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Abstract: In recent years, there has been a considerable amount of interest in the area of Genomic Signal Processing,

which is the engineering discipline that studies the processing of genomic signals. Since regulatory decisions within the

cell utilize numerous inputs, analytical tools are necessary to model the multivariate influences on decision-making

produced by complex genetic networks. Signal processing approaches such as detection, prediction and classification have

been used in the recent past to construct genetic regulatory networks capable of modeling genetic behavior. To

accommodate the large amount of uncertainty associated with this kind of modeling, many of the networks proposed are

probabilistic. One of the objectives of network modeling is to use the network to design different intervention approaches

for affecting the time evolution of the gene activity profile of the network. More specifically, one is interested in

intervening to help the network avoid undesirable states such as those associated with a disease. This paper provides a

tutorial survey of the intervention approaches developed so far in the literature for probabilistic gene networks

(probabilistic Boolean networks) and outlines some of the open challenges that remain.
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1. INTRODUCTION

From a translational perspective, the ultimate objective of
genetic regulatory network modeling is to use the network to
design different approaches for affecting network dynamics
in such a way as to avoid undesirable phenotypes, for
instance, cancer. In this paper we present a tutorial survey of
the results obtained to date on intervention in the context of
probabilistic gene regulatory networks, which, owing to their
original binary formulation and their usual application using
binary and ternary gene-expression quantization, are
generically called probabilistic Boolean networks (PBNs)
[1]. These are essentially probabilistic generalizations of the
standard Boolean networks introduced by Kauffman [2-4]
that allow the incorporation of uncertainty into the inter-gene
relationships. Given a PBN, the transition from one state to
the next takes place in accordance with certain transition
probabilities and their dynamics, and hence intervention, can
be studied in the context of homogeneous Markov chains
with finite state spaces.

A major goal of functional genomics is to screen for
genes that determine specific cellular phenotypes (disease)
and model their activity in such a way that normal and
abnormal behavior can be differentiated. The pragmatic
manifestation of this goal is the development of therapies
based on the disruption or mitigation of aberrant gene
function contributing to the pathology of a disease.
Mitigation would be accomplished by the use of drugs to act
on the gene products. Engineering therapeutic tools involves
synthesizing nonlinear dynamical networks, analyzing these
networks to characterize gene regulation, and developing
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intervention strategies to modify dynamical behavior. For
instance, changes in network connectivity or functional
relationships among the genes in a network, via mutations or
re-arrangements, can lead to steady-state behavior associated
with tumorigenesis, and this is likely to lead to a cancerous
phenotype unless corrective therapeutic intervention is
applied.

To date, intervention studies have used three different
approaches: (i) resetting the state of the PBN, as necessary,
to a more desirable initial state and letting the network
evolve from there [5]; (ii) changing the steady-state (long-
run) behavior of the network by minimally altering its rule-
based structure [6]; and (iii) manipulating external (control)
variables that alter the transition probabilities of the network
and can, therefore, be used to desirably affect its dynamic
evolution [7]. The control-theoretic approach has
subsequently been extended. First, the optimal intervention
algorithm has been modified to accommodate the case where
the entire state vector, or gene activity profile (GAP) as it is
known, is not available for measurement [8]. Second,
whereas the original control-theoretic approach has been
developed in the framework of instantaneously random
PBNs, the intervention results have been extended to
context-sensitive PBNs (terminology to be defined shortly)
[9].

The paper is organized in the following manner: Section
2 reviews the necessary essentials of PBNs; Section 3
discusses intervention limited to a one-time flipping of the
expression status of a single gene; Section 4 considers
intervention to alter the steady-state behavior of the network;
Section 5 formulates the intervention problem in
probabilistic gene regulatory networks as an optimal control
problem that is then solved using the standard approach of
dynamic programming; Section 6 extends the results of
Section 5 to the imperfect information case; Section 7
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extends the results to context-sensitive PBNs; and Section 8
contains some concluding remarks.

2. REVIEW OF PROBABILISTIC BOOLEAN
NETWORKS

Our review focuses on aspects critical to intervention and
we refer to the literature for more detailed accounts [1, 10,
11]. In the original binary formulation of probabilistic
Boolean networks, each gene can take on one of two binary
values, 0 or 1 [1]. A 0 for a gene corresponds to the gene not
being expressed (OFF) and a 1 corresponds to the gene being
expressed (ON). The functional dependency of a given gene
value on all the genes in the network is given in terms of a
single Boolean function or a family of Boolean functions.
The case of a single Boolean function for each gene arises
when the functional relationships between the different genes
in the network are known and are static. Although such a
situation is not likely to occur in practice, networks of this
type, referred to as Boolean networks, have been extensively
studied in the literature [4]. To account for uncertainty in our
knowledge of the functional dependencies between the
different genes, one can postulate that the expression level of
a particular gene in the network is described by a finite
family of Boolean functions such that each member of the
family is assumed to describe the functional relationship
with a certain probability, thereby leading to probabilistic
Boolean networks, as introduced in [1]. In either case,
dynamics are introduced to the network by assuming that at
each time step the value of each gene is updated using the
Boolean functions evaluated at the gene values from the
previous time step. For PBNs, the expression level of each
gene will be updated in accordance with the probabilities
corresponding to the different Boolean functions associated
with a particular gene.

To concretize matters, let us begin with the formal
definition of a Boolean network. A Boolean network is
defined by a set of nodes, V = {x1, x2,…, xn}, and a collection
of Boolean functions, F = {f1, f2,…, fn}. Each xk represents
the state (expression level) of a gene, gk, where xk = 1 or xk =
0, depending on whether the gene is or is not expressed. The
Boolean functions represent the rules of regulatory
interaction between genes. Network dynamics result from a
synchronous clock with times t = 0, 1, 2,…. The value of
gene gk at time t + 1 is given by xk(t + 1) = fk(xk1, xk2,…,
xk,m(k)), where the nodes in the argument of fk form the
regulatory set for xk (gene gk). The numbers of genes in the
regulatory sets define the connectivity of the network, with
maximum connectivity often limited. At time point t, the
state vector x(t) = [x1(t), x2(t),…, xn(t)] is called the gene
activity profile (GAP). The functions together with the
regulatory sets determine the network wiring.

A probabilistic Boolean network (PBN) is defined by a
set of nodes, V = {x1, x2,…, xn} and a set of r network-wide
functions, f1, f2,…, f r, meaning that f k consists of all
predictors for all genes in the network. Specifically, fk = [fk1,
fk2,…, fkn], where fkj determines the value of gene gj. Each fk

determines a constituent Boolean network of the PBN, and at
each time point there is a positive probability q of switching
network function (the governing constituent Boolean
network). If a decision is made to switch networks then a
new network function is chosen randomly, with the

probability of selecting fk being given by c k. Random
perturbation can be introduced by assuming that at each time
point, each gene has a positive probability p  of flipping
values, and genes flip independently. If q  = 1, then the
network function switches at every time point and the
network is said to be instantaneously random; if q < 1, the
network is said to be context sensitive. The more general
notion of a probabilistic gene regulatory network results
from allowing an arbitrary finite quantization in place of the
binary 0-1 quantization of the nodes; however, even for finer
quantization the terminology “probabilistic Boolean
network” is usually employed, owing to both the common
application to binary and ternary networks and the logical
character of the network functions for any finite
quantization.

Context sensitivity models the practical situation in
which there are latent variables outside the model network
whose changes affect the rule structure of the network. For
context-sensitive PBNs, one of the following events occurs
at each time point: (1) the current network function is
applied, the PBN transitions accordingly, and the network
function remains the same for the next transition; (2) the
current network function is applied, the PBN transitions
accordingly, and a new network function is selected for the
next transition; (3) there is a random perturbation and the
network function remains the same for the next transition; or
(4) there is a random perturbation and a new network
function is selected for the next transition. The first and third
cases correspond exactly to the situation with a Boolean
network: so long as these cases apply, meaning that the
network function remains fixed, the PBN behaves as a
Boolean network.

