
ANALYSIS OF KERNEL EFFECTS ON OPTIMISATION MISMATCH IN CACHE
RECONFIGURATION

John Shield, Peter Sutton, and Philip Machanick

School of Information Technology and Electrical Engineering
 The University of Queensland

 Brisbane Australia 4072
 email: xue@itee.uq.edu.au, p.sutton@itee.uq.edu.au, philip@itee.uq.edu.au

ABSTRACT

The effect of kernel operations on cache optimisations in a
soft-core reconfigurable system is important for dynamic
cache switching design. Considering kernel operations
changes the subset of cache configurations that would be
chosen for dynamic cache switching and also the decisions
on when to cache switch. The results show that kernel
operations can skew the effectiveness of application driven
cache optimisations up to 20% over the original execution
time. This skew is shown by mapping the performance of
the applications both with and without kernel operations.
The majority of the kernel operations is due to trap events
generated by system calls like memory allocation or file
reading. A cache configuration analysis methodology for
fast searching of the design space is also explained and was
used to find relevant changes due to kernel interference.

1. INTRODUCTION

Dynamic cache switching [1] requires the performance
difference between custom caches to be optimised as part of
the switching algorithm. In dynamic cache switching, is it
not enough to have an optimised cache that is better than
the norm. The cache that is being switched to has to give a
performance benefit over the currently active optimised
cache. While significant work has been done on cache
optimisations for applications [2-7], the optimisation
difference (optimisation mismatch) between customised
caches has not been explored.
 The key difference from previous work in cache
reconfigurability; is previous work was for general purpose
processors, or was implemented on a softcore in a way best
suited for general purpose usage. The implementations did
not take into account that only a subset of applications are
frequently run on an embedded system.
 Dynamic cache switching means the reconfigurability
can be specialised for the main applications of the system at
synthesis time of the softcore processor. Instead of the full
range of cache reconfigurations like in other systems, a
subset is implemented. This specialisation of the cache

reconfigurability means better usage of hardware resources,
one of the main limiting factors on an embedded system.
 Research into optimisation mismatch of customised
caches is critical for synthesis tools deciding the subset of
cache configurations to cater for on the embedded system.
 Kernel effects on hardware cache optimisations are not
present in previous research on cache reconfigurability
[2-7], and there is no research on the effect of the kernel on
the optimisation mismatch. These kernel effects are
important in dynamic cache switching as the majority of the
kernel operations are scattered throughout the process. The
dispersion of kernel operations makes cache switching on
every kernel event untenable. Instead kernel operations
need to be considered as part of the application analysis.
 It is obvious that the kernel will have an affect on cache
optimisations. The question is whether the kernel operations
could change the subset of cache configurations chosen and
also the decisions on when to cache switch. These things
are determined by optimisation mismatch analysis.
 Methodology for determining optimisation mismatch
and exploration of the effect of the kernel on optimisation
mismatch are presented in the following sections.

2. SUPPORT TOOLS FOR ANALYSIS

The support tools consisted of a hardware test platform, a
custom data gathering board, and a cache simulator. An
overview of the support tools that were built for this
research can be seen in Fig. 1.

Fig. 1. Hardware for capturing cache traces

Test Platform ML401 Board

IL
M

B

MicroBlaze
uClinux

SDRAM

BRAM

Memory Bus
Recorder

DL
M

B

OP
B

Data Gathering Board
Data

Receiver Data
Parser

FIFO
Buffer

MicroBlaze

Timing
Information

Ribbon
Cable

IL
M

B

Simulation
and Analysis

Ethernet

 The test platform used a Xilinx ML401 board, running
uClinux [8] on a MicroBlaze softcore processor [9]. A
custom hardware module was built to measure the bus
accesses on the board during runtime and transfer the data
to a data gathering board. This is downloaded to the PC for
analysis, where the data is filtered to remove memory
latencies but preserve other latencies.
 A simulator was built that adds the timing behaviour of
the cache being explored. It returns the number of simulated
clock cycles that data samples took to run with each cache.
This is the execution time of a sample (of an application)
when run on a cache.
 The sample lengths vary in length so execution time for
a result is first divided by the control cache's execution
time, where the control cache was chosen with theoretically
ideal cache settings. This gives a normalised execution
time, an execution time percentage (ETP) relative to the
control cache. To account for variances in the application
and the operating system, multiple samples were taken so a
mean ETP value is used with all the presented data although
not explicitly mentioned.
 ETP difference (∆ETP) is used to show a performance
difference, either between two applications for the same
cache, or one application between various caches.
 At the moment the main performance metric for
dynamic cache switching is execution time. It can be
extended to consider energy at a later date.

