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Matched Subspace Detectors 
Louis L. Scharf, Fellow, IEEE, and Benjamin Friedlander, Fellow, IEEE 

Abstract-In this paper we formulate a general class of prob- 
lems for detecting subspace signals in subspace interference and 
broadband noise. We derive the generalized likelihood ratio 
(GLR) for each problem in the class. We then establish the 
invariances for the GLR and argue that these are the natural 
invariances for the problem. In each case, the GLR is a maximal 
invariant statistic, and the distribution of the maximal invariant 
statistic is monotone. This means that the GLR test (GLRT) is 
the uniformly most powerful invariant detector. We illustrate the 
utility of this finding by solving a number of problems for de- 
tecting subspace signals in subspace interference and broadband 
noise. In each case we give the distribution for the detector and 
compute performance curves. 

I. INTRODUCTION 
HE matched filter, or more accurately the matched signal T detector, is one of the basic building blocks of signal 

processing; however, in many applications the rank- 1 matched 
signal detector is replaced by a multirank matched subspace 
detector. In fact, the matched subspace detector is really the 
general building block, and the matched signal detector is a 
special case. In sonar signal processing, the matched subspace 
detector is called a matched field detector. 

In [l], one of the authors developed a theory of matched 
subspace detectors based on the construction of invariant 
statistics. In this paper we extend this work in two ways. First, 
we include structured interference in the measurement model, 
and second we use the principle of the generalized likelihood 
ratio test (GLRT) to derive matched subspace detectors. By 
studying the invariance classes for these GLRT’s, we are 
able to establish that the GLRT’s are invariant to a natural 
set of invariances and optimum within the class of detectors 
which share these invariances. This establishes once and for 
all the optimality of the GLRT for solving matched subspace 
detection problems and answers “no” to the question, “can 
the GLRT be improved upon?” This result holds for all finite 
sample sizes, thereby improving on the standard asymptotic 
theory of the GLRT. 

Our program in this paper is to derive GLRT’s for the 
class of problems studied in [l], [4]-161 and generalize them 
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to include subspace interferences. These problems involve 
unknown parameters in the mean and covariance of a mul- 
tivariate normal (MVN) distribution. For each problem in the 
class, we establish invariances for the GLR and find that they 
are identical to the natural invariances for the problem. We 
show that a monotone function of the GLRT equals one of 
the uniformly most powerful invariant (UMP-invariant) tests 
derived in 111. This means that the GLRT is itself UMP- 
invariant. In addition to tying up the theories of invariance and 
the GLRT, our results generalize and extend previous work on 
these problems published in 111-[6]. 

We begin our development by establishing the invariances 
of the GLRT in the MVN problem. We then specialize our 
results for structured means in order to derive UMP-invariant 
GLRT detectors for matched subspace filtering in subspace 
interference. The GLRT produces an UMP-invariant detector, 
which is CFAR if the noise variance is unknown. As we shall 
find, the optimum detector may be interpreted as a null steering 
or interference rejecting processor followed by a matched 
subspace detector. 

11. DETECTION PROBLEMS 

The detection problems to be studied in this paper may 
be described as follows. We are given N samples from a 
real, scalar time series {y(n), n = 0,1, .  . . , N - l} which 
are assembled into the N-dimensional measurement vector 
y = [y(O), y( l ) ,  . . . , y(N - 1)IT. Based on these data, we 
must decide between two possible hypotheses regarding how 
the data was generated. The null hypothesis HO says that the 
data consist of noise w only. The altemative hypothesis H1 

says that the data consist of a sum of signal pz and noise w; 
that is, 

y = p z + w  (2.1) 

where p = 0 under HO and p > 0 under H I .  This is the 
standard detection problem wherein the polarity of the signal 
z is assumed known. Near the end of Section V we replace 
H1 : p > 0 with H1 : p # 0 in order to model problems 
where polarity is unknown. 

We shall assume that the signal z obeys the linear subspace 
model 

z = ~ e ,  H E I R ~ ~ P ,  e E w  (2.2) 

and the noise is MVN with mean Scp and covariance R = 

w:Af[Scp,a2&], S € R N X t ,   ER^, t <  N - p  

ff2R0: 

Ro > 0 E R N x N .  (2.3) 
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n : N[ q 021 1 

cns : orthogonal subspace 
I 

c S> : rank-t interference subspace 

(b) 

Fig. 1. Illustrating the detection problem: (a) Detecting a signal in inter- 
ference plus additive noise; (b) resolving a measurement into signal plus 
interference plus noise. 

We shall assume that H ,  S ,  and & are known, although 
we will offer some ways to relax this assumption in our 
conclusions. Without loss of generality, we assume that & = 
I .  Then the detection problem is a test of distributions: 

H~ : : N [ s ~ ,  U21] vs H~ : : + s4, U21]. (2.4) 

The component pHB is an information-bearing signal that 
lies in the subspace ( H ) ,  and the component S4 is an 
interference that lies in the subspace ( S ) .  The noise n = 
y - pHB - S4 = U - S4 : N[0,a21] is additive white 
Gaussian noise. The subspaces ( H )  and (S) are not orthogonal 
(i.e. HTS # 0),  but they are linearly independent, meaning 
that there is no element of ( H )  which can be written as a 
linear combination of vectors in ( S ) .  Linear independence is 
much weaker than orthogonality. We assume that H and S are 
each full-rank matrices, meaning that ( H )  and (S) are each 
full-rank subspaces. 