Attractors play a key role in Boolean networks. Given a
starting state, in a finite number of steps the network will
move to a set of states through which it will endlessly cycle.
Such a set is called an attractor cycle and states in attractor
cycles are called attractors. Biologically, attractors have been
conjectured to characterize phenotypes [4]. The full set of
states is partitioned according to which attractor cycle an
initial state will lead to. The class of states corresponding to
an attractor cycle is called its basin of attraction. Non-
attractor states are transient. They are visited no more than
once on any network trajectory. Attractors characterize the
long-run behavior of a Boolean network. By definition, the
attractors of a PBN consist of the attractors of its constituent
Boolean networks.

In a context-sensitive Markov chain, the collection of all
state-function pairs, (x, fk), forms a finite-state Markov chain
and, under the assumption of random perturbation, p > 0, the
Markov chain is ergodic, so that its stationary distribution is
also a steady-state distribution. A basic reason that
instantaneously random PBNs are easier to analyze is that,
for them, the Markov chain consists of the states of the
network. A key issue in PBN analysis concerns the steady-
state probabilities of attractors [12]. If the switching and
perturbation probabilities are small, the attractors possess a
large majority of the steady-state mass.

To this point we have made no assumption on the
formation of the network functions. Now, suppose that for
each gene gi, we are given l(i) possible Boolean functions,
f1

(i)
, f2

(i)
,….., fl(i)

(i)
 that can be used to describe the



Intervention in Probabilistic Gene Regulatory Networks Current Bioinformatics, 2006, Vol. 1, No. 2    169

dependency of xi on x1, x2, …., xn. Furthermore, suppose that
cj

(i) 
is selected with a probability cj

(i)
 so that c1

(i)
 + c2

(i)
 + … +

cl(i)
(i)

 = 1. Then the expression level of gene gi transitions
according to the equation:

xi(t +1) = fj
(i)

 (x(t)) (1)

with probability cj
(i)

. Corresponding to a PBN with n genes,
there are

N = l(i)
i=1

n

distinct Boolean networks, each of which could capture the

inter-gene functional relationships with a certain probability.

In accordance with our previous notation, c1, c2,…., cN are

the probabilities associated with the selection of each of

these networks. Suppose the k
th

 network is obtained by

selecting  the  functional  relationship  f
i
k

( i )   for  gene i, i = 1,

2,…., n, 1 i
k

l(i) .    If    the   choice   of   the   functional

relationship for each gene is assumed to be independent of

that for other genes, then

c
k
= c

i
k

( i)

i=1

n

 (2)

In this case, the PBN is said to be independent. As
discussed in [1], even when there is dependence in the choice
of the functional relationships for different genes, one can
calculate the switching probabilities c1, c2,…., cN by using
conditional probabilities instead of the unconditional ones
cj

(i)
.

To characterize the Markov chain associated with an
instantaneously random PBN, we first focus on Boolean
networks, for which the state vector x(k) at any time step k is
essentially an n -digit binary number whose decimal
equivalent is given by

y(k) = 2
n j

j=1

n

x
j
(k ) (3)

As x(k) ranges from 00...0 to 11…1, y(k) takes on all
values from 0 to 2

n
1. To be consistent with the

development in [1], we define

z(k) = 1 + y(k) (4)

As x(k) ranges from 00...0 to 11…1, z(k) take on all

values from 1 to 2
n
. The mapping from x(k) to z(k) is one-to-

one and onto, and hence invertible. Thus, instead of the

binary representation x(k) for the state vector, we can

equivalently work with the decimal representation z(k).

Furthermore, each z(k) can be uniquely represented by a

basis vector w(k) R
2n

, where w(k) = e
z( k )

, e.g. if  z (k) = 1,

then w(k) = [1, 0, 0,…..]. Then, as discussed in [1], the

evolution of the vector w (k) proceeds according to the

difference equation

w(k + 1) = w(k)A  (5)

where A is a 2
n

 2
n
 matrix having only one non-zero entry

(equal to one) in each row. Equation 5 is reminiscent of the
state transition equation in Markov Chain theory. The only
difference here is that, for a given initial state, the transition

is completely deterministic. However, Eq. 5 can also be
easily interpreted within a stochastic framework. For
instance, the vector w (k ) represents the probability
distribution over the entire state space at time step k; indeed,
owing to the deterministic nature of the evolution, at each
time step k, the entire probability mass is concentrated on
only one out of the 2

n
 possible states, thereby accounting for

the 2
n
-dimensional vectors w(k) with only one non-zero entry

1 corresponding to the location where the probability mass is
concentrated. The matrix A is a stochastic matrix with the
sole non-zero entry in each row being a 1. Thus, given an
initial state, the transition to the next state is deterministic
and takes place with probability 1.

The  stochastic interpretation of Eq. 5 allows us to readily

extend Eq. 5 to accommodate state transitions in

probabilistic Boolean networks. Towards this end, let a and

b be any  two  basis  vectors  in  R
2n

.  Then,  using  the  total

probability theorem, it follows that the transition probability

Pr{w(k + 1) = a | w(k) = b} is given by

Pr{w(k +1) = a | w(k ) = b}= Pr{w(k +1) = a | w(k) = b,
i=1

N

                                                  Network i is selected} P
i

= P
i

i I

 (6)

where

I = {i : Pr(w(k +1) = a | w(k) = b,Network i is selected) = 1}.

By letting the vectors a  and b range over all possible

basis vectors in R
2n

, we can determine the 2
n

2
n  entries of

the transition probability matrix A.

Now let w(k) denote the probability distribution vector at
time k, i.e. wi(k) = Pr{z(k) = i}. It is straightforward to show
that w(k) evolves according to the equation

w(k + 1) = w(k)A  (7)

where the entries of the A matrix are determined using Eq. 6.
This completes our discussion of PBNs. For a more rigorous
derivation of Eq. 7, the reader is referred to [1].

As with the majority of the literature, we have focused on
binary quantization; nevertheless, one should recognize that
most of the theory and application carry over to any finite
quantization in a fairly obvious fashion – that is, to
probabilistic gene regulatory networks. A particularly
important case of a PGRN arises in the case of ternary
quantization, where the expression levels take on the values
+1 (up-regulated), 1 (down-regulated), and 0 (invariant);
indeed, it is in this ternary setting where we will consider the
application of external control. As noted previously, the
terminology “probabilistic Boolean network” is usually
applied to PGRNs in general, under the supposition that it is
the logical character of the networks that is at issue, as in the
case of ternary networks.

3. INTERVENTION BY FLIPPING THE STATUS OF
A SINGLE GENE

Recognizing that a key goal of PBN modeling is the
discovery of possible intervention targets (genes) by which
the network can be “persuaded” to transition into a desired
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state or set of states, in this section, we consider the effects
of intervention by deliberately affecting a particular gene in
an instantaneously random PBN. Whereas in Boolean
networks, attractors are hypothesized to correspond to
functional cellular states [13], in PBNs this role is played by
irreducible subchains. Absent the possibility of perturbation
(p = 0), a PBN is unable to escape from an irreducible
subchain, implying that the cellular state cannot be altered. If
p is positive, then the Markov chain is ergodic and there is a
chance that the current cellular state may switch to another
cellular state by means of a random gene perturbation.
Clearly, flipping the values of certain genes is more likely to
achieve the desired result than flipping the values of some
other genes. Our goal is to discover which genes are the best
potential “lever points,” to borrow the terminology from
[13], in the sense of having the greatest possible impact on
desired network behavior so that we can intervene with them
by changing their value (1 or 0) as needed. In addition, we
wish to be able to intervene with as few genes as possible in
order to achieve our goals. To motivate the discussion, let us
illustrate the idea with an example.