2.1. Mapping Multi-Dimensional Cache Behaviour

Current work on cache optimisations concentrates on
algorithms for cache optimisations, which cannot easily be
applied to new research in analysis.
 This problem led to a methodology for graphing
multiple dimensions of cache attributes as a fast way for
narrowing down the design space. For the cache behaviour
of an application, four dimensions of cache attributes were
considered in this experiment. These were Memory Size,
Ways, Block Size, and Replacement Policy.
 Graphing only one cache attribute at a time is
problematic as the results are usually different depending
on what the other cache attributes are set to. This is because
the behaviour of each dimension of cache attribute is
usually not independent. Instead results need to be
organised in a way that can easily show application based
cache behaviour modified by multiple attributes. This is
useful for design work as a single optimal solution neglects
data which is not explicitly placed in the algorithm, things a
designer will often need to consider.
 A straight forward graph everything approach does not
work well. As shown in Fig. 2 the individual graphs for
ways (a) are combined to create the scatter graph in (c).
This makes it difficult to analyse attributes as it is not
obvious what attribute the trends in the graph belong to.

Fig. 2. Mapping Multi-Dimensional Cache Behaviour

 In (c) the trends in memory size and block size confuse
what is happening with the ways. This variance caused by
other cache attributes can overwhelm the changes of
interest for the attribute being studied.
 To fix this, what is needed is the variation of the single
cache attribute with how it interacts with the other cache
settings, but without the unrelated differences caused by the
other cache settings.
 As shown in (b) and (d), this is done by subtracting each
data point from the control value (of the attribute being
graphed) for the same cache settings. This removes the Y
axis offset of the original single dimension graph and leaves
only changes that relate directly to the attribute of interest.
 To further order the data, the data points are organised
by two attributes on the X axis. Multiple graphs are made
with the data reorganised along the X axis by the main
attribute of interest and a second attribute. This helps to
show how varying one cache attribute can affect how
another cache attribute behaves.
 The result is one set of data points tailored for each of
the cache attributes, with multiple graphs used to redisplay
those data points in different ways to highlight relationships
between multiple cache attributes.
 The analysis system used UNIX shell scripts to generate
mean ETP difference (∆ETP) tables from the simulator
results. These tables were then pasted into an Excel
template that generated the various scatter graphs.
 Finding how cache configuration affects the application
is simply a matter of looking through the graphs for
correlation of the data points. It will clearly show trends
that depend on single and multiple cache attributes. When
the data is zero there no correlation with the attributes.
 This is used for finding points of interest in the design
space or seeing overall trends in optimisation for various
cache settings. It is part of the methodology used for
analysing the kernel effects. Examples of graphs generated
by this technique are shown used in previous work [1].
Future work intends to integrate this methodology with the
cost of hardware overheads and possibly energy usage.

0%

4%

8%

100%

120%

140%

100%

120%

140%

a) Graphing ways with other
cache attributes fixed.

c) Combined graph for ways
under many cache settings.

Graph of cache ways
(64 Blocks, 8k, LRU)

0%

4%

8%

Graph of cache ways
(64 Blocks, 8k, LRU)

b) Y offset for control attribute
(value for 16 ways) is subtracted.

Graph of all combinations organised
by memory size and ways

Graphing Memory Size
and Ways

Combine Graphs

Combine Graphs

d) Combined graph with data
tailored for viewing way trends.

Remove
Y offset

3. KERNEL IMPACT ON CACHE OPTIMISATION

Kernel operations occur on context switch, trap events
(software interrupts) and IRQs (hardware interrupts).
Context switching occurred when other processes were run
instead of the application. Trap events occurred when the
application calls the kernel to deal with hardware resources.
While hardware interrupts were mostly generated by timers.
 There are two direct sources of impact on cache
optimisations when considering the kernel. First, the cache
may flush part of the cached data when the kernel uses the
same cache locations. Second, the kernel itself is using the
cache for what it is doing and so optimisations will affect
how fast the kernel runs.
 Indirectly, the kernel also impacts on optimisations with
context switches, where it is likely that a large portion of
the cached data will be overwritten by another process and
that data will need to be refetched.
 The main question to be answered is whether kernel
effects would change the optimisation mismatch analysis
such that the subset of cache configurations chosen and the
decisions on when to cache switch are also changed. This is
the case when the good solutions of an application with
kernel considered are different from the good solutions
without the kernel considered.