Fig. 1 illustrates the detection problem two ways: first, as a 
communication problem of detecting a signal when a channel 
adds background noise and structured interference and second, 
as an algebraic problem of determining which subspaces of 
EN better model the measurement y. In the second illustration, 
the problem is to determine whether y is more probably 
described by signal plus noise plus interference or by noise 
plus interference. The signal subspace ( H )  and the interference 
subspace ( S ) ,  illustrated in Fig. 1, are generally of dimension 
greater than 1. When these subspaces are very close, then the 
resolution of hypotheses is difficult. 

The probability density function for the MVN vector y is 

where y is the variable of the function and /3 = (PO, 4 )  is the 
parameter of the density. The noise n is 

n = y - pHB - S4. (2.6) 

The likelihood function for this MVN distribution is 
1 

Z(/3,c2;y) = (27rU2) -N/2exP{  - Ilnll;} (2.7) 

which is a function of (/3, 02) with the data y playing the role 
of a parameter. For any two values (Pl, U!) and (Po, U,"), the 
likelihood ratio is defined to be 

We expect Z(y) to be greater than one whenever the parameters 
(&, U;) better model y than do the parameters (&, U,"). 

The detection problem outlined here applies to the detection 
of lines or modal signals in broadband noise and narrowband 
inteferences or to the detection of propagating fields (whether 
planar or not) in propagating interferences and broadband 
noise. Then the matrix H is a matrix of Vandermonde columns 
or of autoregressive impulse responses. The matrix S may be 
a Vandermonde matrix, one of the matrices illustrated in the 
following examples, or almost anything which characterizes 
structured noise. 

Example I 4 e t e c t i o n  in Unknown Bias: When there is an 
unknown bias added to a measurement, then we may say 
y = pz+u where w : N[bl,  c21]. The bias is b l  = (bb  . . . b)T 
with b unknown. In this case, the interference subspace ( S )  is 
the rank-1 subspace ( 1 ) .  

Example 2 4 e t e c t i o n  in Sinusoidal Interference: When 
there is  a sinusoidal interference of known frequency but 
unknown amplitude and phase, st = Acos(wot - 4) = 
A cos 4 cos wot + A sin 4 sin wot, then we may say y = pz + U 

where U : N[S4,a21]. The interference is 

In this case the interference subspace (S) is the rank-2 
subspace above with cosine and sine columns. 

111. LINEAR ALGEBRAIC PRELIMINARIES 

When we say that the signal obeys the linear subspace 
model z = HB, we are saying that the vector z E RN actually 
lies in a p-dimensional subspace of RN which we denote 
( H ) .  The subspace ( H )  is the range of the transformation 
H .  It is spanned by the columns of the matrix H. These 
columns comprise a basis for the subspace, and the elements 
of B = (0, O2 . . . are the coordinates of z with respect to 
this basis. Similarly, the interference S4 lies in a t-dimensional 
subspace of E N .  This subspace, spanned by the columns of 
S ,  is denoted (S). 

Together, the columns of the concatenated matrix ( H S )  
span the(p + t)-dimensional subspace ( H S ) .  This subspace 
is illustrated in Fig. 2. The typical orthogonal projection of 
y E EN onto (HS)  is denoted P ~ s y ,  where PHS is the 
projection 

PHS = [ H , S ]  [ [H,S]TIH,S]] - l [H,S]T.  (3:l) 
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null spaces of P p l  
S 

and P s  are ( P i H ) I  and (S)l: 

~ p g H  = P ~ H ( H ~ P & H ) - ~ H ~ P ~  = P ~ P P ~ H P ~  

P s  = S(STS)-lST. (3.4) 

We will simplify our notation by defining the matrix G = 
PhH,  the subspace (G) = ( P I H  , and the projector PG = 
PpgH.  Then we may summanze our decomposition of PHS 
as 

<H> 

s )  

p H s  = EHS ESH (i) decompositii of R N 
<PQlH> = P s  + PhPGPh 

(3.5) 
A PG = ~ p l  H = P ~ E H S .  

S 
U) decomposition of < HS > The corresponding identity for P ~ s  is 

pks = I - PHS = I - PS - P ~ P G P ~  
<H> 

= P h P b P i  = P i ( I  - EHS)P$.  (3.6) 

Note that Pi - Phs is just the projection 

P& - P ~ S  = P $ P , P ~  = P ~ E H S P $ .  (3.7) 

(3.6) and (3.7) are key identities. They will allow us to write 
quadratic forms in measurements y as follows: 

Y ’ ( P ~  - ~ h s ) y  = ~ ‘ P ~ P G P ~ Y  = Y ~ P ~ E H S P ~ Y  

psy\ < s > 

Fig. 2. Signal and interference subspaces, and various projections onto them. 

yTphSy = Y ’ P ~ ! J P ~ P $ ~  = Y ~ P $ ( I  - E H ~ ) P Q Y .  
As illustrated in the figure, this projection may be decomposed 

ways: 
with respect to the subspaces (H) and (S) in two different (3.8) 

These quadratic forms are fundamental to our study of the 
GLRT. 

