 1 andc = c + 1

iv) DistributeD
q
ic, 1 ≤ q ≤ n to players from 1 to

n, respectively.

Fig. 3. Illustration of application of algorithm 1 forn = 4.

We do not consider the final shares as a part of the tree.
Hence, the tree has onlynh leaves, which are then interpolated
and sampled atn points to generate the final shares.
Algorithm 1b. Reconstruction of secret and hidden informa-
tion

1) For 1 ≤ c ≤ r

a) Interpolatek sharesDi
hc, 1 ≤ i ≤ k to generate

polynomialPhc(x).

b) SamplePhc(x) at x = 0 to retrievesc.

2) For i = h − 1 down to 1

a) j = 1, b = 1, q = ni−1−1
n−1 + 1

b) For c = 1 to ni

i) SampleP(i+1)c(x) at point x = b, denote as
Dx

ij .

ii) b = b + 1

iii) if c mod n = 0

A) Interpolate(x, Dx
ij), x = 1 to n to generate

Pij(x).

B) SamplePij(x) at x = 0 to retrievemq.

C) x = 1, j = j + 1, b = 1, q = q + 1.

The share reconstruction process traverses the tree from
leaves to the root (figure 3), while the reconstruction process
retrieves the secret and the hidden messages in a last in first
out manner. In figure 3,R denotes a vector of lengthk − 2
numbers randomly and uniformly chosen from the field. Note
that R′ is a k − 1 element vector in the first step (level 1).
Each instance ofR is independent.

IV. SHARING SMALLER SHARES

We can use the proposed scheme of section 3 as a secret
sharing scheme that generates smaller shares, with a tradeoff in
security. The difference would be that instead of inner pieces
being that of a different message to be hidden, they would be
pieces of the secret itself. If we createm piecespi of the secret,
then in the ideal casem should be equal ton

h+1−1
n−1 , for a given

n and some integerh, where|pi| = |S|
m

. Further, the tree has
nh number of leaves which then yieldn shares each, resulting
in n · nh number of shares. Therefore, each of then player
receives a share of effective sizenh · |S|

m
= (1 − m−1

m·n) · |S|.
This represents a reduction in share sizes; for example, if the
secret is broken intom = 15 pieces andn = 2, then the
effective share size for each player is(1− 14

30) · |S| compared
to |S| in the conventional case.

However, the above holds only whenm|n
h+1−1
n−1 . Figure 4a

shows how the size of resulting shares change relative to the
size of original secret. The vertical axis is the ratio of thenew
effective share size to the share size in a conventional scheme,
i.e. 1 − m−1

m·n .
The efficiency improvement factor for the ideal case is given

by 1 + 1
nh · (nh−1

n−1). A plot of how efficiency improvement
factor varies as a factor ofn andh is given in figure 4b.

Figure 4b shows that given an, more the heighth, bet-
ter the efficiency improvement factor. An efficiency factor
of 2 implies a 50% reduction in share size compared to
information theoretically secure schemes where each share
is of size |S|. Therefore, new effective share size is given
by |SN | = |S|

efficiency improvement factor, where |S| is the

original secret size.
Optimal number of pieces: In practice, since the number

of pieces may be arbitrary, then-ary tree may or may not
be complete, and one may need to stuff additional (dummy)
pieces to complete the tree. The number of pieces required
to complete the tree is a factor of the heighth of tree. In
order to maximize the information efficiency, we would like
to determine whath one would want to choose.

In general, we assume that we are working in a decimal
base, i.e. each secret may be represented as a sequence of
integers 0-9. This means that the smallest piece one may create

4

(a) (b)

Fig. 4. (a) Plot of new effective share sizes relative to the size of the original
secretS versusm andn (only a few values are shown). (b) Plot of efficiency
improvement factor as a function ofn andh (larger values).

is a single digit number. Also, note that the primep used
in algorithm 1, can only be chosen after the piece sizes are
decided upon. For example, in the case of smallest possible
pieces (single digits) a primep = 11 would suffice. However,
if one was to choose each piece to be of two digits in size,
then a primep = 101 would be needed. Let us redefinem
to be the number of smallest pieces in the original secret, for
example the number of digits in the secret.

In order to understand how stuffing of pieces would work,
assume that we are working in a binary field; therefore smallest
piece that can be created is of one bit in size. Since the total
number of pieces has to form an-ary tree, if we denote bym
the number of pieces of the original secret thenm may not
always be an integral multiple ofn

h+1−1
n−1 for the given value

of n and any value ofh. As a result, in order to complete the
tree, we may either need to adjust the piece sizes (to more
than one bit in size, in turn changing the primep required in
algorithm 1), and/or stuff the secret with dummy bits. Below,
we will investigate both the cases and determine which case
results in a better efficiency.

