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Abstract—Motivated by increasing interest in energy efficient
modulations, we provide the first look at adaptive equalization
of biorthogonal signaling. While this modulation has historically
been considered only for use in narrowband systems without
intersymbol interference (ISI), recent attention has been given
to its use in ISI channels. Due to the fact that biorthogonal
modulation (BOM) results in a source that is not i.i.d., however,
classical blind adaptive equalization techniques cannot be di-
rectly applied to equalization of BOM signals. We first examine
minimum mean-squared error (MMSE) and least mean squares
(LMS)-based equalizers, and identify some peculiarities that arise
in equalization of BOM signals when compared to more tradi-
tional modulations like binary phase shift keying (BPSK). Next, we
present two novel blind algorithms for the adaptive equalization
of BOM signals: LTBOMB and TROMBONE. We discuss the
convergence properties of these algorithms, and demonstrate their
performance with numerical simulations.

Index Terms—Adaptive, biorthogonal modulation (BOM),
blind, energy efficient modulation, equalization, -ary biorthog-
onal keying (MBOK).

I. INTRODUCTION

I NCREASING amounts of available unregulated spectrum,
combined with an increasing demand for battery-operated

wireless devices has spurred an interest in modulation schemes
that give up some bandwidth efficiency in exchange for energy
efficiency. Biorthogonal modulation (BOM) or -ary biorthog-
onal keying (MBOK) is one such modulation scheme that has
recently been considered for use in several consumer wireless
standards, including the IEEE 802.11 WLAN standard [1] and
the ultra wideband IEEE 802.15.3a WPAN standard [2]. Though
BOM has been given serious consideration by standards bodies,
twice making it to the final round of the selection process, little
attention has been paid to BOM by the research community until
recently (e.g., [3]–[5]). In the WLAN and WPAN applications
where BOM has been considered, it is well known that inter-
symbol interference (ISI) will be present, and ISI is viewed to
be a serious impairment to acceptable performance.

BOM and other energy efficient modulation schemes are cer-
tainly not new [6], but their use in frequency selective chan-
nels has only recently been considered. For these modulation
schemes to ever be so deployed, some form of ISI compensa-
tion will be necessary. While the optimum detector in ISI is
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the maximum likelihood sequence estimator (MLSE), its com-
plexity is usually too high for practical implementation, and,
thus, suboptimal schemes are desirable. The only other work to
consider compensation for ISI in BOM systems is [5], wherein
the authors conduct a simulation study of a reduced state Viterbi
equalizer for BOM. However, the equalizer used in [5] requires
perfect channel knowledge, is not adaptive, and is still quite
complex since it requires sequence estimation.

Because a BOM source is non-i.i.d. at the chip level, the
adaptive equalization of non-i.i.d. sources is a related area of
research. However, the majority of work on adaptive filtering
of non-i.i.d. sources has been in the context of blind source
separation of convolutive mixtures [7], [8]. In that application,
the mixing matrix is prescribed to be tall, and the goal is to
adapt a multichannel filter to recover the source data. The
problem of interest here is fundamentally different since the
channel matrix is fat and constrained to be Tœplitz, with the
goal of adapting a single FIR filter. Also related is [9], where the
effect of source statistics on an adaptive algorithm is analyzed;
however, the focus there is on correlated sources rather than
non-i.i.d. sources.

In this paper, we address the issue of linear equalization of
BOM signals and propose two blind adaptive equalization algo-
rithms specifically for BOM. In Section II, we review the basics
of BOM, and present the system model and equalizer structure.
In Section III we discuss the issues that arise in using classical
approaches for adaptive equalization of BOM signals. In par-
ticular, we will present the design equations for the minimum
mean-squared error (MMSE) equalizer, as well as the equa-
tions for trained and decision-directed (DD) least mean squares
(LMS) adaptive algorithms. We also address the unsuitability
in using the two most popular classical blind algorithms—the
constant modulus algorithm (CMA) and the Shalvi-Weinstein
algorithm (SWA). While the MMSE and LMS equalizers for
BOM follow from straightforward application of Wiener filter
theory, our main contribution in this paper is the invention of the
first two blind algorithms beyond decision direction for BOM.
In Section IV, we outline a strategy for crude assessment of
blind algorithms, leading up to Sections V and VI which each
propose a blind equalization algorithm for BOM, including a
discussion of their characteristics and convergence. The first al-
gorithm, called LTBOMB, is CMA-like in spirit, and we show
that the zero-forcing (ZF) solutions are locally stable under ideal
conditions. The second algorithm, called TROMBONE, was de-
signed with a SWA-like philosophy in mind, and thus relies
on a spectral prewhitener before equalization. We show that
the ZF solutions are stationary points of TROMBONE. Sec-
tion VII presents several numerical examples and simulations
which demonstrate their performance relative to DD-LMS, and
Section VIII concludes the paper.

Throughout this paper, we assume all signals are real. We use
to denote matrix transpose, to denote the th entry of
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the matrix , and to denote the th column of the matrix
. The unit vector consisting of a 1 in the th location and zero

everywhere else will be denoted , the identity matrix
is denoted , and the function will be the Kronecker delta
having value 1 when and value zero when .

II. BACKGROUND

A. Biorthogonal Modulation

An -ary biorthogonal symbol contains chips, and
is constructed by drawing from a set of orthonormal
waveforms (each conveying bits of information).
The waveform is then modulated antipodally, which conveys
another bit of information. Thus, there are possible symbols,
with each symbol representing bits. Note that when

, we have one chip per symbol, and BOM reduces to
binary phase shift keying (BPSK). For convenience, we define

.
Let such that is an orthogonal matrix

whose columns comprise the basis for the biorthogonal wave-
forms. Note that in this paper we only consider the case of a
complete set of biorthogonal waveforms, thus requiring to
be square. We denote the symbol transmitted at time by
where , and we assume
all symbols are i.i.d. and equiprobable. We use a polyphase
representation to describe the corresponding serial chip-rate
process, denoting the th chip of the th symbol by ,
where .