Example 1 [1]. Suppose we are given a PBN consisting
of three genes x1, x2, x3. There are two functions f1

(1)
, f2

(1)

associated with x1, one function associated with x2 and two
functions f1

(3)
, f2

(3)
associated with x3. These functions are

given by the truth table in Table 1. This truth table results in
four possible Boolean networks N1 = (f1

(1)
 , f1

(2)
 , f1

(3)
), N2 =

(f1
(1)

 , f1
(2)

 , f2
(3)

), N3 = (f2
(1)

 , f1
(2)

 , f1
(3)

 ) and N4 = (f2
(1)

 , f1
(2)

 , f2
(3)

) possessing the probabilities c1 = 0.3, c2 = 0.3, c3 =
0.2 and c4 = 0.2, respectively. The state diagram of the
Markov Chain corresponding to this PBN is shown in Fig. 1.
Suppose that we are currently in state (111) and wish to
eventually transition to state (000). The question is, with
which of the three genes, x1, x2, or x3, should we intervene
such that the probability is greatest that we will end up in

(000). By direct inspection of the diagram in Fig. 1, we see
that if we make x1 = 0, then with probability 0.2 we will
transition into (000), whereas if we make x2 = 0 or x3 = 0,
then it will be impossible for us to end up in (000) and with
probability 1 we will eventually return to (111). In other
words, the network is resistant to perturbations of the second
or third genes and will eventually maintain the same state.
Thus, the answer to our question in this rather simple
example is that only by intervening with gene x1 do we have
a chance of achieving our goal. To answer such questions in
general, we need to develop several tools.

Table 1. Truth Table

x1x2x3 f1
(1)

f2
(1)

f1
(2)

f1
(3)

f2
(3)

000 0 0 0 0 0

001 1 1 1 0 0

010 1 1 1 0 0

011 1 0 0 1 0

100 0 0 1 0 0

101 1 1 1 1 0

110 1 1 0 1 0

111 1 1 1 1 1

cj
(i) 0.6 0.4 1 0.5 0.5

Assume there is independent random perturbation with p
> 0, so that the Markov chain is ergodic and every state will
eventually be visited. The question of intervention can be
posed in the sense of reaching a desired state as soon as
possible. For instance, in the example considered above, if p
is very small and we are in state (111), then it will be a long

Fig. (1). State Transition Diagram [1].
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time until we reach (000) and setting x1 = 0 is much more
likely to get us there faster. Hence, we are interested in the
probability Fk(x, y) that, starting in state x, the first time the
PBN will reach some given state y will be at time k. This is
known as the first passage time from state x to state y. For k
= 1, Fk(x, y) = A(x, y), which is just the transition probability
from x to y. For k  2, it can be shown [14] that

F
k
(x, y) = A(x,z)F

k 1
(z, y)

z {0,1}n { y}

  (8)

We can examine our results by considering

H
K

0

(x, y) = F
k
(x, y)

k=1

K
0

 (9)

which is the probability that the network, starting in state

x, will visit state y before time K0. (Note that the events {the

first passage time from x to y will be at time k} are disjoint

for different values of k.) As a special case, when K0 = ,

H
K

0

(x, y)   is  the  probability  that  the  chain  ever visits state y,

starting at state x, which is equal to 1 since the Markov chain

is ergodic.

A related measure of interest is the mean first passage
time from state x to state y, defined as

M (x, y) = kF
k
(x, y)

k
(10)

M(x, y) is the average time it will take to get from state x to
state y.

Example  2 [5]. The entries of the matrix A  can be

computed directly using the results of [5]. Supposing p =

0.01, the steady-state distribution is given by [0.0752,

0.0028, 0.0371, 0.0076, 0.0367, 0.0424, 0.0672, 0.7310],

where the leftmost element corresponds to (000) and the

rightmost to (111). The PBN spends much more time in state

(111) than in any other state. Let our starting state x be (111)

and the destination state y be (000), as before. Should we

intervene with gene x1, x2, or x3? Using first-passage time, we

compute Fk((011), (000)), Fk((101), (000)), and Fk((110),

(000)). Fig. 2 shows the plots of H
k

0

(x, y)  for K0 = 1, 2,…,

20 and for the three states of interest, namely, (011), (101),

Fig. (2). H Ko (x
(i)

, y) for K0 = 1, . . . , 20, for starting states (011),

(101), and (110), corresponding to perturbations of first, second,
and third genes, respectively [5].

and (110). The plots indicate that starting at state (011), the

network is much more likely to enter state (000) sooner than

by starting at states (110) or (101). For instance, during the

first 20 steps, there is almost a 0.25 probability of entering

(000) starting at (011), whereas starting at (110) or (101),

there is only a 0.05 probability. Thus, we should intervene

with gene x1 rather than with x2 or x 3. Were we to base

intervention on mean first passage time (Equation 10), then

the best gene for intervention would be the one possessing

the smallest mean first passage time to the destination state.

For this example, the mean first passage times corresponding

to the perturbations of genes x1, x2, and x 3 are 337.51,

424.14, and 419.20, respectively. Since the first one is the

smallest, this again supports the conclusion that gene x1 is

the best candidate for intervention.

To summarize the results of this section, given an initial

state x, we generate different states x
( i )
= x e

i
, i = 1, 2,…, n,

where e
i
  is  the  unit  binary  vector  with   a   1   in   the i

th

coordinate, by perturbing each of the n genes, and compute

H
K

0

(x
( i)

, y) for some desired destination state y and constant

K0. Then, the best gene for intervention is the one for which

H
K

0

(x
( i)

, y)   is  maximum;  that  is,  given   a   fixed K0,  the

optimal gene x
i
opt

 satisfies

i
opt

= arg max
i

H
k

0

(x
( i)

, y)

Alternatively, by minimizing the mean first passage
times, the optimal gene satisfies

i
opt

= arg min
i

M (x
( i)

, y) .

4. INTERVENTION TO ALTER THE STEADY-STATE
BEHAVIOR

The type of intervention described in the last section can
be useful for modulating the dynamics of the network but it
does not alter the underlying network structure. Accordingly,
the stationary distribution remains unchanged. However, an
imbalance between certain sets of states can be caused by
mutations of the “wiring” of certain genes, thereby
permanently altering the state-transition structure and,
consequently, the long-run behavior of the network [13].
Therefore, it is prudent to develop a methodology for
altering the steady-state probabilities of certain states or sets
of states with minimal modifications to the rule-based
structure. The motivation is that these states may represent
different phenotypes or cellular functional states, such as cell
invasion and quiescence, and we would like to decrease the
probability that the whole network will end up in an
undesirable set of states and increase the probability that it
will end up in a desirable set of states. One way to
accomplish this is by altering some Boolean functions
(predictors) in the PBN. An additional goal is to alter as few
functions as possible. In [6], formal methods and algorithms
have been developed for addressing such a problem. Here we
briefly discuss the results.

Consider a PBN with perturbation and two sets of states

A, B {0,1}
n .  Since  the  Markov  chain is ergodic, each state
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x {0,1}
n   has  a  positive  stationary  probability (x) . Thus,

we can define ( A) = (x)
x A

, and (B) similarly. Suppose

that we are interested in altering the stationary probabilities

of these two sets of states in such a way that the stationary

probability of A is decreased and the stationary probability of

B is increased by , 0 < < 1. As already mentioned above,

these two states may represent two different cellular

functional states or phenotypes. In order to achieve this,

suppose  we  alter  function  f
j
0

( i
0

)
  by  replacing it with a new

function g
j
0

( i
0

)
 . The probability c

j
0

( i
0

)
 corresponding to g

j
0

( i
0

)

must remain the same as for f
j
0

( i
0

)
, since c

1

( i )  + c
2

( i )  +…+ c
l ( i )

( i )

= 1. Thus, we have a new PBN whose stationary distribution

we can denote by . Letting (A) and (B) be the stationary

probabilities of A and B under the altered PBN model, we

pose the following optimization problem:

Given sets A and B, predictor functions f
j

( i )  together with

their selection probabilities c
j

( i ) , i = 1, 2,…,  n , j = 1, 2,…,

l(i),  and (0,1) ,  select i0 and j0,  and  a  function g
j
0

( i
0

)
  to

replace f
j
0

( i
0

)
, such that

( ( A) , ( A))  (11)

and

( (B) + , (B)) (12)

are minimum among all i, j, g
j

( i ) .