Note: Whenever the subspace H is the rank- 1 matrix z, then 
P h s  is P i s  = P i P h P i  = Ph(I - E*s)P,”, where 
PG is the rank-1 orthogonal projector PG = P P l z  = 

Piz(zTP$z)-’zTPh and EHS is the rank-1 oblique pro- 

jection P a s  is resolved into oblique projections EHS and jector E H S  = z(zTPhz)-lzTph* These are the projectors 
that arise in the study of known-form signal detection prob- 

(H) and (S) and respective null spaces (S) and (A): lems. 

p H s  = EHS + ESH 
P H s  = p s  + Ppl  H .  (3.2) 

S 
S 

In the first of these decompositions, the orthogonal pro- 

have respective range spaces where and 

EHS = H ( H ~ P ~ H ) - ~ H ~ P &  
ESH = S(STPbS)-’STPfi 

E H ~ H  = H ;  EHSS = 0 

ESHS = S ;  ESHH = 0. (3.3) 

That is, any vector y E (HS) may be written as y = 
HB + S4 = PHSY = (EHS + E s H ) ~ .  

The second decomposition resolves P H ~  into the orthog- 
onal projections P s  and P p l  H .  The subspace ( P h H )  is 

S 
the subspace spanned by columns of the matrix P i H ;  the 
projector P i  projects onto the subspace (S)l. Geometrically, 
the subspace ( P i H )  is the part of (H) which is unaccounted 
for by the subspace ( S )  , when (H) is resolved into (S) @ (S) I. 
The ranges of PPl  H and P s  are ( P h H )  and (S), and the 

S 

IV. THE GLRT AND ITS NATURAL INVARIANCES 
The question we pose is this: “What can we say about the 

(generalized) likelihood ratio when unknown parameters are 
replaced by maximum likelihood estimates (MLE’s) of them?” 
In other words, what kinds of invariances does the estimated 
likelihood ratio have, and how is it distributed? As we shall 
see, these questions underlie a systematic discussion of the 
GLRT, its invariances, and its optimality. 

When the parameters (ai,a!) are replaced by their 
MLE’s(Bi, 8?), then the corresponding MLE of the likelihood 
ratio is called the generalized likelihood ratio (GLR): 
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Note that a, = @i,i), whereas So = (O,’$), with 4 differing 
under H1 and Ho. Thus, in this formula, ii1 and EL0 are the 

v. KNOWN SIGNAL IN SUBSPACE 
INTERFERENCE AND NOISE OF KNOWN LEVEL 

The problem here is to test HO : y = S4 + n versus 
H1 : y = ,uz+S4+n where p > 0. The signal z is known, the 
subspace interference S4 lies in the rank-t subspace (S), and 
the noise n is drawn from the normal distribution N[O, a21] 

MLE’s 

n 1 = y - f i H 8 - S $  

(4-2) jL0 = y - s+. 
with a’ known. We may write the detection problem as a test . 
of distributions: We shall have more to say about these MLE’s shortly. When 

a’ is known, then there is no need to estimate a’, and it will 
be convenient to replace the GLR by the logarithmic GLR 

H O  : y : N[Sd, 211 versus : y : N[pz + ~ 4 ,  a24. 
1 (5.1) 

Ll(y) = lni(y) = ;;Z [ I l i L O l l ;  - ~ ~ i i l ~ ~ ~ ~ ~  (4.3) 

When 2 is unknown, then 6: = & lliil[i. Then it will be 
convenient to replace the GLR by the (N/2)-root GLR 

w e  are testing the hypothesis that the mean of the distribution 
lies in the intersection of the subspace (zS) and the positive 
half-line of the subspace (z). 

MLE’s: The noise defined in (2.6) is 

(4.4) 

These two forms will play a key role in our studies of 
invariance. Although it is a slight abuse of terminology, we 
shall refer to Ll(y) and Lz(y) as GLRs. 

The GLRT: The generalized likelihood ratio test (GLRT) 
is a natural extension of the Neyman-Pearson likelihood ratio 
test: 

The MLE’s for ii are* (4-2) 

A1 = y - [z, SI cL1 

i i o  = y - sio. (5.3) 
[ i l l  

The subscripts on the estimates remind us that the estimates 
are dependent upon the hypothesis. 