Since the columns of are orthonormal, we have effectively
fixed the symbol power to be unity, but the average power of each
chip is therefore a function of . Common choices for include
the Hadamard matrix [1] and the identity matrix [2]. Though
we treat general biorthogonal bases throughout the paper, at
times we stress the case which is sometimes referred to
as biorthogonal pulse position modulation [3]. While the sym-
bols are i.i.d., the chips are most certainly not. However, the
chip-rate random process is cyclostationary with period , and
the second-order statistics are decorrelated as shown in the fol-
lowing lemma.

Lemma 1 (Decorrelation of Chip Statistics):

Proof: Clearly due to the assumption
of equiprobable symbols and the use of antipodal modulation.
Thus, for since the symbols
are i.i.d. and zero mean. For , averaging over all pos-
sible symbols gives

.
We note that the use of a code matrix in our model suggests

that BOM shares some similarity with CDMA. Indeed, a BOM
system can be viewed as a synchronous orthogonal-code CDMA
system with antipodally modulated codes, with the caveat
that only one i.i.d. randomly selected code is in use during each
symbol period. This caveat, however, precludes the use of tradi-
tional CDMA demodulation techniques since the choice of code
in use at a given instant is precisely what bears the information,
and is, therefore, unknown to the receiver.

Fig. 1. System model.

B. System Model

The baseband-equivalent system model is shown in Fig. 1.
While in general a sampled baseband equivalent model such
as ours is represented by complex signals, we only consider
real signals (i.e., as in pulse-amplitude modulated systems
that do not employ quadrature reception)1. First, the BOM
chips are transmitted serially through a causal
linear time-invariant channel with finite impulse response

where for
. We note that includes the effects of

pulse shaping, imperfect chip timing acquisition, and imperfect
carrier phase recovery. The channel also contributes additive
white Gaussian noise of variance . The received
chip stream is passed through a linear equalizer with
impulse response ; the equal-
izer output is fed into the decision device, yielding
which is an estimate of the transmitted chips.

To describe the system operation, we employ a formulation
based on Tœplitz and Hankel matrices which permits us to iso-
late the equalizer vector . We encapsulate the channel im-
pulse response in the Tœplitz matrix defined as

. The regressor matrix of re-
ceived chips can be written as

(1)

where is the Hankel
matrix of transmitted chips defined as

is the Hankel matrix of noise samples
defined as , and is therefore
also a Hankel matrix. Then, the symbol output by the equalizer
at time can be written as

(2)

where . From time to time, we will also use the com-
bined channel/equalizer response

, defined as .
The decision device assumed in this paper is the naïve mem-

oryless Euclidean distance detector, which is essentially a cor-
relation detector [10]. This can be implemented very simply by
forming the correlation , and then deciding in favor of
the component with largest magnitude; the polarity of the deci-
sion is then given by the sign of this largest component. We have
chosen this detector for its simplicity and low latency. When
the equalizer is operating correctly, the decision device output
is where is the symbol delay through the
combined channel and equalizer.

Last, we note that some means of symbol timing (i.e., aligning
the chips so the block decision device operates on the symbol

1The results derived in this paper apply only to real-valued implementations,
though we expect the extension to complex-valued signals to be fairly straight-
forward.
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boundary) will be necessary. Our model does not assume that
symbol timing has been accounted for before equalization, and
thus we implicitly put the burden of symbol timing on the equal-
izer. That is, the equalizer needs to adjust its delay so that the
total delay through the channel and equalizer is a multiple of

; otherwise, the decision device will not operate on a symbol
boundary. In the sequel, we will see that the symbol timing am-
biguity can pose a problem for blind equalization algorithms in
some cases.

III. CLASSICAL EQUALIZATION APPLIED TO BOM

A. MMSE Equalizer

In this section, we consider the classical approaches for calcu-
lating the equalizer taps , including direct MMSE calculation,
LMS adaptation, and blind approaches. We begin by deriving
the MMSE equalizer, a standard benchmark of equalizer per-
formance. Let be the unit vector consisting
of a 1 in the th location, where is a design param-
eter in this case. Note that represents the desired combined
channel/equalizer impulse response, and by choosing the delay
to be a multiple of we are assured that the chips are aligned
on the symbol boundary before passing through the decision de-
vice. The MSE is given by

Assuming the noise and data are uncorrelated, and using the
facts that from Lemma 1 and for AWGN

, the orthogonality principle gives the
MMSE equalizer

(3)

We note that (3) is independent of the underlying orthonormal
basis vectors , and coincides with the MMSE equalizer for
BPSK modulation.

B. LMS Equalizer

As calculation of (3) requires perfect knowledge of the
channel coefficients, we seek other means of calculating the
MMSE equalizer. Since the MSE is quadratic in , we can use
the LMS algorithm to calculate the MMSE equalizer adaptively
when training data is available. The LMS algorithm is a sto-
chastic gradient descent algorithm which uses the instantaneous
gradient [11] of the MSE as an estimate for the true gradient
(i.e., by ignoring the expectation operator). This results in the
LMS update equation

where is a small positive step-size which serves to average
out the noise in the gradient estimate. With a small step-size,
the algorithm exhibits mean transient and steady-state behavior
very close to that of the exact gradient descent [11]. Note that

Fig. 2. Example cost surface for DD-LMS.

the presence of in the update term implies the avail-
ability of training data. When training data is unavailable, it is
common to feed back the output of the decision device in-
stead, arriving at the DD-LMS update equation

which arrives from the cost function

(4)

Decision directed adaptive equalizers are notoriously sensi-
tive to initialization [12], and generally require a nearly open
eye initialization to ensure a sufficiently low symbol error rate.
Consequently, DD algorithms are not a good choice for cold
startup of BPSK equalizers [12], and the situation may only be
worse for BOM signals since the open eye region is even smaller
[13].