(a,b)   is  some error  function,  such  as  the  absolute  error

(a,b) = a b . An additional constraint can be that g
j
0

( i
0

)
has

no more essential variables than f
j
0

( i
0

)
. In this scenario, we are

only allowing the alteration of one predictor function. More

generally, we can pre-select a number of predictor functions

that we are willing to alter.

Example 3 [6]. For the PBN of Example 1, Fig. 1 shows

the state transition diagram assuming no perturbation (p =

0). From the figure we see that thee are two absorbing states,

(000) and (111). For the sake of this example, suppose (111)

corresponds to cell invasion (and rapid proliferation) and

(000) corresponds to quiescence. Now assume perturbation

probability  p = 0.01. A simple analysis based on the

probability transition matrix shows that the stationary

probabilities of states (000) and (111) are 0.0752 and 0.7310,

respectively. Thus, in the long run, the network will be in

quiescence only 7% of the time and will be in proliferation

73% of the time. Suppose we wish to alter this imbalance

and require the stationary probabilities to be approximately

0.4 for both (000) and (111). The other six states will then be

visited only 20% of the time. In the framework of the above

optimization problem, A = {(111)}, B = {(000)}, ( A)  =

0.7310, (B)  = 0.0752, ( A)  = (B) = 0.4, and  = 0.3279.

Finally, suppose we are allowed to change only one predictor

function. In Table 1, this corresponds to changing only one

column, while keeping the selection probabilities c
j

( i )

unchanged. Thus, there are 5 possible columns (predictors)

and 256 possibilities for each. The 5  256 = 1280 possible

alterations have been generated and the stationary

probabilities (000)   and (111)   have  been  computed  for

each (see Fig. 3). The optimal values of (000)  and (111)

for the  error  function   (a,b) = a b    are  indicated  by  an

arrow. The objective function to be minimized is

(000) 0.4 + (111) 0.4 ,  which corresponds to the sum  of

the two objective functions in Eqs. 11 and 12. The colors of

the circles represent which predictor is altered. For example,

red denotes that predictor f1
(1)

 is altered. The optimal

predictor is the one that alters f
2

(1)  for gene  1  (column  2  in

the truth tables) and the truth table of the optimal predictor is

(00010101)
T
. This predictor achieves the stationary

probabilities (000)   =  0.4068  and (111)   =  0.4128.  The

structure of the plot in Fig. 3  reveals an interesting

phenomenon: the two stationary probabilities exhibit

regularities, forming clusters of points arranged in a linear

fashion, with different directions. In fact, this phenomenon

has been observed in numerous examples. It appears that the

alterations of different predictors tend to occupy different

parts of the space, implying that for a given predictor, there

is a certain “range of action” that can be achieved by

manipulating it. This suggests that a brute-force search for

the optimal predictor alteration may possibly be avoided by

following a number of search directions simultaneously, with

the more promising ones being explored further. This, in turn

suggests the use of genetic algorithms for optimization [15].

In fact, genetic algorithms have been used to solve the

optimal structural intervention problem posed here and the

resulting savings in computational effort have been

remarkable [6]. Nonetheless, this remains an essentially a

brute force procedure and better approaches need to be

developed.

Fig. (3). Each circle represents one of the 1280 possible alterations

to the predictors. The x-axis is (000) and the y-axis is (111). The

optimal choice is shown with an arrow, as it comes closest to 0.4

for both stationary probabilities. The colors of the circles represent

the predictor that is altered (see legend) [6].
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5. EXTERNAL INTERVENTION BASED ON

OPTIMAL CONTROL THEORY

As discussed in Section 2, probabilistic Boolean
networks can be used for studying the dynamic behavior of
gene regulatory networks. Once a probability distribution
vector has been specified for the initial state, the probability
distribution vector evolves according to Eq. 7. From this
perspective PBNs are descriptive in nature. There is no
mechanism for controlling the evolution of the probability
distribution vector. For treatment or intervention purposes,
we are interested in working with PBNs in a prescriptive
fashion, where the transition probabilities of the associated
Markov chain depend on certain auxiliary variables, whose
values can be chosen to make the probability distribution
vector evolve in some desirable manner.

The use of such auxiliary variables makes sense from a
biological perspective. For instance, in the case of diseases
like cancer, auxiliary treatment inputs such as radiation,
chemo-therapy, etc. may be employed to move the state
probability distribution vector away from one associated
with uncontrolled cell proliferation or markedly reduced
apoptosis. The auxiliary variables could also include genes
that serve as external master-regulators for all the genes in
the network. To be consistent with the binary nature of the
expression status of individual genes in a PBN, we will
assume that the auxiliary variables (control inputs) can take
on only the binary values 0 or 1. The values of the individual
control inputs can be changed from one time step to another
in an effort to make the network behave in a desirable
fashion.

Suppose that a PBN with n genes has m control inputs u1,
u2,…, um . Then at any given time step k, the row vector

u(k) = [u
1
(k),u

2
(k ),....,u

m
(k)] (13)

describes the complete status of all the control inputs. u(k)
can take on all binary values from 00 0  to 11 1 . Letting

v(k) = 1+ 2
m i

u
i
(k)

i=1

m

  (14)

as u(k) takes on binary values from 00 0  to 11 1 , the

variable v(k) ranges from 1 to 2
m

. We can equivalently use

v(k) as an indicator of the complete control input status of the

PBN at time step k .

We  now proceed  to  derive the counterpart of Eq. 7 for a

PBN  subject  to  auxiliary  controls.  Let  v*  be  any  integer

between 1 and 2
m
 and suppose that v(k) = v*. The procedure

outlined in Section 2 can be used to compute the

corresponding A matrix, which will now depend on v* and

can be denoted by A(v*). Furthermore, the evolution of the

probability distribution vector at time k  will take place

according to the equation

w(k + 1) = w(k)A(v*)  (15)

Since the choice of v* is arbitrary, the one-step evolution

of the probability distribution vector in the case of a PBN

with control inputs takes place according to the equation

w(k + 1)= w(k)A(v(k))  (16)

The transition probability matrix here is a function of all

the control inputs u1(k), u2(k),…, um(k). Consequently, the

evolution of the probability distribution vector of the PBN

with control now depends not only on the initial distribution

vector but also on the values of the control inputs at different

time steps. Furthermore, intuitively it appears that it may be

possible to make the states of the network evolve in a

desirable fashion by appropriately choosing the control input

at each time step. We next proceed to formalize these ideas.

Equation 16 is referred to in the control literature as a

controlled Markov chain or a Markov decision process [16].

Markov chains of this type occur in many real life

applications, the most notable example being the control of

queues. Given a controlled Markov chain, the objective is to

find a sequence of control inputs, usually referred to as a

control strategy, so that an appropriate cost function is

minimized over the entire class of allowable control

strategies. To arrive at a meaningful solution, the cost

function must capture the costs and the benefits of using any

control. The design of a “good” cost function is application

dependent and is likely to require considerable expert

knowledge. We next outline a procedure that we believe

would enable us to arrive at a reasonable cost function for

determining the course of therapeutic intervention using

PBNs.

In the case of diseases like cancer, treatment is typically

applied over a finite time horizon. For instance, in the case

of radiation treatment, the patient may be treated with

radiation over a fixed interval of time following which the

treatment is suspended for some time as the effects are

evaluated. After that, the treatment may be applied again but

the important point to note is that the treatment window at

each stage is usually finite. We consider a finite-horizon

problem, where the control is applied only over a finite

number of steps.