4. RESULTS

Some benchmarks from the Mibench test suite [10] were
ported to MicroBlaze and run on the uClinux. Automotive,
network, security and telecomm were chosen as likely
subsections of the test suite to be used in an embedded
system.
 Only the data bus is analysed as the benchmarks were
small and an instruction cache wouldn't be heavily utilised.
Direct sources of kernel operations will be covered, but not
analysis of inter-application interference patterns.

4.1. Initial Analysis

Fig. 3. Processing Time of Kernel Compared to Application

The breakdown of execution time for an application and the
kernel operations that occur without a scheduled context

switch is shown in Fig. 3. Background kernel processes that
are called by the process scheduler are not included in the
data as these are handled like another application.
 There is a high variability in the impact of the kernel on
applications, seen in Fig. 3. Mainly this was due to trap
events that are used whenever the application uses kernel
level resources. The scheduler operations, which make up
the interrupts, have a minimal impact under 3% of the
processing time when an application is being run.
 Only the applications that have significant kernel
operations are relevant for further analysis; Djisktra,
Blowfish, Rijndael, SHA, ADPCM, and CRC. Using the
methodology for mapping cache optimisations described in
section 2.1, the design space was further narrowed down to
memory sizes of 2KB and 8KB. These memory sizes were
the only ones that were significantly impacted by changes
in the cache settings.

4.2. Finding the Penalty when Disregarding Kernel

Fig. 4. Djisktra 8k Cache, Percentage from optimal ETP

Fig. 5. CRC 2k Cache, Percentage from optimal ETP

The results were graphed for the relevant applications under
8KB and 2KB memory sizes as seen in examples Fig. 4 and
Fig. 5. The graphs show the ∆ETP penalty (from the
optimal solution) for the various cache settings and also
show how adding the kernel operations change the penalty.
In many cases there is significant penalty with settings that
previously had little to no penalty. However, this does not
take into account the likelihood of a configuration being
used.
 To decide which cache configurations could realistically
be chosen when the kernel is not considered. An

0

5

10

15

20

25

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

With Kernel
Without Kernel

Djisktra Percentage from Optimal ETP with 8k Cache

Block 2 Bytes
Block Size and Ways

∆E
TP

 fr
om

 O
pt

im
al

 C
ac

he
 (%

)

Block 1 Byte Block 4 Bytes Block 8 Bytes Block 16 Bytes Block 32 Bytes Block 64 Bytes

0

1

2

3

4

5

1 2 4 8 16

Blowfish Percentage from Optimal ETP with 8k Cache

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16

∆E
TP

 fr
om

 O
pt

im
al

 C
ac

he
 (%

)

Block Size and Ways
Block 2 Bytes Block 1 Byte Block 4 Bytes Block 8 Bytes Block 16 Bytes Block 32 Bytes Block 64 Bytes

With Kernel
Without Kernel

Breakdown of Processor Time

0%

20%

40%

60%

80%

100%

D
jis

kt
ra

B
lo

w
fis

h

R
ijn

da
el

B
as

ic
m

at
h

SH
A

A
D

PC
M

B
itc

nt
s

C
R

C

FF
T

G
SM

Interrupts
Trap Events
Application

assumption was made that any configuration within 5%
∆ETP, from the optimal value, might be used in a design
for dynamic cache switching.
 This cache selection tolerance factor is a realistic trade
off tolerance in dynamic cache switching. Hardware
overheads may make it desirable for two applications to use
the same custom cache if they both run fairly well on it. Or
a slight reduction in performance can be made to reduce
hardware resource usage. As it is a trade off tolerance,
changes smaller than the maximum trade off still matter.
 With this assumption, kernel operations will have an
impact on the subset of caches chosen and the cache switch
decision; if the configurations meet the 5% tolerance (when
kernel is not considered), but are significantly worse when
the kernel is considered.
 The additional execution time incurred by the kernel can
add 42% (Djisktra at 8KB) over the normal execution time
when considering all cases. Narrowing the possibilities
down to a 5% cache selection tolerance, the Djisktra had an
additional 20% execution time, when kernel operations
were not considered.