C. Example 1: False Local Minima in DD-LMS

To illustrate the fact that DD-LMS is indeed sensitive to ini-
tialization with BOM signals, we consider a specific low-dimen-
sional example which permits us to visualize the DD-LMS cost
surface as a function of , the combined channel/equalizer co-
efficients. We ignore the AWGN, we let , and we con-
sider only two taps so . Though this choice of system
parameters may seem too simplistic to be practical, analysis of
decision-directed equalizers is particularly difficult due to the
presence of discontinuous functions (i.e., the decision device)
[12], and this example is only meant to demonstrate that the
DD-LMS algorithm has false local minima even in low-dimen-
sional noiseless scenarios. We compute the DD cost from (4)
by averaging over all possible channel inputs for this 2-tap ex-
ample, and the resulting cost surface is plotted in the combined
channel/equalizer space in Fig. 2, with the minima indicated by
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asterisks. Ideally, this cost function would only have minima at
single spike solutions; indeed, we note the appearance of local
minima at the desired location . However, we
also note that there are false minima at and

, which verifies our claim that DD-LMS is
sensitive to initialization. As the length of the channel/equal-
izer space is increased, the number of false local minima of the
highly faceted DD-LMS cost surface only grows. This motivates
the search for blind methods of equalizer adaptation for BOM
other than decision directed algorithms.

D. Classical Blind Approaches

When faced with the task of designing a blind adaptive equal-
ization algorithm for a new modulation scheme, a natural path
is to consider the use of classical approaches to blind equal-
ization. The focus of this paper is on stochastic gradient de-
scent-based schemes, and the two most common classical al-
gorithms that fall into this category are the constant modulus al-
gorithm (CMA) [14], [15], and the Shalvi-Weinstein algorithm
(SWA) [16].

As mentioned in Section II-A, BOM reduces to BPSK when
. Likewise, when and is chosen to be the

Hadamard matrix, the BOM chips have statistics identical to
a BPSK source. Thus, we can expect the classical blind algo-
rithms to work fine for some very particular choices of and

. However, the classical blind algorithms are unsuitable in gen-
eral, as we now explain.

The CMA performs gradient descent of the cost
where the underlying random source

is assumed to be i.i.d. Clearly, the i.i.d. assumption
does not hold in general for a cyclostationary BOM source, and
so traditional known results [17] of CMA are not applicable. As
the CMA cost depends on , we might consider an extension of
CMA suitable for use on cyclostationary BOM sources, e.g.

(5)

However, using local convergence analysis of this algorithm
(such as that used in Sections V and VI), it can be shown that,
for some choices2 of , the zero-forcing solutions are not stable
points of the CMA nor its cyclostationary extension. That is,
even if the algorithm is initialized near a desired solution with no
ISI, it will move away from the desired solution. Clearly, this is
an undesirable feature which motivates the search for cost func-
tions that are more suitable for cyclostationary BOM sources.

The SWA, on the other hand, maximizes the magnitude of the
kurtosis of the equalizer output,

(6)

where the kurtosis (or fourth-order cumulant) of a real-valued
i.i.d. random process is defined as

2For example, the choice SSS = III with K > 3 (which, incidentally, yields
leptokurtic source statistics known to pose problems to CMA [9]).

In addition, the SWA algorithm requires a unit-norm constraint
on the equalizer taps to avoid the trivial solution, and it has
the requirement that prewhitening be performed before equal-
ization so that the effective channel is white. The rationale for
this criterion (6) is based on the fact (see theorem in [16]) that
when the equalizer output power equals the power of the source
process, the magnitude of the channel/equalizer output kurtosis
is less than or equal to the magnitude of the source kurtosis,
or . Equality occurs when
ISI has been eliminated, and so constrained maximization of
(6) seems like a sensible approach. As is the case with the
CMA, however, the standard analysis [16] of the SWA also
requires that the source is i.i.d., and the cyclostationary nature
of the BOM signal renders the SWA unsuitable as a candidate
algorithm.

While these two algorithms are both unsuitable for BOM sig-
nals, it is worth pointing out that conventional use of both of
these algorithms (say, with BPSK) results in global convergence
to the ZF solutions under the assumptions of an infinite length
real-valued equalizer and the absence of noise, which is a desir-
able feature of any candidate algorithm.

IV. METHODOLOGY FOR ASSESSMENT OF BLIND ALGORITHMS

We now describe a general strategy for the value assessment
of blind adaptive equalization algorithms based on gradient de-
scent of multimodal cost functions. Blind algorithms of this kind
typically rely on some form of property restoral, by attempting
to recover properties of the original source signal that are al-
tered or destroyed by the communication channel. Thus, a can-
didate cost function is chosen to penalize deviation from these
desired properties. However, there is no guarantee that arbitrary
cost functions chosen in this way will exhibit acceptable perfor-
mance. And while algorithm performance can be verified with
simulation to some degree, a purely simulation-based value as-
sessment provides little knowledge of algorithm behavior.

Analysis of the candidate cost function in the most ideal sit-
uations is a typical first step, since any resulting algorithm that
performs poorly in the most idealized scenarios would not gen-
erally be expected to perform any better in more practical sce-
narios. Thus, in the early stages of algorithm analysis, it is rea-
sonable to ignore the effects of AWGN and to assume that the
equalizer is sufficiently long so that the desired points in the
channel/equalizer space are reachable with arbitrary precision.
In most cases, including BOM, the desired points in the absence
of noise amount to single-spike impulse responses (i.e., those
with only one non-zero tap), which we call the zero-forcing (ZF)
solutions. Yet another assumption is that the algorithm step-size
is sufficiently small so that the stochastic gradient descent al-
gorithm exhibits mean transient and steady-state behavior very
close to that of the exact gradient descent.

Under these ideal assumptions, then, the first stage of the al-
gorithm assessment is concerned with whether the ZF solutions
are indeed stationary points of the candidate cost function, and
secondly that they are stable stationary points of the cost func-
tion. Such assessment is done by examining the gradient and
Hessian of the cost function, or by using perturbation analysis.
Any candidate algorithm that does not exhibit local stability
around the desired solutions should be modified or discarded.
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The next phase of algorithm assessment evaluates the exis-
tence of other stationary points, particularly those that are false
local minima. Typically, such a search for stationary points of
the algorithm is conducted under the assumption of an infinitely
long equalizer [18], so that we can invoke the assumption of an
invertible relationship between the combined channel/equalizer
response and the equalizer coefficients. Unfortunately, identifi-
cation of all classes of stationary points of arbitrary length is
not always tractable. When such intractability persists, we are
forced to resort to searching for classes of stationary points that
occur as impulse responses with finite time support, i.e., with
some finite number of contiguous nonzero taps. Under this ap-
proach, we still assume that the equalizer has infinite length, but
we set all but a finite number of combined taps in the gradient
to be zero; this allows us to work with systems of polynomials
with a finite number of terms whose solutions can be calculated
exactly, for example, with Gröbner bases [19].