Suppose  that the number  of steps over which the control
input is to be applied has been a priori determined to be M
and we are interested in controlling the behavior of the PBN
over the interval k = 0, 1, 2,…, M  1. Suppose at time step
k,   the   state*   of   the   PBN   is   given   by z(k)    and   the
corresponding control input is v(k). Then we can define a
cost Ck(z(k),v(k)) as being the cost of applying the control
input v(k) when the state is z(k). With this definition, the
expected cost of control over the entire treatment horizon
becomes

E[ C
k
(z(k ),v(k)) | z(0)

k=0

M 1

]   (17)

Note that even if the network starts from a given

(deterministic) initial state z(0), the subsequent states will be

random because of the stochastic nature of the evolution in

Eq. 16. Consequently, the cost in Eq. 17 must be defined

using expectation. Equation 17 provides one component of

the finite-horizon cost, namely the cost of control. We next

introduce the second component.

The net result of the control actions v(0), v(1),…, v(M
1) is that the state of the PBN will transition according to Eq.

* In the rest of this paper, we will be referring to z(k) as the state of the pro-

babilistic Boolean network since, as discussed in section 2, z(k) is equiva-

lent to the actual state x(k).
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16 and will end up in some state z(M ). Owing to the
probabilistic nature of the evolution, the terminal state z(M)
is a random variable that can possibly take on any of the
values 1, 2,…, 2

n
. Depending on the particular PBN and the

control inputs used at each step, it is possible that some of
these states may never be reached because of non-
communicating states in the resulting Markov chains;
however, since the control strategy itself has not yet been
determined, it would be difficult, if not impossible, to
identify and exclude such states from further consideration.
Instead, we assume that all 2

n
 terminal states are reachable

and assign a penalty, or terminal cost, CM(z(M)) to each of
them. We next consider penalty assignment.

First,  consider  the  PBN  with all controls set to zero i.e.
v(k) 1   for  all k.  Then   divide   the   states   into  different
categories depending on how desirable or undesirable they
are and assign higher terminal costs to the undesirable states.
For instance, a state associated with rapid cell proliferation
leading to cancer should be associated with a high terminal
penalty while a state associated with normal behavior should
be assigned a low terminal penalty. For the purposes of this
section, we will assume that the assignment of terminal
penalties has been carried out and we have at our disposal a
terminal penalty CM(z(M)) that is a function of the terminal
state. Thus we have arrived at the second component of our
cost function. Once again, note that the quantity CM(z(M)) is
a random variable and so we must take its expectation while
defining the cost function to be minimized. In view of Eq.
17, the finite-horizon cost to be minimized is given by

E[ C
k
(z(k ),v(k))+C

M
(z( M )) | z(0)

k=0

M 1

]   (18)

To proceed further, let us assume that at time k the
control input v(k) is a function of the current state z(k),
namely,

v(k) =
k
(z(k))   (19)

where
k

:{1,2,....,2
n
} {1,2,...,2

m
} .    The optimal   control

problem can now be stated:

Given an initial state z(0), find a control law

= {
0
,

1
,.....,

M 1
} that minimizes the cost functional

J (z(0)) = E[ C
k
(z(k),

k
(z(k ))) +C

M
(z( M ))

k=0

M 1

]   (20)

subject to the constraint

Pr{z(k +1) = j | z(k) = i}= a
ij
(v(k))  (21)

where a
ij
(v(k))  is the i

th
row, j

th
column entry of the matrix

A(v(k)).

Solution Using Dynamic Programming

Optimal control problems of the type described by Eqs.
20 and 21 can be solved using the technique of Dynamic
Programming. This technique, pioneered by Bellman, in the
1960's is based on the so-called Principle of Optimality. This
principle is a simple but powerful concept and can be
explained as follows. Consider an optimization problem
where we are interested in optimizing a performance index

over a finite number, M, of steps. At each step, a decision is
made and the objective is to devise a strategy or sequence of
M decisions that is optimal in the sense that the cumulative
performance index over all the M steps is optimized. In
general, such an optimal strategy may not exist. However,
when such an optimal strategy does exist, the principle of
optimality asserts: if one searches for an optimal strategy
over a subset of the original number of steps, then this new
optimal strategy will be given by the overall optimal
strategy, restricted to the steps being considered. Although
intuitively obvious, the principle of optimality can have far
reaching consequences. For instance, it can be used to obtain
the following proposition [16].

Proposition 1. Let J *(z(0)) be the optimal value of the
cost functional in Eq. 20. Then

J *(z(0)) = J0(z(0)),

where the function J0 is given by the last step of the
following dynamic programming algorithm which proceeds
backward in time from time step M – 1 to time step 0:

JM(z(M)) = CM(z(M))  (22)

J
k
(z(k)) = min

v( k ) {1,2,...2m}

E{C
k
(z(k),v(k)) + J

k+1
[z(k +1)]}  (23)

for k  = 0, 1,…, M  1. Furthermore, if v*(k ) = 
k

* (z(k))

minimizes the right hand side of (23) for each z(k) and k,

then the control law * = {
0

*
,

1

*
, . . . , 

N 1

*
} is optimal.

Note that the expectation on the right hand side of Eq. 23
is conditioned on z(k) and v(k). Hence, in view of Eq. 21, it
follows that

E[J
k+1

(z(k +1)) | z(k),v(k)] = a
z( k ), j

j=1

2n

(v(k ))J
k+1

( j) .

Thus the dynamic programming solution to Eqs. 20 and
21 is given by

JM(z(M)) = CM(z(M))    (24)

J
k
(z(k)) = min

v( k ) {1,2,...2
m

}

{C
k
(z(k),v(k))+ a

z( k ), j
(v(k))

j=1

2
n

J
k+1

( j)}  (25)

for k = 0, 1,…, M  1.

We next present two extensive examples to show optimal
control design using the dynamic programming approach.
The first is contrived for illustrative purposes only while the
second is a realistic and based on actual gene expression
data.

A Simple Illustrative Example

We consider an example of a PBN with control and work
through the details to show how Eqs. 24 and 25 can be used
to arrive at an optimal control strategy. The example is
adapted from the one used in the last two sections and
involves the truth table in Table 1, which corresponds to an
uncontrolled PBN. To introduce control, let us assume that x1

is now going to be a control input whose value can be
externally switched between 0 and 1 and the states of the
new PBN are x2 and x3. To be consistent with the notation
introduced in this section, the variables x1, x2 and x3 will be
renamed; the variable x1 now becomes u1 while the variables
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x2 and x3 become x1 and x2 respectively. With this change,
we have the truth table shown in Table 2, which also contains
the values of the variables v and z corresponding to u1 and
x1x2, respectively. The values of cj

(i)
in the table dictate that

there are two possible networks, the first corresponding to
the choice of functions (f1

(1)
,  f1

(2)
) and the second

corresponding to the choice of functions (f1
(1)

,  f2
(2)

). The
probabilities c1 and c2 associated with each of these networks
is given by c1 = c2 = 0.5. We next proceed to compute the
matrices A(1) and A(2) corresponding to the two possible
values for v. From Table 2, it is clear that when v = 1, the
following transitions are associated with the network N1 and
occur with probability c1:

z = 1 z = 1, z = 2 z = 3, z = 3 z = 3, z = 4 z = 2   (26)

The corresponding transitions associated with network N2

that occur with probability c2 are given by:

z = 1 z = 1, z = 2 z = 3, z = 3 z = 3, z = 4 z = 1 (27)

In view of Eqs. 26 and 27, the matrices A(1) and A(2) are
given by

A(1) = 

1 0 0 0

0 0 1 0

0 0 1 0

P
2

P
1

0 0

   (28)