If we proceed as if p is unconstrained to be non-negative, 

1 - H1, L(Y) > rl 

pFA = sup EH~d(y) = sup > r l l H O l  (4.5) 
then the MLE’s for f i  and 4 are obtained by writing Ez.y 
as sj2 and Eszy as $4 [SI: where L(y) is &(y) or Lz(y), depending on whether or not o2 

is known. The function d(y) selects H I  when the GLR L(y) 
exceeds a threshold 77. The sup in (4.5) is the sup over all 
parameters (p, c2) under Ho. When the distribution of L(y) 

desired constant false alarm rate (CFAR) PFA. The probability 
of detection is 

b = (zTP+-lzTP$y 

3, = (STP$S)-’STP,ly 

io = (STS)-lSTy. (5.4) 

is known under Ho, then the threshold q may be set to give a 

The estimate b is distributed as N [ p ,  ~ ’ ( Z ~ P $ Z ) - ~ ]  under 
H I ,  and the estimates ai are distributed as N[4,  a2(STS)-’] 

(4.6) 

Zrzvariance ofthe GLRT: We shall say that the GLRT is 
7-invariant if the GLR L(y) is invariant to transformations 
T E 7: 

and N[4,  a2(STP$S)-l] under their respective hypotheses. 
This makes them ML, MVUB, etc. (see Chapter 3 in [l]). 

If we now enforce the constraint that b1 2 0, then the 
MLE’s are 

L(T(y)) = L(Y); T E 7. (4.7) 

By studying the invariance class 7, we gain geometrical in- 
sight into the mathematical structure of the GLR. Furthermore, 
we will be able to show that, of all detectors that are invariant- 
7, the GLRT is the uniformly most powerful (UMP). This is 
the strongest statement of optimality that we could hope to 
make about a test of HO versus HI, meaning that the GLRT 
cannot be improved upon by any detector which shares its 
invariances. We will argue that the invariances are so natural 
that no detector would be accepted which did not have them. 

With these preliminaries established, we now undertake 
a study of four closely related problems, ranging from the 
detection of known-form signals in subspace interference and 
Gaussian noise to the detection of subspace signals in subspace 
interference and Gaussian noise of unknown level. 

fi1 = max(0, ji) 
b 5 0  

. (5.5) { (STP$S)-lSTPjy, ji > 0 

n 1 =  { 

$1 = 

The corresponding MLE’s for the noises nl and no are 

PhY, b 5 0  

PiSY, f i > o  
i i o  = P i y .  (5.6) 

GLR: With these results for the estimated noises, we may 
write the logarithmic GLR as 
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less than or equal to zero. The random variable ( T - ~ P P ~ ~ ~  
is distributed as follows: 

1 CL 
- PPl ,y : N [ - Pp1 zz, Ppgz] . (5.10) 
O S  f J S  

Therefore, ( T - ~ ~ ~ P  I y is chi-squared distributed with one 
degree of freedom (the rank of P P l z )  and noncentrality 

parameter X2 [I]: 

PSZ 
S 

/ <Pix>'  : orthogonal subspace 

Fig. 3. 
interference and noise of known level. 

Invariances of the GLRT for detecting known signal in subspace 

Invariances: The GLR Ll(y) is invariant to transforma- 
tions T E 71, where 71 is the set of rotations and translations 
of y in the space (P&z)l. However, since translations sub- 
sume rotations and translations, we say that the GLR is 
invariant to translations in the space ( P & z ) l .  This ( N  - 1)- 
dimensional subspace is illustrated in Fig. 3. Why is L1(y) 
invariant-%? Because ji(Ty) = ,G(y + E )  = b(y) whenever 
- v E (P&z)l and L1(Ty) = Ll(y + E )  = Ll(y). These 
invariances are illustrated in Fig. 3. Furthermore, if 

j i < o  

Ll(yl)  = Ll(y2), then there exists a transformation T E % 
such that y, = T(y,). This makes the logarithmic GLR a 
maximal invariant statistic [7], meaning that every 71-invariant 
test of HO versus H I  must be a function of Ll(y). 

The subspace (P&z) is the space where the signal z lies 
after it has passed through the null steering operator Pi. Any 
component of the measurement y that lies in the subspace 
orthogonal to (P&z) is-and should be-invisible to the 
matched subspace filter PPl z. Therefore, the invariances of 

S 
Ll(y) are, indeed, the natural invariances for this problem. 

Optimality and Performance: The logarithmic GLR L1 (y) 
is the unique invariant statistic for testing HO versus H1 in 
the sense that every %-invariant test of HO versus H1 must 
be a function of it. The logarithmic GLR has a mixed discrete- 
continuous distribution because of the way it is defined with 
respect to ji. The distribution of the matchedfilter statistic ji is 

The probability that ji 5 0 is therefore 

y (p )  = P[ji 5 01 = P[N[;(zTP&z)1/2, 11 5 01. (5.9) 

The notation P [N[m, (T'] 5 03 denotes the probability that 
a normal random variable with mean m and variance (T' is 

With these results, we see that the GLR Ll(y) has a mixed 
distribution which we write as 

(5.12) 