We thus start by considering the class of all channel/equalizer
combinations with, say, nonzero coefficients. We can
quite easily calculate the location of all stationary points, and
can then classify them as maxima, minima, or saddle points by
examining the eigenvalues of the Hessian. Assuming no false
minima are found, we proceed by successively increasing the
number of nonzero taps in the channel/equalizer combination,
and continue categorizing the stationary points. However, as
increases beyond a certain point, we exhaust the memory and
computational resources required by exact polynomial solvers,
and so we will be forced to use a numerical search for stationary
points.

In general, stationary points found in low-dimensional exam-
ples will persist into higher dimensions, and additionally, de-
layed versions obtained by adding zeros to the front of such im-
pulse responses will generally be stationary points, as well. The
fact that stationary points found in low-dimensional examples
persist into higher dimensions is fairly obvious, since any finite
length impulse response can be made into a longer response by
simply appending zeros to the end. For a cyclostationary source
with period , the statistics of the received signal are unaffected
by a -chip delay; consequently, causal impulse responses cor-
responding to stationary points with zeros added to the front
are also stationary points.

Examination of finite-length channel/equalizer combined re-
sponses may not directly lead to a statement about global con-
vergence behavior. However, in lieu of a global convergence
proof, the technique can be used to build confidence that the al-
gorithm exhibits good behavior. If, in the search for stationary
points, we observe false local minima, we can possibly use their
character to propose a fix to the algorithm.

If false local minima are observed, we would like to have
some idea about their regions of attraction in comparison to
other candidate algorithms. One technique for comparing algo-
rithms’ regions of attraction is to initialize the algorithms to the
ZF solution, and then gradually expand the initializations in a
sphere around the ZF solution. The superior algorithm will be
the one that succeeds in converging to the ZF solution when the
sphere of possible initializations is largest.

After assessing the location and character of algorithm sta-
tionary points, the next stage of algorithm assessment is simula-

tion in a practical scenario—on practical channels with AWGN.
Further assessment of the candidate algorithm would include
the effects of AWGN, the end effects caused by using a fi-
nite-length equalizer, and studies of the regions of attraction of
false minima.

V. THE LTBOMB ALGORITHM

A. Algorithm Description

Here, we propose the first of two gradient descent-based blind
algorithms. We rely on ideas from decades of research on clas-
sical blind equalization algorithms, but we try to exploit struc-
ture that they may ignore. For example, classical blind algo-
rithms were not designed to exploit the fact that symbols are
drawn from a biorthogonal set. Most blind algorithms inherently
depend on higher order statistics, and this will be the case for our
algorithms. As seen from Lemma 1, the second order statistics
and hence the MMSE equalizer for a BOM signal are indepen-
dent of . However, the fourth-order statistics of will
not be independent of , and, thus, we expect the shape of the
cost surface of any candidate algorithm to depend on .

While samples of the chip process could assume
a range of dispersive values (depending on the choice of ), the
power of the BOM symbols is a constant. Thus, as the cost func-
tion for the first blind algorithm, termed “LTBOMB” (for Linear
Transversal equalizer adaptation for BiOrthogonal Modulation,
Blindly), we choose to penalize the dispersion of the symbol
power at the equalizer output

(7)

Due to the invariance of the norm to orthogonal transforms,
we could equivalently penalize the dispersion of the correlator
output power (i.e., since ). Taking the
instantaneous gradient of (7) gives the update equation

While at first glance this simple cost function seems to ignore
a lot of structure which is present in the BOM signal, we show
that this is not the case and we draw connections to several other
blind algorithms. The form of (7) looks much like the CMA,
and not surprisingly reduces to the CMA when since
the vectors become scalars. The cost function shares even more
similarity with the Vector CMA [20], though it is distinct in that
our algorithm is driven by data that is not i.i.d., and it operates
only once every chips. Because of these two facts, the cost
surface and algorithm performance will be quite different from
the Vector CMA. Borrowing an idea from [21], and noting that

, we see that the cost func-
tion can be expanded as

(8)

This gives an interesting interpretation since the second term is
exactly the cyclostationary extension of the CMA cost (5), while
the third term represents a penalty of the cross-correlation of
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the squared equalizer output. Again, due to the invariance of the
norm to orthogonal transforms, we can equivalently replace

with the th correlator output at time , yielding the
interpretation that the third term effectively penalizes the lack
of biorthogonality in the signal.

B. Cumulant of a Vector Random Process

Before proceeding with the analysis of the algorithm, we
first introduce the concept of the cumulant of a vector random
process. Cumulants are useful in expanding the expectation
in the LTBOMB cost function, resulting in an expression
involving the channel/equalizer coefficients and the source sta-
tistics. While the chip-level random process in a BOM system
is not i.i.d., the symbols are i.i.d., however, which motivates
an analysis comprised of symbol vectors. Cumulants can be
described for a vector random process in an analogous way
to those for scalar random processes [22]. For a zero-mean
i.i.d. vector random process , the first order cumulant

is simply the mean vector, the second-order
cumulant is the symmetric covariance
matrix, while the fourth-order cumulant is a supersymmetric
fourth-order tensor. The fourth-order cumulant tensor for the
BOM symbol can be expressed in terms of its corre-
sponding chips as

(9)

Note that the cumulants themselves do not depend on since
the vectors are i.i.d. As with cumulants for scalar random pro-
cesses, cumulants for vector random processes obey a linearity
property [22]. For an i.i.d vector random process and a set
of matrices , the linearity property of cumulants is

where the symbol denotes the -mode tensor product [22].
We can use this property to express the cumulant of the equalizer
output in terms of the cumulant of the source data. In the absence
of AWGN, the equalizer output is . Using the
linearity property and expanding the tensor product gives the
individual tensor elements

(10)

In Appendix I, we express the cumulant tensor of a BOM
source sequence in terms of .