A(2) = 

0 0 1 0

0 0 P
2

P
1

P
2

P
1

0 0

0 0 0 1

   (29)

Table 2. Truth Table for the Example of this Section

u1 v x1 x2 z f1
(1)

f1
(2)

f2
(2)

0 1 0 0 1 0 0 0

0 1 0 1 2 1 0 0

0 1 1 0 3 1 0 0

0 1 1 1 4 0 1 0

1 2 0 0 1 1 0 0

1 2 0 1 2 1 1 0

1 2 1 0 3 0 1 0

1 2 1 1 4 1 1 1

cj
i 1 0.5 0.5

In this example, n = 2 so that the variable z can take on
any one of the four values 1, 2, 3, or 4. Since m = 1, the
control variable v can take on any one of the two values 1 or
2. Suppose that the control action is to be carried out over 5
steps, so that M = 5. Moreover, assume that the terminal
penalties are given by

C5(1) = 0, C5(2) = 1, C5(3) = 2, C5(4) = 3 (30)

Note that the choices of M and the values of the terminal
penalties are completely arbitrary; in a real-world example,
this information would be obtained from biologists. The

current choice of terminal penalties indicates that the most
desirable terminal state is 1 and the least desirable terminal
state is 4. For the optimization problem of Eqs. 20 and 21,
we need to define the function Ck(z(k), v(k)). For the sake of
simplicity, let us define

C
k
(z(k),v(k)) = u

i
(k ) = u

1
(k)

i=1

m

      (31)

where v(k) and ui(k), i = 1, 2,…, m are related by Eq. 14. The
cost Ck(z(k), v(k)) captures the cost of applying the input
u1(k) at the k

th
 step. The optimization problem of Eqs. 20 and

21 can now be posed using the quantities defined in Eqs. 28,
29, 30, 31. The dynamic programming algorithm resulting
from Eqs. 24 and 25 becomes

J5(z(5)) = C5(z(5))       (32)

J
k
(z(k)) = min

v(k ) {1,2}
[u

1
(k )+ a

z(k ), j
(v(k)).J

k+1
( j)

j=1

4

] , k = 0, 1, 2, 3, 4 (33)

We proceed backwards step by step from k = 4 to obtain
a solution to Eqs. 32 and 33. The resulting optimal control
strategy for this finite horizon problem is:

0

*
(z(0)) =

1

*
(z(1)) =

2

*
(z(2)) =

3

*
(z(3)) = 1 for all z(0),z(1), z(2), z(3)  (34)

4

*
(z(4)) =

2   if z(4) = 3

1   otherwise.
(35)

Thus the control input is applied only in the last time
step, provided the state z of the system at that time step is
equal to 3; otherwise, the optimal control strategy is to not
apply any control at all. Let us now consider a few different
initial states z(0) and see whether this optimal control
strategy makes intuitive sense.

Case 1. z(0) = 1: According to Eqs. 34 and 35, the
optimal control strategy in this case is no control. Note from
Eq. 30 that the evolution of the PBN is starting from the most
desirable terminal state. Furthermore, from Eq. 28, it is clear
that in the absence of any control, the state of the network
remains at this position. Hence, the control strategy arrived at
is, indeed, optimal and the value of the optimal cost is 0.

Case 2. z(0) = 4: In this case, from Eq. 30, it is clear that
the evolution of the PBN is starting from the most
undesirable terminal state. Moreover, from Eq. 29, note that
if the control input were kept turned ON over the entire
control horizon, then the state would continue to remain in
this most undesirable position during the entire control
duration. Such a control strategy cannot be optimal since not
only does the network end up in the most undesirable
terminal state but also the maximum possible control cost is
incurred over the entire time horizon.

To get a more concrete feel for the optimal control
strategy, let us focus on the cases where the PBN
degenerates into a standard (deterministic) Boolean network.
There are two cases to consider:

(i) c2 = 1, c1 = 0: In this case, from Eq. 28 we have

A(1) = 

1 0 0 0

0 0 1 0

0 0 1 0

1 0 0 0 

(36)
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Clearly, if no control is employed then, starting from z(0)
= 4, the network will reach the state z(1) = 1 in one step and
stay there forever. Thus, this no-control strategy is optimal
and the optimal cost is 0.

c2 = 0, c1 = 1: In this case, from Eqs. 28 and 29 we have

A(1) = 

1 0 0 0

0 0 1 0

0 0 1 0

0 1 0 0 

 , A(2) = 

0 0 1 0

0 0 0 1

0 1 0 0

0 0 0 1 

(37)

From Eq. 34 the optimal control strategy is no control
over the first four time steps. From Eq. 37 it follows that,
with z(0) = 4, we will have z(1) = 2, z(2) = 3, z(3) = 3 and
z(4) = 3. Then at the last time step, the control input is turned
ON and from Eq. 37 the resulting state is z(5) = 2. The
optimal cost is 2 (the sum of the terminal cost and the cost of
control).

Melanoma Example

We now apply the methodology of this section to derive
an optimal intervention strategy for a particular gene
regulatory network. The network chosen as an example of
how control might be applied is one developed from data
collected in a study of metastatic melanoma [17]. In this
expression profiling study, the abundance of messenger RNA
for the gene WNT5A was found to be a highly
discriminating difference between cells with properties
typically associated with high metastatic competence versus
those with low metastatic competence. These findings were
validated and expanded in a second study [18]. In this study,
experimentally increasing the levels of the Wnt5a protein
secreted by a melanoma cell line via genetic engineering
methods directly altered the metastatic competence of that
cell as measured by the standard in vitro assays for
metastasis. A further finding of interest in the current study
was that an intervention that blocked the Wnt5a protein from
activating its receptor, the use of an antibody that binds
Wnt5a protein, could substantially reduce Wnt5a’s ability to
induce a metastatic phenotype. This suggests a study of
control based on interventions that alter the contribution of
the WNT5A gene’s action to biological regulation, since the
available data suggest that disruption of this influence could
reduce the chance of a melanoma metastasizing, a desirable
outcome.

The methods for choosing the genes involved in a small
local network that includes the activity of the WNT5A gene
and the rules of interaction have been described in [19]. As
discussed in that paper, the WNT5A network is obtained by
studying the predictive relationship between 587 genes. The
expression status of each gene is quantized to one of three
possible levels: 

_
1 (down-regulated), 0 (unchanged) and 1

(upregulated). In this case, the gene activity profile at any
time step is ternary, not binary; nonetheless, the PBN
formulation and the associated control strategy can be
developed exactly as described, the only difference being
that now, for an n-gene network, we will have 3

n
states

instead of 2
n

states. In this context, it is appropriate to point
out that to apply the control algorithm of this paper, it is not
necessary to actually construct a PBN; all that is required are

the transition probabilities between the different states under
the different controls.

A ternary network with 587 genes will have 3
587

 states,
which is an intractably large number to use either for
modeling or for control. Consequently, the number of genes
has been reduced to the ten most significant ones and the
resulting multivariate relationships, using the best three-gene
predictor for each gene, are shown in Fig. 4 . These
relationships were developed using the CoD (coefficient of
determination) technique [20, 21, 22] applied to the gene-
expression patterns across 31 different conditions and prior
biological knowledge (a detailed description being given in
[19]).

Fig. (4). Multivariate relationship between the genes of the 10-gene

WNT5A network [26].

Because it is biologically known that WNT5A ceasing to
be down-regulated is strongly predictive of the onset of
metastasis, the control objective for this 10-gene network is
to externally down-regulate theWNT5A gene. Controlling
the 10-gene network using dynamic programming would
require designing a control algorithm for a system with 3

10

(59,049) states. Although there is nothing conceptually
difficult about doing this, it is beyond the computational
limits of our current software. Accordingly, we have further
narrowed down the number of genes in the network to 7 by
using CoD analysis on the 31 samples. The resulting genes,
along with their multivariate relationships, are shown in Fig.
5. For each gene in this network, we have determined their
two best two-gene predictors and their corresponding CoD’s.
Using the procedure discussed in [1], the CoD information
for each of the predictors has then been used to determine the
3

7
x3

7
 matrix of transition probabilities for the Markov chain

corresponding to the dynamic evolution of the gene-activity
profile of the seven gene network.