That is, z = Ll(y) has discrete probability mass of y (p )  at 
z = 0 and continuous probability (1 - y(p))xT(X2) on the 
positive real axis. The distribution of Ll(y) is monotone in 
the parameter p 2 0, so by the Karlin-Rubin theorem [7] the 
GLRT 

z = Ll(Y) : Y(P)@) + (1 - r(jL))xW). 

j i 5 0  
Ll(Y) = { 3y'Pp,zy, I; > 0 

I; = (zTP+-'zTP&y (5.13) 

is uniformly most powerful (UMP) invariant for testing HO 
versus HI. This is the strongest statement of optimality we 
could hope to make about a detector of HO versus HI.  The 
false alarm and detection probabilities are 

PFA = (1 - ~ ( 0 ) )  (1 - P[x?(o)  I 711) 

P D  = (1 - ?(P I )  (1 - p[x?(X2) 5 VI) 

y ( p )  = P[N[;(zTP&z)'/2,1] 5 01 
2 

x2 = L T P & z .  (5.14) 

The noncentrality parameter X2 is the SNR in units of power. 
We lend a different interpretation to L1 (y) by noting that it 

is a monotone function of ji. This means that we may replace 
the logarithmic GLR Ll(y) by the monotone function (there 
is no need to invent a new notation) 

(T2 

This is the familiar matchedfilter, censored to be nonnegative. 
The distribution of ( ~ ~ z ~ P & z ) - ~ / ~ z ~ P & y  is N [ X ,  11. 

Therefore, the GLRT 
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i : :  

0 2 4 6 8 10 12 14 16 18 11) 

SNR [dB1 

Fig. 4. 
level. 

ROC for known signal in subspace interference and noise of known 

Fig. 5. Detector diagram. 

is UMP-invariant with false-alarm and detection probabilities 

PFA = 1 - P[N[o, 11 i 73, 77 > o 
P D  = 1 - p[N[x,  11 5 V ]  

(5.17) x = -(zTP+)'/? P 
U 

2151 

The false alarm and detection probabilities are 

These results apply to the detection of rank-1 signals whose 
polarity can be changed by a reflection mechanism. As this 
problem is a special case of the more general problem to be 
treated in Section VII, we defer its more complete discussion 
until then. The results of this section generalize the results of 
[I], [51-[61. 

VI. KNOWN SIGNAL IN SUBSPACE 
I"RFERENCE AND NOISE OF UNKNOWN LEVEL 

The problem here is to test 

~o : y : N[S4, c24 versus : y : N[pz  + ~ 4 ,  a24; 
p > 0, a'unknown. (6.1) 

For this problem, the MLE's i r 0  and i i 1  remain unchanged 
from Section V, but now the estimated variances are 6: = 
Iliill12/N and 8; = )lir011~/N. (These results for 8; and 15.22 
are obtained by differentiating log-likelihood or by positing 
them and then using a variational argument.) 

GLR: The N/2-root GLR is 

It is actually more natural to reference &(y) to unity, in which 
case the monotone function L2(y) - 1 may be written The parameter X is the S N R  in units of voltage; X2 is the signal 

energy after it has passed through the null-steering operator 
f i L 0  

> o. LdY) - 1 = y'(Ph-P;s,y, (6.3) { O' Y'PkSY 

P i .  
The receiver operating characteristics (ROC'S) for this de- 

tector are given in Fig. 4, and the detector diagram is given 
in Fig. 5. Note the interference rejecting filter P i  followed 
by a matched filter. 

Note: When the test Ho versus HI is replaced by the two- 
sided test H1 : p # 0 versus H1 : p = 0, then the constraint 
that f i1  > 0 is not enforced. The logarithmic GLR is then 

We now Call h ( Y )  - 1 Simply h ( Y )  and use the identities Of 

(3.6) and (3.7) to write this GLR as 

1 
h ( Y )  = 7YTPp1 Y.  (5.18) 

SZ 
This statistic is invariant to T E 7 1 ,  and it has monotone 
likelihood ratio. Therefore, the test where PG is the projector PG = PPi ,,.. The GLR may also 

S 

is UMP-invariant. The distribution of Ll(y) is chi-squared 
with one degree of freedom and nonconcentrality parameter 
X2: 

Ll(Y) X W )  where E,,.. is the oblique projection 
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, < P t x  > : " s T a l  subspace" With these results we see that the GLR Lz(y) has a mixed 
distribution, which we write as 

z = L Z ( Y )  : y(p)S(z) + (1 - Y(p))Fl,N--t--1(A2) (6.10) 

that is, z = Lz(y) has discrete probability mass of y(p)  at 
z = 0 and continuous probability (1 -y(p))F1,N--t-1(A2) on 
the positive real axis. The distribution of &(y) is monotone 
in p 2 0, so the GLRT 

plane of < p i x  >I 

1 Hl, L d Y )  > 77 

0 Ho, L n b )  I77 
<P:x >' : orthogonal subspace 

Fig. 6. Invariances for Lz(y). 