Assume single bit pieces and bit stuffing (if required), and
that m andn are fixed. Since the last level of the tree hasnh

number of leaves, each player will receivenh bits. Therefore,
the value ofh chosen will decide the number of bits stuffed
to complete the tree. Also, since we would want to have each
piece as a single bit, we note that ifnh > m, then each player
will receive more bits than originally in the secret, which is
not desired. Consequently, one of the criterions in choosing
h is that nh ≤ m, wherem is the total number of bits in
the original secret. This gives the upper bound onh. Also, to
maintain the requirement of one bit per piece, the total number
of nodes in the tree must be greater than the total number of
bits in the original secret. Hence,nh+1−1

n−1 ≥ m gives the lower
bound forh.

On the other hand, if we assume that each pieces may be
larger in size than the minimum size possible, then starting
from the upper bound onh, h = ⌊logn(m)⌋, we could
gradually reduce the tree height by one at each step and then
readjust the shares so as to complete the tree, with or without
stuffing of pieces. Then a comparison could be made between
the resulting efficiencies. Note that as we change the piece
sizes, we may require changing the primep for algorithm 1.

For example, again consider working in a binary field and
that the original secret consists ofm = 8 bits and letn = 2, so
that the algorithm constructs a binary tree. Since, the smallest

Fig. 5. Plot of maximum efficiency improvement factor with corresponding
heighth againstm; n=3.

piece possible is a bit, if one was to construct a recursion tree
with one bit pieces, then the tree at the4th (last) level requires
7 bits stuffed to be complete. When these bits are divided into
shares, since the last level now has 8 bits, it would result in
each of the two shares being 8 bits.

However, if one was to reduce the tree height by one level
by adjusting the pieces to be of two bits each then the3rd

(last) level of the tree would require some pieces to be stuffed
and would result in4 × 2 bits for each share. This does not
result in any efficiency improvement yet. However, if one was
to further reduce another level of the tree, so that the tree
now has only two levels, then each piece would be of 3 bits
each, where only 1 dummy bit is stuffed. Since, now the2nd

(last) level of the tree has2 × 3 bits, each share would be of
6 bits each. This is a reduction in share sizes compared to a
non-recursive scheme.

Consequently, in general, in order to maximize efficiency,
the heighth of the recursion tree must be chosen such that it
minimizes⌈ |S|

nh+1−1
· (n − 1)⌉ × nh for 1 ≤ h ≤ ⌊logn(m)⌋.

Here, m denotes the number of pieces of the smallest size
present in the original secret corresponding to the base that
we working in.

The figure 5 shows plots for the maximum efficiency
improvement achievable (blue line) and the corresponding
height for it (red line) against the number of (smallest) pieces
present in the original secret.

V. ON SECURITY OF THEPROPOSEDSCHEMES

When applying a secret sharing scheme based on poly-
nomial interpolation and sampling (Shamir’s scheme) where
k − 1 random numbers are interpolated along with the secret
to generate akth degree equation, the samples (taken appro-
priately, excluding atx = 0) do not provide any information
about the secret which is mapped as point atx = 0. The
first step in the algorithm, directly executes Shamir’s secret
sharing scheme. The shares so generated, can then be treatedas
random numbers and are reused as points in further encoding
of secrets.

5

Fig. 6. Possible partitions for black and white pixels

As a result, during the share construction (assuming previ-
ous shares are treated as random number), we have usedk−1
random numbers at each step (k−2 random numbers and one
sampleDk

ij from the previous iteration, see figure 3). This
along with the secret (or secret piece) are used to interpolate
a k − 1th degree polynomial which is sampled atn points at
each step.

Now, if the dummy pieces are pre-agreed pieces (such as
special characters or zeros), then each player would know, two
points, one the sample given to him and the other the dummy
piece itself used during interpolation, and hence would need
only k − 2 additional players to collude to recreate the node
corresponding to that polynomial. This may lead to partial
disclosure of secret. As a result, the dummy pieces chosen
to stuff must be uniformly and randomly chosen from the
field. Side information regarding the number of dummy pieces
stuffed would convey to the players, how many trailing pieces
are to be discarded.

Assuming that the dummy pieces are randomly and uni-
formly chosen elements from the field, it is clear thatk players
need to collude in order to recreate the nodes in the last level
of the tree and then proceed from there.