The optimal control problem can now be completely
specified by choosing (i) the treatment/ intervention window,
(ii) the terminal penalty and (iii) the types of controls and the
costs associated with them. For the treatment window, we
arbitrarily choose a window of length 5, i.e. control inputs
would be applied only at time steps 0, 1, 2, 3 and 4. The
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terminal penalty at time step 5 is chosen as follows. Since
our objective is to ensure that WNT5A is down regulated, we
assigned a penalty of 0 to all states for which WNT5A
equals

_
1, a penalty of 3 to all states for which WNT5A

equals 0 and a penalty of 6 to all states for which WNT5A
equals 1. Here the choice of the numbers 3 and 6 is arbitrary
but it does reflect our attempt to capture the intuitive notion
that states where WNT5A equals 1 are less desirable than
those where WNT5A equals 0. Two types of possible
controls are used and we discuss the two cases separately.

Fig. (5). Multivariate relationships between the genes of the 7-gene

WNT5A network [7].

Case 1. WNT5A Controlled Directly: In this case, the
control action at any given time step is to force WNT5A
equal to 

_
1, if necessary, and let the network evolve from

there. Biologically such a control could be implemented by
using a WNT5A inhibitory protein. In this case, the control
variable is binary with 0 indicating that the expression status
of WNT5A has not been forcibly altered while 1 indicates
that such a forcible alteration has taken place. Of course,
whether at a given time step, such intervention takes place or
not is decided by the solution to the resulting dynamic
programming algorithm and the actual state of the network
immediately prior to the intervention. With this kind of
intervention strategy, it seems reasonable to incur a control
cost at a given time step if and only if the expression status
of WNT5A has to be forcibly changed at that time step. Once
again, we arbitrarily assign a cost of 1 to each such forcible
change and solve for the optimal control using dynamic
programming. The net result is a set of optimal control inputs
for each of the 2187 (3

7
) states at each of the five time points.

Using these control inputs, we have studied the evolution of
the state probability distribution vector with and without
control. For every possible initial state, our simulations
indicate that at every time step from 1 to 5, the probability of
WNT5A being equal to 

_
1 is higher with control than that

without control. Furthermore, with control, WNT5A always
reaches

_
1 at the final time point (k = 5). Thus, we conclude

that the optimal control strategy of this section is successful
in achieving the desired control objective. In this context, it
is significant to point out that if the network starts from the
initial state STC2 = 

_
1, HADHB = 0, MART-1 = 0, RET-1 =

0, S100P = 
_
1, pirin = 1, WNT5A = 1 and if no control is

used, then it quickly transitions to a bad absorbing state
(absorbing state with WNT5A = 1). With optimal control,
however, this does not happen.

Case 2. WNT5A Controlled Through pirin: In this case,
the control objective is the same as in Case 1, namely to keep
WNT5A down-regulated. The only difference is that this
time we use another gene, pirin, to achieve this control. The
treatment window and the terminal penalties are kept exactly
the same as before. The control action consists of either
forcing pirin to 

_
1 (corresponding to a control input of 1) or

letting it remain wherever it is (corresponding to a control
input of 0). As before, at any step, a control cost of 1 is
incurred if and only if pirin is forcibly reset to 

_
1 at that time

step. Having chosen these design parameters, we implement
the dynamic programming algorithm with pirin as the
control. Using the resulting optimal controls, we have studied
the evolution of the state probability distribution vector with
and without control. For every possible initial state, our
simulations indicate that, at the final state, the probability of
WNT5A being equal to 

_
1 is higher with control than that

without control. In this case, however, there is no definite
ordering of probabilities between the controlled and
uncontrolled cases at the intermediate time points. Moreover,
the probability of WNT5A being equal to 

_
1 at the final time

point is not, in general, equal to 1. This is not surprising
given that now we are trying to control the expression status
of WNT5A using another gene and the control horizon of
length 5 simply may not be adequate for achieving the
desired objective with such a high probability. Nevertheless,
even in this case, if the network starts from the state
corresponding to STC2 =

 _
1, HADHB = 0, MART-1 = 0,

RET-1 = 0, S100P = 
_
1, pirin = 1, WNT5A = 1 and evolves

under optimal control, then the probability of WNT5A = 
_
1

at the final time point equals 0.673521. This is quite good in
view of the fact that the same probability would have been
equal to 0 in the absence of any control action.

6.  EXTERNAL INTERVENTION IN THE
IMPERFECT INFORMATION CASE

The control law that emerges from the solution of the
dynamic programming problem of Eqs. 24 and 25 takes the
form of a state feedback 

†

vk = k(zk), k = 0, 1, 2,…, M
_
 1 (38)

When the state vector zk of the PBN is not available for
measurement, such a control law cannot be implemented. In
that case, we will assume that when the PBN is in the state
zk, it emits q measurable outputs, each of which could take
on the value 0 or 1. Thus, the output status of the PBN at any
time k can be captured by a q-digit binary number or,
alternatively, by its decimal equivalent plus one, which we
shall call k. As the outputs range over all possible binary
values, k takes on all values from 1 to 2

q
.

The design of the optimal control in this case can make

use of only the signals available to the controller. In other

words, at time k, the controller tries to design the control

input vk using all the available signals, 0, 1,…, k, v0, v1,…,

vk–1. Although the state zk evolves according to Eq. 21 and is

not available for measurement, we assume that the output k

at time k is probabilistically related to the state zk at time k

† In the rest of this paper, we will be denoting w(k), z(k), v(k) by wk, zk, vk

respectively, mainly for the purpose of simplifying the notation.
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and the input vk–1 through the known conditional probability

measure Pr
k

(. | z
k
,v

k 1
) defined by

Pr{
k
= j | z

k
= i,v

k 1
= v}= r

ij

v
  (39)

The total information available for control at time k is given
by Ik = [ 0, v 0, 1, v1,…, vk–1, k]

T
. I k can be generated

recursively using the equation

I
k+1

= [I
k

T
,v

k
,

k+1
]
T
,          I

0
=

0
  (40)

Since the state zk is not available, it seems reasonable to
replace the state feedback control of Eq. 38 by the
information feedback control

vk = k(Ik), k = 0, 1, 2,…, M
_
 1  (41)

and search for the optimal k over the space of all functions

k mapping the space of information vectors Ik into the
control space {1, 2, 3, . . . , 2

m
}. Thus the counterpart to the

optimization problem of Eqs. 20 and 21 for this case
becomes [7, 23]

min
0

,
1
,...,

M 1

E
z

0
,d

0 ,
d

1
,...,d

M 1
,

0
,

1
,...,

M 1

{ C
k
(z

k
,

k
(I

k
),d

k
) +C

M
(z

M
)}

k=0

M 1

  (42)

subject to

zk+1 = dk,  (43)

Pr{dk = j |zk = i, vk} = aij (vk),  (44)

I
k+1

= [I
k

T
,v

k
,

k+1
]
T

,     I
0
=

0
 (45)

The dynamic programming algorithm for the above
problem is given by [7, 23]

JM-1(IM-1) = min
v

m 1
{1,2,...,2m }

{E
z

M 1
,d

M 1

[ CM(dM-1) + CM-1(zM-1, vM-1, dM-1)|IM-1, vM-1]} (46)

J
k
(I

k
) = min

v
k

{1,2,...,2m}

{E
k+1

, z
k

,d
k

[{C
k
(z

k
,v

k
,d

k
) + J

k +1
([I

k

T
,v

k
,

k+1
]
T

)} | I
k
,v

k
]}  (47)

for k = 0, 1, 2,…, M  2, and the optimal control input is
obtained from the values minimizing the right-hand side of
Eqs. 46 and 47. Using this algorithm, we will ultimately
arrive at J0(I0) = J0( 0). The optimal cost J* can be obtained
by taking the expectation of this quantity with respect to 0,
i.e.