Invariances: The GLR &(y) is invariant to transforma- 
tions T E z, where 3 is the set of rotations in (P&z)I  
(rotations around ( P h z ) )  and scalings y > 0 illustrated in 
Fig. 6. That is, L2(Ty) = Lz(y). Furthermore, if Lz(y,) = 
L2(y1), then there exists a T E '& such that y, = T(yl). 
(Fig. 6 is geometrically convincing, but a rigorous proof 
requires an algebraic proof.) This. makes the GLR Lz(y) a 
maximal invariant statistic. 

Again, the subspace P i 2  is the subspace where the signal 
z lies after it has passed through the null-steering operator 
P i .  The ratio of energies that define Lz(y) are-and ought 
to be-invariant to rotations around this subspace and to scal- 
ings, because scalings are what introduce unknown variances. 
Therefore, the invariances of L2(y) are, indeed, the natural 
invariances for this problem. 

Optimality and Pe$ormunce: The (N/2)-root GLR &(y) 
is the unique invariant statistic for testing HO versus H I .  The 
distribution of the statistic f i  is the distribution given in (5.8), 
and the probability that f i  5 0 is given in equation (5.9). 
The statistics g - l P ~ P i y  and g - ' P b P i y  are distributed 
as follows: 

K1PGPi?J  : N [I P P l Z ,  P G P i ]  
0 G S  

(6.7) a - ' P h P i y  : N[O, PGPs] .  I l  

f i  = (zTPhz)- 'zTPiy (6.1 1) 

is UMP-invariant for testing Ho versus HI.  The false alarm 
and detection probabilities are 

We may lend a different interpretation to the GLR Lz(y) 
by noting that it is a monotone function of 9; that is, 

Lz(y) = ( N  - t - 1) 1/2D2 (6.13) 

Furthermore, D < 0 iff f i  < 0. This means that L2(y) may 
be replaced by 

&(y) = max[O, D]. (6.15) 

It is easy to see that these two statistics are independent. This 
means that the following quadratic forms are independent x2 
random variables: 

1 
0 2  

The statistic D is the ratio of a N [ ( P / a ) ( z T P & ) 1 / 2 ,  11 
radom variable and an independent, scaled Square root Of a 
X ~ - , - ~ ( O )  random variable. This makes D a t-distributed ran- 
dom variable with parameters (1, N - t - 1) and noncentrality 
parameter A. The UMP-invariant detector may therefore be 
written 

-yTPiPGPhY : X ' ( A 2 )  

This means that the ratio is F-distributed with degrees of 
freedom (1,N - t - 1) [l]: 

The noncentrality parameter A2 is defined in (5.20). 
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Fig. 7. ROC curves for known signal in subspace interference and noise of 
unknown level. 
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Fig. 8. Detector diagram. 

The false alarm and detection probabilities are 

The ROC curves are given in Fig. 7, and the detector diagram 
is given in Fig. 8. In Fig. 7, the probability of false alarm 
is fixed at PFA = 0.01, and the sample size is varied from 
N = 2 to N = 32 in powers of 2. The normal ROC curve is 
plotted for reference. Note that the detector of Fig. 8 uses an 
interference rejecting filter followed by a matched filter in the 
top branch and a noise power estimator in the lower branch. 
In fact, yTPhP&Phy/(N - 1) is a maximum likelihood 
estimator of c2. The results of this section generalize results 
of [11-[21, [51-[61. 

VII. SUBSPACE SIGNAL IN SUBSPACE 
INTERFERENCE AND NOISE OF KNOWN LEVEL 

This problem is a generalization of the problem solved in 
Section V. The signal px is replaced by the signal pHB, where 
(H) is a rank-p subspace. Now, as the elements of B may be 
positive or negative, we do not constrain pHB to lie in any 
particular orthant of (H). Therefore, p is absorbed into B and 

I < G f  

Fig. 9. Invariances for L1. 

the problem is to test the hypotheses 

For this problem, the MLE’s i i o  and irl are 

GLR: The GLR Ll(y) is 

(We have used the identity of (3.7).) The identical quadratic 
forms Y P ~ P G P ~ Y  and y T P ~ y  are generalized energy de- 
rectors. Recall that G = PhH. 

Invariances: The GLR Ll(y) is invariant to transforma- 
tions T E 13 that rotate y within (G) (or around (G)’) and 
add a (bias) component in (G)’. Furthermore, if Ll(yl) = 
Ll(y2), then there exists a transformation T E ‘& such that 
y2 = T(y,). This makes the logarithmic GLR a maximal 
invariant statistic, meaning that every 7s-invariant test of HO 
versus H1 must be a function of it. 