Fig. 6. Comparing Kernel Penalty with Kernel Processing Time

 The amount of execution penalty that could be expected
from ignoring kernel operations is shown against the
amount of kernel processing time in Fig. 6. The penalty
involved, depended on how different the cache behaviour of
the application is compared to the kernel and how much the
kernel overwrites the cache data. Analysis of the Djisktra
program revealed that its trap events were generated by
memory allocation kernel functions being called. While
with the CRC and Blowfish the trap events were due to file
reading.

5. CONCLUSIONS

Kernel effects were found to change the optimisation
mismatch analysis and consequently change the subset of
cache configurations that are chosen and also the decisions
on when to cache switch. This happens when application-
directed cache optimisations are affected by kernel
operations. Kernel operations had impact of 20% additional
execution time in one case while almost no impact at all

some other cases. Analysis of the program code showed
that significant kernel operations in programs is mainly due
to trap events generated by system calls like memory
allocation or file reading.
 An analysis method for discovering application related
cache behaviour was also introduced, which allows
multiple dimensions of cache attributes to be graphed. This
was used as part of the research and was found to be a good
way to narrow down the design space in cache
configuration exploration.
 Future work that stems from the kernel analysis includes
tools that will identify which applications will call a large
number of kernel functions, and also whether they will
incur high cache penalties from doing so.

6. REFERENCES

[1] J. Shield, P. Sutton, P. Machanick, "Dynamic Cache
Switching in Preemptive Systems", in submitted to 17th
Conference on Field Programmable Logic and Applications,
Aug. 2007.

[2] Gordon-Ross, A., Vahid, F., Dutt, N., "Automatic tuning of
two-level caches to embedded applications," in Proc.
Design, Automation and Test in Europe Conference and
Exhibition, , vol. 1, pp. 208-213, 16-20 Feb. 2004.

[3] Gordon-Ross, A., Cotterell, S., Vahid, F., "Exploiting Fixed
Programs in Embedded Systems: A Loop Cache Example,"
IEEE Computer Architecture Lett. , vol. 1, no. 1, pp. 2-2,
Jan.-Feb. 2002.

[4] Zhang, C., Vahid, F., Najjar, W., "A highly configurable
cache architecture for embedded systems," in Proc.
Computer Architecture, International Symposium on, pp.
136-146, 9-11 June 2003.

[5] Chuanjun Zhang, Vahid, F., Lysecky, R., "A self-tuning
cache architecture for embedded systems," in Proc. Design,
Automation and Test in Europe Conference and Exhibition,
vol. 1, pp. 142- 147, 16-20 Feb. 2004.

[6] Hu, J. S., Kandemir, M., Vijaykrishnan, N., Irwin, M. J.,
Saputra, H., and Zhang, W., “Compiler-directed cache
polymorphism,” SIGPLAN Not. Vol. 37, no. 7, pp. 165-174,
2002.

[7] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu and
S. Dwarkadas, "Memory Hierarchy Reconfiguration for
Energy and Performance in General Purpose Architectures,"
Proc. of 33rd Intl. Sym. on Microarchitecture, pp. 245-257,
Dec. 2000.

[8] uClinux, http://www.uclinux.org/, January 2007.
[9] Xilinx, “MicroBlaze Processor Reference Guide”, UG081

(v6.0), June 2006.
[10] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T.

Mudge and R. B. Brown, “MiBench: A Free, Commercially
Representative Embedded Benchmark Suite,” in Proc. IEEE
4th IEEE International Workshop on Workload
Characterization, Dec. 2001.

0%

10%

20%

30%

40%

50%

60%

Djisktra Blowfish Rijndael SHA ADPCM CRC

Kernel Processing Time
Penalty at 8k Memory
Penalty at 2k Memory

Pe
rc

en
ta

ge
 K

er
ne

l P
ro

ce
ss

in
g

Ti
m

e
(%

)
C

om
pa

re
d

to
 K

er
ne

l E
TP

 P
en

al
ty

 (%
)

Comparing Kernel Penalty
 with Kernel Processor Time