VI. RECURSIVE HIDING IN THRESHOLD VISUAL

CRYPTOGRAPHY

The idea described in [7] is applied to images to develop
a recursive 2 out of 3 visual cryptographic scheme. For this
purpose we divide each pixel into 3 subpixels as shown in
figure 6.

As seen in figure 6, when the partitions of white pixel are
stacked upon each other one third of the pixel is white and
hence appears light gray to human eye. However, the subpixels
of the black pixel are so arranged that when 2 shares are
stacked together, the resulting pixel is completely dark.

Yet another way to create subpixels would be to have
only one third of the subpixel colored dark. Therefore, when
subpixels of a white pixel are stacked upon each other they
would appear light gray and the stacking of the subpixels of a
black pixel would result in dark gray. However, the human eye
can perceives the difference between gray and completely dark
pixels better than two different shades of gray itself. Hence our
construction of subpixels in figure 6.

As an example to make the working of the proposed scheme
clear, we present in figure 7 the encoding of a 3×3 pixel image

Fig. 7. Illustration of recursive hiding of secret images inshares of larger
original image using a 2-out-of-3 threshold scheme

such that each share of the 3×3 image contains shares of a 1
pixel secret image and a 3×1 pixel secret image.

The subpixels of an original pixel can be represented as
a matrix. For example if the original pixel was black then
the 3 shares representing it may be written as[100]T , [010]T ,
and[001]T . Since, these matrices can be stored as a sequence
of bits; it implies that there is an expansion by a factor of
1×9=9 because the original black pixel can be represented as a
single bit 1, while each of the 3 shares consists of 3 sub-pixels
requiring 3 bits for their representation. If we were not to
perform a recursive hiding, we would be creating 9×9=81 bits
for each share corresponding to 9 pixels of the original image
(figure 7). However, using recursive hiding we have been able
to hide additional 1×9+3×9=9+27=36 bits of information in
those 81 bits, thereby increasing the information conveyedper
share of the original image.

Higher efficiency could be achieved if we were to number
the subpixels as 0, 1, and 2 and use prefix coding to represent
these numbers and store them instead of storing the matrices
or pixels. This would only lead to a per bit expansion factor of
5, instead of 9 and the efficiency improvement will be similar
to that in the case of text, i.e. an improvement of 40%.

Figure 8 shows the application of the proposed scheme to
three images, smallest image being a Smiley face, next being
a watermark and the third and the largest image being that of
Lena.

Figure 9 shows the reconstruction of hidden images after
appropriately extracting the smaller shares from the shares of
Lena.

VII. C ONCLUSIONS

This paper has presented a recursive scheme for information
hiding in secret sharing. The scheme forms a recursion tree
and does not require any encryption key.

The proposed scheme has widespread applications in secure
distributed storage and information dispersal protocols.Fur-
ther, it may be used as a steganographic channel to transmit

6

Fig. 8. Illustration of the process of recursive hiding of smaller images in
shares of larger original image

Fig. 9. Sample illustration of regeneration of smaller images from the shares
hidden inside the shares of the original larger image

hidden information in secret sharing, which may be used for
authentication and verification of shares and the reconstructed
secret itself.

REFERENCES

[1] Naor, M. and Shamir, A.: Visual Cryptography. Advances in Cryptology-
Eurocrypt, 950:1-12, 1995.

[2] Feldman, P.: A practical scheme for non-interactive verifiable secret
sharing. In Proceedings of the 28th Annual Symposium on Foundations
of Computer Science (October 12 - 14, 1987). SFCS. IEEE Computer
Society, Washington, DC, 427-438, 1987.

[3] Shamir, A.: How to share a secret. Commun. ACM 22, 11 (Nov.1979),
612-613, 1979.

[4] Pedersen, T. P.: Non-Interactive and Information-Theoretic Secure Ver-
ifiable Secret Sharing. In Proceedings of the 11th Annual international
Cryptology Conference on Advances in Cryptology (August 11- 15,
1991). J. Feigenbaum, Ed. Lecture Notes In Computer Science, vol. 576.
Springer-Verlag, London, 129-140, 1992.

[5] Herzberg, A., Jarecki, S., Krawczyk, H., and Yung, M.: Proactive Secret
Sharing Or: How to Cope With Perpetual Leakage. In Proceedings of
the 15th Annual international Cryptology Conference on Advances in
Cryptology (August 27 - 31, 1995). D. Coppersmith, Ed. Lecture Notes
In Computer Science, vol. 963. Springer-Verlag, London, 339-352, 1995.