C. Stability of ZF Solutions

We define the ZF solutions as those where the combined
channel/equalizer response . Note that, unlike more
traditional equalization problems, our definition of the ZF so-
lutions only includes responses with delays that are a multiple
of . In situations where the delay is not a multiple of , the
decision device will not be operating on the symbol boundary;
as such a situation is undesirable, we exclude these impulse
responses from the set of ZF solutions. As we will discuss later
in Section V.F, the issues of equalization and symbol timing
are tightly intertwined.

To investigate the ZF solutions, we first assume that there is
no AWGN, so . We express the cost function (7) in terms
of cumulants, and then use (10) to express the cost function in
terms of the channel/equalizer coefficients, giving

(11)

where . The stationary
points of the algorithm, i.e., those values of that are minima,
maxima, and saddle points, are the points where the derivative
of the cost function with respect to equals zero. We take the
derivative of (11) to obtain

(12)

where

(13)

and we have used the supersymmetry of the cumulant in the
simplification. We can then write the gradient compactly as

where ,
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so the stationary points are the solutions to the equation
. Continuing with the second derivative, we have

(14)
where

which allows us to write the Hessian matrix as .
Before demonstrating that the ZF solutions are minima, we

first prove two lemmas.
Lemma 2 (Property of Cumulants of Biorthogonal Signals):

For a vector random process where the vectors are
drawn i.i.d. from a complete biorthogonal set, and some

otherwise.

Proof: Let the underlying orthogonal basis be described by
the columns of the square matrix . From the cumulant defini-
tion (9) and Lemma 1 we have

where the last line uses the orthonormality of columns of .

Lemma 3 (Sum of Delta Functions): The sum

with equality only when .
Proof: Via substitution, we can write the left-hand side

(LHS) as

which is simply a measure of the number of common el-
ements in the two length- sequences and

. Clearly, the largest possible
number of common elements is which is only possible when

.
Theorem 1: The ZF solutions are stationary points

of the LTBOMB cost function (7).
Proof: Substituting into (12) gives the gradient

at the ZF solutions as

where the last line follows from Lemma 2.
Theorem 2: The ZF solutions are stable minima of

the LTBOMB cost function (7).
Proof: Having already established that the ZF solutions

are stationary points in Theorem 1, we show they are minima
by considering the definiteness of the Hessian matrix .
Since is full rank, we only need to consider the positive def-
initeness of . That is, for any where ,
we need to show that . Substituting and
(20) into (15) gives

The first term is obviously nonnegative, and the second term is
nonnegative via Lemma 3. To show strict positive definiteness,
we only need to show that the two terms cannot be simultane-
ously zero. From Lemma 3, we see that the bracketed quantity
in the second term can only be zero when ; hence, the
entire second term can only be zero when for any

(to avoid the trivial case). For this choice of , we have
. Thus, is positive definite, so the Hessian

is positive definite and the ZF solutions are minima.
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TABLE I
LTBOMB STATIONARY POINTS FOR EXAMPLE 2

D. Example 2: Case of Global Convergence

While we have demonstrated local convergence, we cannot
make any claims about the global performance of the algorithm
in general. Similar insurmountable difficulties were encoun-
tered in the global convergence analysis of the Vector CMA,
due to the presence of the cross terms. It is precisely these cross
terms, i.e., the last term in (8), which complicate analysis of
our algorithm.

In light of this difficulty, we resort to considering a low-di-
mensional numerical example, as part of the strategy outlined in
Section IV. Again, since this is purely an illustrative example,
we operate exclusively in the combined channel/equalizer do-
main , thereby avoiding end effects that are known to plague
finite-length chip-rate blind equalizers. We recall that stationary
points appearing in this low-dimensional example will persist
into higher dimensions. Furthermore, any of these stationary
points delayed by a multiple of will also be stationary points.

Letting and , the stationary points can be
found by setting the non-trivial elements of the resulting gra-
dient to zero, resulting in the system of equations

Using Gröbner bases, we can solve for the locations of all sta-
tionary points exactly, and they have been tabulated in Table I.
For this particular example, we see that we can expect global
convergence to the desired solution, as minima occur only at
the ZF solutions. In spite of the fact that the single-spike im-
pulse response results in a situation with no ISI,
we note that it is not a minimum of the algorithm. Such an im-
pulse response represents a delay that is not a multiple of , and
therefore does not appropriately align the chips to the symbol
boundary. We also note the appearance of degenerate saddle
points. A degenerate saddle point is one where the Hessian is
singular, which implies the cost surface is very flat, and the
adaptive algorithm will likely suffer convergence speed prob-
lems as it passes through this region. In contrast to the DD-LMS
example in Section IV, we observe no undesirable local minima
here, and for this low-dimensional example the only minima of
LTBOMB cost surface are the ZF solutions.

E. Example 3: Case of False Local Minima

Though Theorem 2 established that all ZF solutions are
minima, we would ultimately like to know if all minima are ZF
solutions. While Example 2 provided some hope, we now in-
vestigate stationary points that arise in impulse responses with
larger lengths of contiguous nonzero taps while maintaining

. For larger values of , the system of equations is
too complex for the use of Gröbner bases in calculating all the
stationary points. However, during the course of experimen-
tation with the algorithm, we noticed that once the number of
nonzero taps grew to we would occasionally observe
poor algorithm performance near impulse responses of the
form . The symmetry of this class
of impulse responses enabled us to reduce the 6-parameter
problem to a 3-parameter problem so that we could solve
for the exact locations of stationary points using Gröbner
bases. Upon categorizing the exact location and character
of all the stationary points in this class, we found one that
was a minimum. The exact expressions for at this
stationary point are unwieldy, but their approximate values
are , and we note that
the Hessian was found to have strictly positive eigenvalues at
this point. As this stationary point is clearly not a ZF solution,
this impulse response is indeed a false local minimum of the
algorithm.