The space (G) is the space where z = HB lies after it 
has passed through the null-steering operator Pi .  As B is 
unknown and unconstrained, the signal to be detected can lie 
anywhere in (G). No signal of constant energy in (G) should 
be any more detectable than any other, so Ll(y) should be 
invariant to rotations in (G). The detector is-and should 
be-invariant to measurement components orthogonal to (G). 
These natural invariances for this problem are illustrated in 
Fig. 9. 
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Oprimality and Performance: The logarithmic GLR L1 (y) 
is the unique invariant statistic for testing HO versus H I .  It is 
a quadratic form in the projection operator P ~ P G P ~ .  This 
quadratic form may be thought of as the norm-squared of the 
statistic P G P ~ Y ,  which is distributed as 

Therefore, the quadratic form Ll(y) = $Y~P$'GP~Y is 
x 2  distributed [l]: 

This distribution is monotone in the noncentrality parameter 
X2, meaning that the test 

(7.6) 

is UIW-invariant for testing HO versus H I .  Its false alarm 
and detection probabilities are 

The ROC curves for the GLRT are given in Fig. 10, and the 
detector diagram is given in Fig. 11. In Fig. 10, the probability 
of false alarm is fixed at PFA = 0.01, and the dimension of the 
subspace (H) is varied from p = 2 to p = 8 in steps of 2. The 
normal ROC is plotted for reference. Note that the detector 
of Fig. 11 decomposes into a subspace filter for interference 
rejection, a subspace filter matched to the remaining signal, 
and an energy computation. These results generalize the results 
of [I], [31, [51-[61. 

VIII. SUBSPACE SIGNAL IN SUBSPACE 
"TERFERENCE AND NOISE OF UNKNOWN LEVEL 

This problem is a generalization of the problems solved in 
Sections VI and VII. The signal pz is replaced by the signal 
pH8,  and the noise level a' is unknown. The parameter p is 
absorbed into 8, and the problem is to test the hypotheses 

For this problem, the MLE's are those of (7.2). The GLR 

' 0  '2 4 6 8 10 1'2 14 16 18 20 

SNR IdEl] 

Fig. 10. 
and broadband noise of known variance. 

ROC curves for detecting subspace signal in subspace interference 

interference matched subspact energy 
rejection filter computation 

Fig. 11 .  Detector diagram. 

Lz(y) is therefore 

It is natural to reference Lz(y) to unity, in which case the 
monotone function LZ(y) - 1 is 

(8.3) 

(We have used the identities of (3.6) and (3.7).) In what follows 
we shall call L2(y) - 1 simply La(y). 

Invariances: The GLR Lz(y) is invariant to transforma- 
tions T E 14 that rotate in (G) (or around ( G ) I )  and 
non-negatively scale y, as illustrated in Fig. 12. They leave 
the angle v invariant. Furthermore, if L2(y1) = L2(y2), then 
y, = T(y, )  for some T E 14. This makes Lz(y) a maximal 
invariant statistic. 

Again, (G) is the subspace where z lies after it has passed 
through the null-steering operator P i .  The detector should be 
invariant to rotations in this space for the reasons given in 
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Fig. 12. Invariances for Lz. 

Section VII, and it should be invariant to scalings that intro- 
duce unknown variances. These are the natural invariances for 
the problem. 

Oprimality and Pedormance: The (N/2)-root GLR is the 
unique invariant statistic for testing HO versus H I .  It is 
the ratio of quadratic forms in P ~ P G P ~  and P h P b P h .  
Each of the quadratic forms may be thought of as a norm- 
squared of a statistic P G P ~ Y  or PbP$y.  These statistics 
are, respectively, distributed as 

P b P h y  : N [ 0 , a 2 P b ] ,  Ho or HI.  (8.4) 

Furthermore, the random vectors P$PGY and P h P e y  are 
uncorrelated (and therefore independent in this multivariate 
normal case) by virtue of the fact that P ~ P G P $ P ~  = 
P G P b  = 0: 

E P G P ~ ( Y  - H6)yTP$Pb = P G P $ P ~ P ~  = 0 .  (8.5) 

This means that the quadratic forms $ y T P h P ~ P h y  and 
$ y’P$PbP$y are independent x2  random variables: 

The parameter s is the dimension of (S)’-, namely s = N-t > 
p ,  the number of dimensions of RN not occupied by (S), 
and p is the dimension of (G) = (PhH) .  The noncentrality 
parameter X2 is 

The GLR ((s - p ) / p )  L2 is distributed as 

(8.7) 

‘0 z 4 fi 8 io 12 14 ifi 18 m 
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Fig. 13. 
and broadband noise of unknown level; p = 2 and N is variable. 

ROC curves for detecting subspace signal in subspace interference 

where F denotes an F-distribution with parameters p and s-p. 
This distribution is monotone in X2 2 0, so the GLRT 

is UMP-invariant for testing HO versus H I .  Its false alarm 
and detection probabilities are 

PFA = 1 - P[Fp,s-p(O) I 711 

P D  = 1 - P[Fp,s-p(X2) 5 771. (8.10) 

The ROC curves for the GLRT are given in Figs. 13 and 
14, and the detector diagram is given in Fig. 15. In Fig. 13, 
the probability of false alarm is fixed at PFA = 0.01, the 
dimension of the subspace ( H )  is p = 2, and N is varied 
from N = 8 to N = 64 in powers of 2. The ROC for 
the x 2  distributed matched subspace detector is plotted for 
reference. In Fig. 14, the probability of false alarm is fixed 
at PFA = 0.01, the number of measurements is fixed at 
N = 16, and the subspace dimension is varied from p = 2 
to p = 8 in steps of 2. The normal ROC is plotted for 
reference. The detector of Fig. 15 decomposes into a subspace 
filter for interference rejection, a subspace filter matched to 
the remaining signal, and an energy computation, divided by 
the same operations with the matched subspace filter replaced 
by an orthogonal (or “noise”) subspace filter. These results 
generalize the results of [l] ,  [5]-[6]. 