[6] He, J. and Dawson, E.: ”Multistage secret sharing based on one-way
function,” Electronics Letters , vol.30, no.19, pp.1591-1592, 15 Sep 1994.

[7] Gnanaguruparan, M. and Kak, S.: Recursive Hiding of Secrets in Visual
Cryptography. Cryptologia 26: 68-76, 2002.

[8] Horng, G., Chen, T. and Tsai D.: Cheating in Visual Cryptography.
Design, Codes and Cryptography 38:219-236, 2006.

[9] Prisco, R. and Santis, A.: Cheating Immune (2,n)-Threshold Visual Secret
Sharing. LNCS 4116:216-228, 2006.

[10] Hao Luo; Jeng-Shyang Pan; Zhe-Ming Lu: ”Hiding Multiple Water-
marks in Transparencies of Visual Cryptography,” Intelligent Information
Hiding and Multimedia Signal Processing, 2007. IIHMSP 2007. Third
International Conference on , vol.1, no., pp.303-306, 26-28 Nov. 2007.

[11] Hao Luo; Faxin Yu: ”Data Hiding in Image Size Invariant Visual
Cryptography,” Innovative Computing Information and Control, 2008.
ICICIC ’08. 3rd International Conference on , vol., no., pp.25-25, 18-
20 June 2008.

[12] Luo, H., Lu, Z., and Pan, J.: Multiple Watermarking in Visual Cryp-
tography. In Proceedings of the 6th international Workshopon Digital
Watermarking (Guangzhou, China, December 03 - 05, 2008). Y.Q. Shi,
H. Kim, and S. Katzenbeisser, Eds. Lecture Notes In ComputerScience,
vol. 5041. Springer-Verlag, Berlin, Heidelberg, 60-70, 2008.

[13] Wen-Pinn Fang and Ja-Chen Lin.: Visual cryptography with extra ability
of hiding confidential data. J. Electron. Imaging 15, 023020, 2006.

[14] C.C. Wu, L.H. Chen.: A study on visual cryptography, Master Thesis,
Institute of Computer and Information Science, National Chiao Tung
University, Taiwan, R.O.C., 1998.

[15] Hsien-Chu Wu, Chin-Chen Chang: Sharing visual multi-secrets using
circle shares, Computer Standards & Interfaces, Volume 28,Issue 1, July
2005, Pages 123-135.

[16] Hwa-Ching Hsu; Tung-Shou Chen; Yu-Hsuan Lin: ”The ringed shadow
image technology of visual cryptography by applying diverse rotating
angles to hide the secret sharing,” Networking, Sensing andControl, 2004
IEEE International Conference on , vol.2, no., pp. 996-1001Vol.2, 2004.

[17] Shyu, S. J., Huang, S., Lee, Y., Wang, R., and Chen, K.: Sharing multiple
secrets in visual cryptography. Pattern Recogn. 40, 12 (Dec. 2007), 3633-
3651, 2007.

[18] B. Schneier: Schneier’s Cryptography Classics Library: Applied Cryp-
tography, Secrets and Lies, and Practical Cryptography, Wiley, 2007.

[19] P. Rogaway and M. Bellare: ”Robust computational secret sharing and a
unified account of classical secret-sharing goals,” in CCS ’07: Proceedings
of the 14th ACM Conference on Computer and Communications Security.
New York, NY, USA: ACM, 2007, pp. 172-184.

[20] V. Vinod, A. Narayanan, K. Srinathan, C. P. Rangan, and K. Kim: ”On
the power of computational secret sharing,” Indocrypt 2003, vol. 2904,
pp. 265-293, 2003.

[21] P. Beguin and A. Cresti: ”General short computational secret sharing
schemes,” in Advances in Cryptology EUROCRYPT 95, volume 921 of
Lecture Notes in Computer Science. Springer, 1995, pp. 194-208.

[22] H. Krawczyk: ”Secret sharing made short,” Proceedingsof the 13th
Annual International Cryptology Conference on Advances inCryptology,
pp. 136-146, 1994.

[23] M. O. Rabin: ”Efficient dispersal of information for security, load
balancing and fault tolerance,” Journal of the ACM, vol. 36,no. 2, pp.
335-348, 1989.

[24] J. Garay, R. Gennaro, C. Jutla, and T. Rabin: ”Secure distributed storage
and retrieval,” Theoretical Computer Science, pp. 275-289, 1997.