The low-dimensionality of Example 2 enabled us to calcu-
late all of the stationary points for impulse responses with 3 or
fewer contiguous nonzero taps. Since the only local minima in
Example 2 were ZF solutions, Example 2 provided some hope
of global convergence to a ZF solution. For longer impulse re-
sponses, we can make no such claims due to the inability to solve
larger system of polynomials. In spite of the fact that categoriza-
tion of all stationary points is not possible for longer impulse
responses, however, we have stumbled upon a false local min-
imum that appears once is increased beyond 6, and we recall
that this minimum will persist in higher dimensions. This coun-
terexample shows that we cannot expect global convergence to
a ZF solution.

F. On the Interaction of Symbol Timing and Equalization

The problems of symbol timing (i.e., finding the symbol
boundary within a chip stream) and equalization are tightly
related. Equalization algorithms with training data, like LMS,
are effectively given the symbol timing information via the
training data. Blind algorithms, however, do not have such
information at their disposal.

As mentioned in Section V-C, the ZF solutions are those re-
sponses that amount to a delay that is a multiple of . When
such a response is attained by the equalizer, symbol timing has
effectively been acquired. If these ZF solutions were the only
minima of the algorithm, we could rely on the blind algorithm
to acquire the symbol timing and perform equalization simulta-
neously. However, we know this is not the case, as was shown
by the false local minima of Example 3.

We conjecture that the false local minima of the algorithm
are caused in part by the symbol timing ambiguity. Thus, we
suggest an ad hoc scheme that attempts to simultaneously ac-
quire the symbol timing and avoid the false minima. The ratio-
nale for the scheme is based on the fact that, in the combined
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channel/equalizer domain, any impulse response that is a (de-
sired or undesired) minimum of the algorithm—shifted by
taps—is also a local minimum. Conversely, tap shifts that are not
a multiple of are typically not stable points of the algorithm.
Thus, we consider operating equalizers in parallel, each being
updated once per symbol, but each operating on a different one
of the possible symbol boundary hypotheses. We begin adap-
tation of the equalizers, and after it appears that some or all
of the equalizers have settled (i.e., once the magnitude of the
update terms are sufficiently small), we select the one equalizer
setting with lowest estimated cost by computing a sample av-
erage of (7), and we discard the other equalizers. While
heuristically it seems this may help mitigate the symbol timing
ambiguity problem, we cannot verify the validity of this scheme
without investigating the regions of attraction of the algorithm,
which is far beyond the scope of this paper. We will, however,
show simulations of this scheme in Section VII.

VI. THE TROMBONE ALGORITHM

A. Algorithm Description

As aforementioned, the two most popular classical blind
equalization algorithms are the CMA and the SWA. Since the
LTBOMB algorithm draws largely from the spirit of the CMA,
a sensible next step is to consider how we might apply the SWA
philosophy to equalization of BOM signals.

When the channel has been appropriately equalized, the cor-
relator output should be a canonical unit vector (modulo
sign). While the previous algorithm dealt exclusively with the

norm of the correlator output, we now consider other norms
of the correlator output. In particular, we observe that for any

norm, we desire . As shown in [23], for any
, any exponent , and any vector , we have

with equality when is a canonical unit vector. This fact is
the motivation for our next algorithm, termed The Recovery Of

-ary BiOrthogonal signals via p-Norm Equivalence (TROM-
BONE) and having cost function

(16)

First, we note that when the equalizer is operating correctly so
that the correlator outputs are “perfect,” the cost will be zero
as hoped. We also note that the trivial solution has zero cost,
so to avoid this solution we need to impose a constraint on the
algorithm. Here, we choose to constrain the equalizer output
power to be , which amounts to

in the absence of noise. Note that other choices of with
may also lead to suitable algorithms, but we focus on the

case due to its similarity with the LTBOMB
algorithm, and its relative ease of implementation. Expanding
the cost in terms of cumulants, the cost becomes

(17)

The constraint that we have imposed, i.e., , is a func-
tion of the combined channel/equalizer response. In practice,
we do not have knowledge of . However, if we assume spectral
prewhitening has been performed before equalization as in [16],
thereby assuming the effective channel is white, the constraint
becomes

so that normalization of the equalizer taps ensures that we will
meet the constraint. The instantaneous gradient gives the algo-
rithm update equation with a normalization step as

where is the square diagonal matrix having along its
diagonal.

We see this algorithm does appear to have some vague
similarities with the SWA in that we have a constrained cost
function, motivated by the fact that
with equality when ISI has been eliminated. The algorithm also
shares some similarity with the Shtrom-Fan algorithms [24]
in that it involves a difference of two -norms. Beyond this
similarity, however, our algorithm is fundamentally different
from the Shtrom-Fan algorithms. Our cost function is a function
of the difference of two norms of the correlator output data.
The Shtrom-Fan cost function, on the other hand, involves the
difference of two norms of the combined channel/equalizer
response, and relies on properties of scalar cumulants to map
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the cost function from the combined channel/equalizer space to
the equalizer space. Thus, the Shtrom-Fan class of algorithms
implicitly requires the data to be i.i.d. at the chip level, which
is not the case for BOM.

We will now show that the ZF solutions are stationary points.
Taking the derivative of the unconstrained TROMBONE cost
function gives

where

Theorem 3: The ZF solutions are stationary points
of the TROMBONE cost function (17).

Proof: First, note that satisfies the unit-norm
constraint. We have

where we substituted (20) in Appendix I for the cumulant
tensor.

TABLE II
TROMBONE STATIONARY POINTS FOR EXAMPLE 4

We could have equivalently used the method of Lagrange
multipliers, but since the ZF solutions are stationary points and
simultaneously satisfy the unit-norm constraint, the Lagrange
multiplier is zero. Simple examination of the Hessian eigen-
values of constrained algorithms does not allow us to generi-
cally classify these stationary points as stable minima; we would
need to resort to perturbation analysis or reparameterization of
the cost function as we will now show in a low-dimensional ex-
ample. From our observations through simulation, we believe
the stationary points at the ZF solutions are locally stable, as we
have tested this claim on thousands of prewhitened channels.