In summary, the GLRT is UMP invariant for detecting sub- 
space signals in subspace interferences and background noise 
whenever the noise is MVN. The conclusion holds whether 
or not the noise variance is known. When the interference 
is absent, then P I H  = H and the GLRs are y T P ~ y  
and YTPHY/YTPHy, which are distributed as $(A2) and 
Fp ,~-p(X2)  as discussed in [l]. The parameter X2 is then 

s 
A2 = $TZ. 

IX. CONCLUSIONS 

3 - P  Fp,s-p(X2) under H I  (8.8) The generalized likelihood ratio test (GLRT) is a standard 
- P L z ( y )  ’ { Fp,s-p(0) under HO procedure for solving detection problems when (nuisance) 
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Fig. 14. 
and broadband noise of unknown level; p is variable and N = 8. 

ROC curves for detecting subspace signal in subspace interference 

Fig. 15. Detector diagram. 

parameters of the underlying distribution are unknown. Typi- 
cally, nuisance parameters are things like bias, amplitude and 
phase of sinusoidal interference, noise variance, and so on. 
These parameters are of no intrinsic interest, but they defeat 
our efforts to state properties of optimality if we proceed along 
conventional lines. 

The GLRT is easy to derive, and sometimes its distribution 
can be determined. In these cases, a detection threshold may be 
set to achieve a constant false alarm rate (CFAR). In spite of its 
tractability as a bootstrapping technique for solving detection 
problems, the GLRT has been difficult to characterize in terms 
of its optimality properties for the class of problems studied 
in this paper. In fact, it has not been clear whether or not the 
GLRT has any optimality properties at all for this class. So the 
question has remained, "can the GLRT be improved upon?" 

In this paper we have constructed GLRT's for four detection 
problems which span a large subset of the practical detection 
problems encountered in time series analysis and multisensor 
array processing. For each class of problems we have derived 
the GLRT and established its invariances. Then we have drawn 
on the theory of invariance in hypothesis testing to establish 
that, within the class of invariant detectors which have the 
same invariances as the GLRT, the GLRT is uniformly most 
powerful (UMP) invariant. This is the strongest statement of 
optimality one could hope to make for a detector. For each 
class of problems, the invariances of the GLRT are just the 
invariances one would expect of a detector that claims to be 
optimum. The conclusion is that the GLRT cannot be improved 
upon for the classes of problems studied in this paper. 

The geometrical interpretation of our results is this: Think 
of the plane < S >I in Fig. 2 (i) as a backplane onto which 

measurements y are projected to produce the interview-tree 
vector Ps I y. This projection can be resolved into its two 
orthogonal components, PGPS I y and P,'Ps I y. These 
two components are tested to see which of two competing 
hypotheses is in force. For detecting a deterministic rank one 
signal in interference and additive noise, when the noise level 
os known, the component PGP, I y is tested to see if it is 
positive and large enough. If the noise level is unknown, this 
component is tested to see if it is positive and large enough 
compared with the orthogonal component P,'Ps I y. That 
is to say, the angle to the subspace < G > must be less 
than ~ / 2  radians and small enough. For detecting a subspace 
signal in interference and noise of known level, the energy 
in the component P G P ~  I y is tested to see if it is large 
enough. If the noise level is unknown, then the energy is tested 
to see if it is large enough compared with the energy in the 
orthogonal component P,'Ps I y. That is to say, the angle 
to the subspace < G > must be small enough. In summary, 
it is essentially the Pythagorean decomposition of Ps I y at 
the subspaces < G > as < G >l. 

Our final remark is that each of the detectors studied in this 
paper may be realized as a generalized energy detector or as 
a ratio of generalized energy detectors. A typical detector first 
projects data onto a low-rank subspace where interference is 
removed. Such an operator is usually called a null steering 
or interference rejecting filter. Then the detector projects the 
data onto a low-rank subspace that is matched to the signal 
that remains in the data. This filter is usually called a matched 
subspace filter or matched field filter. The energy of the filter 
output is computed and compared with a threshold. 

When projectors are replaced by time-invariant, frequency- 
selective digital filters, then the detectors look like band- 
selective filters followed by energy detectors. It is not hard 
to imagine the low-rank subspaces of EN replaced by low- 
rank subspaces of & which are spanned by Fourier bases, 
wavelet bases, and the like. Then all of the formulas of this 
paper go through, with the formulas for P i ,  PG, P b ,  EHS,  
and ESH replaced by their analogs. This produces a theory 
of GLRT's that can be implemented in subbands of e,. The 
details of this extension will be reported in future work. 
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