B. Example 4: Stationary Points in Low Dimensions

As we did in Example 2 for LTBOMB, we now classify all
the stationary points for the same numerical example. Again
working in the combined channel/equalizer domain , we let

and . Because the unit norm tap constraint is
difficult to apply in the domain, we need a transform to repa-
rameterize the cost function in a coordinate system that per-
mits us to easily apply the constraint. We can reparameterize
the function of in polar coordinates, having rotation
angles and one radius . One possibility [25]
for parameterizing in polar form is to choose (18), shown at
the bottom of the page, so that by fixing , any arbitrary
unit-norm may be reached.

Substituting (18) into the TROMBONE cost function with
, setting the gradient to zero, and zeroing all but

taps results in a system of equations in two parameters, and
. As before, we can solve for the locations of all stationary

points exactly, and they have been tabulated in Table II. The
results here for the TROMBONE algorithm are very similar to
those for the LTBOMB algorithm. We again see that we can
expect global convergence to the desired solution, as minima
occur only at the ZF solutions. Furthermore, we again note the
appearance of degenerate saddle points, though they are in a
slightly different location.

C. Example 5: False Minima of TROMBONE

As was done for the LTBOMB in Section V-E, we also
conducted a (nonexhaustive) numerical search for stationary
points of the TROMBONE algorithm. Again, choosing

, we found that indeed, at least for this example,

(18)
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the ZF solutions are minima of the algorithm. In addi-
tion, we found false local minima with impulse response

which
also appear every 2-tap shift. This impulse response is very
similar to the false minimum for LTBOMB, and so we see that
both of these blind algorithms have an inherent problem. This
is peculiar since, at least on the surface, the two cost functions
attempt to restore different properties of the BOM signal. The
fact that two blind algorithms, both designed with different
criteria in mind, suffer from very similar spurious local minima
raises questions about the existence of an algorithm exhibiting
global convergence. Again, we conjecture that these false
minima arise in part due to the symbol timing ambiguity. Use
of the parallel equalizer scheme described in Section V-F may
help circumvent this issue.

VII. NUMERICAL EXAMPLES

A. Visualizing the LTBOMB Cost Surface

We once again consider the noiseless case with
and , and we plot a two–dimensional (2-D) slice3 of
the cost surface contours. The cost surface is shown in Fig. 3,
where we observe the presence of a maximum at the origin and
only 2 minima, those at the ZF solution . As ex-
pected minima do not also occur at , but instead
there are saddle points in that region. The fact that these are
not minima implies that the proposed algorithm can acquire the
symbol timing since, as hoped, minima only occur for delays
that are a multiple of . We refer the reader back to Fig. 2,
where the cost surface for DD-LMS with the same system pa-
rameters exhibited false local minima.

Since the cost function depends on the cumulants of the un-
derlying signal basis , we expect the cost surface to look dif-
ferent for different choices of . If we change the underlying
orthogonal basis so that is the 2 2 Hadamard matrix, we ar-
rive at the cost surface also shown in Fig. 3. In addition to the
maximum at the origin and the minima at the ZF solutions, we
observe that minima appear at , which corresponds
to a delay that is not a multiple of . Note that for this choice of

, the chip statistics are identical to BPSK since the symbols be-
come . Thus, when is chosen to be
the Hadamard matrix, the algorithm has no hope of recovering
the symbol timing. Nevertheless, we emphasize that all choices
of will exhibit local convergence to ZF solutions as proven by
Theorem 2.

B. Visualizing the Trombone Cost Surface

Again considering the noiseless case with and
, we have plotted the unconstrained TROMBONE cost surface

in Fig. 4. The unit norm constraint will force the algorithm to
stay on contour indicated by the dotted circle. For the case of

, the cost surface is a single trough with a bulb at the
origin, and the cost is zero along the axis. For the case of the
Hadamard matrix, there are two troughs, with zero cost along
both axes.

3While in general, stationary points of slices may change their character in
higher dimensions, those shown here do not.

Fig. 3. LTBOMB cost surface for different choices of SSS.

Identifying the stationary points from the unconstrained
cost, however, is not easy. Thus, similar to what was done
in Section VI-B, we transform the 2-parameter cost plot
into polar coordinates with a single rotation angle. Looking
at the cost function in polar coordinates, where the angle

, we can more easily see the stationary
points as shown in Fig. 5. We see that both examples result in
minima at the ZF solutions, as well as minima at ,
though this latter minimum is quite shallow for the case of

.

C. Simulation Near Zero-Forcing Solutions

To provide verification that our analysis of the local behavior
of these algorithms is valid, we consider a simulation where we
initialize the algorithms in a ball around a ZF solution. We op-
erate in a noiseless scenario, a channel with impulse response

, and we have
chosen equalizer taps. As before, we choose the signal
bases . The equalizer corresponding to the ZF solution
at the chosen delay of has approximate impulse response
shown at the bottom of the next page. Note that the channel re-
sponse is approximately white (i.e., ), and the corre-
sponding ZF equalizer satisfies .
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Fig. 4. Unconstrained TROMBONE cost surface for different choices of SSS.

As an initialization, we chose 1000 points uniformly dis-
tributed in a ball around the ZF solution, and we observed the
ability of the algorithms to converge to a ZF solution as the
radius of the ball is increased. We ran the algorithms for 10 000
symbols at each of the 1000 initializations, and declared the
algorithm to have converged if the MSE was less than .
As shown in Fig. 6, all of the algorithms converge to the ZF
solution when the size of the ball of initializations around
the ZF solution is less than 1, thus, verifying our analysis of
local convergence. For larger radii beyond 1, which we can
hardly consider to be “local” to the ZF solutions, we see that all
algorithms still converge with a fairly high percentage, though
possibly to a ZF solution corresponding to some other delay.
Furthermore, the blind algorithms both outperform DD-LMS.
The curves are all monotone non-increasing, albeit with some
jumps due to the nonlinear nature of the cost surfaces, and
for very large radii we note that the convergence percentages
eventually reach a constant value. This is because, beyond a

Fig. 5. Polar representation of TROMBONE cost surface.

sufficiently large initialization ball radius, there is no notion of
locality; the ball grows to encompass the entire space, and so
increasing the ball radius further has no effect on convergence
percentage.

We note that the lack of a good adaptive algorithm for
prewhitening and the added complexity of prewhitening sug-
gests the practical superiority of LTBOMB over TROMBONE;
this matches the current wisdom regarding conventional blind
equalization of BPSK via the CMA versus the SWA.

D. Simulation of a Practical Situation

Continuing with the strategy for algorithm assessment out-
lined in Section IV, we now consider the use of LTBOMB
in a practical channel, which serves to justify our claims of
local convergence, as well as the superior performance of our
algorithm over decision-directed LMS. We focus on LTBOMB
here because, as aforementioned, TROMBONE requires a
prewhitening filter and may not be as useful in practice. It
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Fig. 6. Convergence percentage vs. initialization distance from ZF solution.

should be noted that the analysis up to now has ignored the
effects of noise and has largely considered the cost surface in
the combined channel/equalizer space, so these simulations
will also provide some faith that our algorithm performs well
in the presence of real channels with AWGN. As a channel
model, we choose one based on the Saleh-Valenzuela [26]
model of an indoor channel. The IEEE 802.153a committee has
constructed a set of such channels [27] based on this model,
and we have selected to use their channel model CM3 which
models a nonline of sight indoor environment over distances
of 4–10 m. To convert the channels to a baseband equivalent
tapped-delay line channel, we chose a carrier frequency of
3 GHz and a sample period of 10 ns, and performed low-pass
filtering using a raised-cosine filter with a rolloff factor of 0.5.
We then zeroed any leading or trailing taps with energy less
than 20 dB below the peak, which resulted in a set of baseband
equivalent channels with lengths ranging from ,
with the average channel length being 7.8 taps. Note that a large
number of these channels were nonminimum phase, and often
had roots near the unit circle. Furthermore, these channels were
most definitely not white.

For the BOM source signal, we chose so .
Furthermore, the SNR was set at 8 dB, the equalizer had length

, and we used a centered double spike initialization.
While an analysis of initialization strategies and regions of con-
vergence is beyond the scope of this paper, we observed that
for a BOM system with chips per symbol and , a

-spike initialization seemed to improve convergence over a
single-spike initialization.

After generating 1000 channel realizations, we ran LTBOMB
on each channel, as well as DD-LMS. An equalizer was de-
clared to have converged near the MMSE solution if its MSE
was within 1 dB of the MSE of the nearest MMSE solution.
In addition, we considered two equalizer setups: one with just
a single equalizer, and another setup with two equalizers oper-
ating in parallel as described in Section V-F. In the setup with
parallel equalizers, the equalizer with lower sample average cost
was selected upon convergence, and compared with the nearest

TABLE III
SIMULATION RESULTS

TABLE IV
DEPENDENCE ON K

MMSE solution. The simulation results are shown in Table III.
We see that the LTBOMB algorithm does quite well, consis-
tently beating the decision-directed algorithm. In addition, we
note that the use of two parallel equalizers does buy us some
improvement in convergence, with the LTBOMB converging
nearly always. The decision-directed algorithm, too, sees a ben-
efit from the use of two parallel equalizers. As a test, we also ran
the TROMBONE algorithm without the required prewhitening
filter; unsurprisingly, it only converged 24.3% of the time with
a single equalizer, and 36.7% in the dual equalizer setup. Again,
we stress that LTBOMB may be more useful in practice due to
the lack of need for a blind prewhitener.

Finally, we consider the performance of the algorithm as
is increased. We performed the same simulation as before, but
increased the alphabet size to investigate the effect of on algo-
rithm convergence rate. The results when using a single equal-
izer are shown in Table IV, where we see that the DD-LMS al-
gorithm improves as is increased, while LTBOMB algorithm
performance diminishes for large . When operating in the par-
allel equalizer setup, both algorithms converged more than 99%
of the time for . It is well known [10], at least
for the AWGN channel, that the symbol-error-rate in BOM de-
creases as the alphabet size is increased. Euclidean
distance arguments suggest similar behavior in ISI channels,
which we have observed to be the case. Thus, for larger values
of , we can expect the decision device to make fewer errors,
thereby improving the performance of decision-directed LMS.
The blind algorithms do not benefit from an increase in since
they do not rely on correct decisions.

VIII. CONCLUSION

While energy efficient modulations are being given serious
attention by industry for use in environments with ISI, little at-
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tention has been given to equalization of such signals. We have
provided the first look at adaptive equalization of BOM signals.
Due to the non-i.i.d. nature of these signals, many difficulties
arise in the application of classical equalization techniques. We
have attempted to address this difficulties, and have proposed
two novel blind algorithms for the equalization of BOM signals.
We then addressed convergence issues of these algorithms, and
demonstrated their performance.

In spite of the fact that our algorithm performed quite well,
there are still many issues to resolve in equalization of BOM
signals. Future work could investigate improvements of these
algorithms to improve their convergence behavior, perhaps by
exploiting oversampling or MIMO techniques. In addition, the
issue of joint symbol timing acquisition and equalization needs
to be fully resolved. We plan to investigate blind equalization of
other energy efficient modulations, as well, such as orthogonal
modulation (including PPM and FSK) and simplex modulation.

APPENDIX I
FOURTH-ORDER CUMULANT TENSOR OF BOM SOURCE

Here, we provide an expression for the fourth-order cumulant
tensor in terms of . First, we consider the choice . Due to
the supersymmetry of the cumulant tensor, we can consider an
ordering without loss of generality. From (9),
averaging over all possible symbols gives the cumulant tensor
for as

for
otherwise.

(19)
Next, note that for any choice of , we can express the source

symbol where is a BOM symbol for the
particular choice . Thus, exploiting the linearity prop-
erty of cumulants and using (19), we have for all

(20)
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