J* = E
0

[J
0
(

0
)]   (48)

Melanoma Example

Consider a 7-gene network which is a slight variation of

the one considered in the last section. Since implementing

the imperfect information based control is computationally

more intensive compared to the perfect information case, we

have developed a binary 7-gene network using CoD analysis

on the same experimental data. The resulting genes along

with their multivariate relationship are shown in Fig. 5. For

each gene in this network, we have determined their two best

two-gene predictors and their corresponding CoDs. Using

the procedure discussed in [1], the CoD information for each

of the predictors is used to determine the 2
7

x 2
7
 matrix of

transition probabilities for the Markov chain corresponding

to the dynamic evolution of the GAP of the 7-gene network.

The transition probability matrix A(v(k)), the probability

distribution of the observations given the current state and

the  immediately   prior   control   r
ij

v ,   and   the  initial  state

probability distribution vector together constitute the data

needed for the optimal control problem with imperfect state

information. In our construction, the vector r
ij

v does not

depend on the prior control input v and probabilistically

relates the observation to the current state of the network.

This relationship is shown in Fig. 6 and it closely mimics the

behavior of a gene MMP-3 that appears in the 10-gene

network of Fig. 4 but does not appear in the 7-gene network

of Fig. 5.

The optimal control problem is completely specified by
choosing (i) the treatment/intervention window, (ii) the
terminal penalty and (iii) the types of controls and the costs
associated with them. For the treatment window, we
arbitrarily choose a window of length 5, i.e. time steps 0, 1,
2, 3 and 4. Based upon the same reasoning as in the full-
information case, the terminal penalty at time step 5 is
chosen as 0 for all states for which WNT5A equals 0 and 3
for all states for which WNT5A equals 1. We now discuss
two possible types of control actions for various initial state
probability distributions.

Case 1. WNT5A Controlled Directly: In this case, the
control action at any given time step is to force WNT5A
equal to 0, if necessary, and let the network evolve from
there. The control variable is binary with 1 and 0 indicating
intervention and no intervention, respectively. The one-step
cost of control is taken to be the value of the control
variable. Whether at a given time step intervention takes
place is decided by the solution to the resulting dynamic
programming algorithm depending on the initial distribution
and the subsequent total information vector Ik. Note that
unlike the perfect information scenario considered in the last
section, we are now not in a position to determine if forcible
alteration of the state takes place or not. Consequently, it is
reasonable to expect that WNT5A inhibition may be used,
even when not absolutely necessary, thereby contributing to
a possible increase in the total optimal expected cost,
compared to the perfect information case. We recursively use
Eqs. 46 and 47 to calculate the optimal controls for certain
initial state probability distributions. The net result, in each
case, is a tree of control actions corresponding to each
control action and subsequent observation. Starting with
Pdata, the distribution of states in the 31 point data set, we
find the optimal expected cost based on imperfect
information to be 0.4079. The corresponding optimal cost
using full state observation as in the last section is 0.3226.
The expected cost incurred by not using any control is
0.9677. We have computed these quantities for a few
different cases of initial state distributions. The relevant
quantities are tabulated in Table 3.

We have also calculated the optimal expected costs when
the initial state is deterministic. These values for all the 128
possible initial states are shown in Fig. 7. As expected, the
optimal cost for control with imperfect information is higher
than that for control with perfect state information. The cost
function, however, is a somewhat subjective quantity chosen
by us to mathematically capture the underlying biological
objective. A more natural way to look at the performance of
the control scheme would be to examine the probability of
WNT5A being equal to 0 at the final time step, i.e. at k = 5.



Intervention in Probabilistic Gene Regulatory Networks Current Bioinformatics, 2006, Vol. 1, No. 2    179

This quantity has been computed for each (deterministic)
initial state for both the uncontrolled and imperfect-
information-based controlled cases. These plots are shown in
Fig. 8. From this figure, it is clear that the control strategy
for each initial state is increasing the probability for WNT5A
being equal to 0 at the terminal time point relative to the
corresponding probability in the uncontrolled case. This is a
desirable outcome achieved by using control.

Fig. (6). Probability (Observed Variable =0) Versus Current State

[8].

Table 3. Expected Costs for Various Initial State

Distributions

Initial Distribution
Control using

Observation
Full State No Control

Psample-data 0.4079 0.3226 0.9677

[
1

128
,

1

128
,.....] 0.7068 0.3395 0.9990

[0,
1

64
,0,

1

64
,.....] 0.7296 0.3395 0.9990

[
1

64
,0,

1

64
,0,.....] 0.5692 0.3395 0.9990

Fig. (7). Optimal expected cost versus initial states ( a )

uncontrolled, (b) control using imperfect information, (c) control

using full state information [8].

Case 2. WNT5A Controlled Through pirin: in this case,
the control objective is the same as in Case 1, namely to
keep WNT5A at 0; however, now use pirin, to achieve
control. The treatment window and the terminal penalties are
kept exactly the same as before. The control action consists
of either using a pirin inhibitor (corresponding to a control
input of 1) or not employing such an inhibitor
(corresponding to a control input of 0). The one-step cost of
control is taken to be equal to the value of the control
variable. As before, at any step, whether such intervention
takes place or not is decided by the solution to the resulting
dynamic programming algorithm. Having chosen these
design parameters, we implement the algorithm with pirin as
the control. We find that using pirin as a control is totally
ineffective. The expected cost with pirin as the control is
found to be the same as the one obtained in Table 3 with no
control. Even with full state feedback we still find that pirin
is similarly ineffective (data not shown). This is in stark
contrast to our results in the last section where we have
demonstrated the feasibility of doing full state feedback
control of WNT5A through pirin. It is possible that going
from a ternary set-up in the last section to the binary setup
here may have drastically reduced our ability to control
WNT5A through pirin. This suggests that the standard
control theoretic notions of controllability and observability
[25] may have to be revisited in the context of genetic
regulatory networks to enable us to decide which genes can
be used as effective controls and which ones can be used as
meaningful observations.

Fig. (8). Probability of WNT5A= 0 at the terminal time point

versus the initial state for the uncontrolled and imperfect-

information-based controlled cases [8].

7. EXTERNAL INTERVENTION IN THE CONTEXT
SENSITIVE CASE

This section extends the results of Section 5 to context-

sensitive PBNs with perturbation. The intervention results

from Section 5 carry over to this case and the only difference

is that the entries of the transition probability matrix have to

be derived differently. Since there are n genes, the

probability of there being a random perturbation at any time

point is 1 
_
 (1 

_
p)

n
. . For a context-sensitive PBN, the state

z(t) at time t could be originating from any one of the k

possible networks. To keep track of the network emitting a
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particular state, let us redefine the states by incorporating the

network number inside the state label. Since we have k

different Boolean networks forming the PBN, the total

number of states becomes 2
n
k and we label these states as

S
1
,S

2
,...,S

2
n

k
,   where  for   each r =  1,  2, .  .  . , k,   states

S
2

n
(r 1)+1

,S
2

n
(r 1)+2

,...,S
2

n
r
  belong   to   network r.  Equivalently

S
2

n
(r 1)+i

corresponds   to z
r
i

,   where
ir

z is  the  decimal

representation of the i
th

 state in the network r. Denote the

redefined state at time t by w(t). We need to derive the

transition probability expressions for the uncontrolled and

controlled cases. First we treat the uncontrolled case.

Recall from Section 2 that for context-sensitive PBNs,
one of the following events occurs at each time point t: (1)
the current network function is applied, the PBN transitions
accordingly, and the network function remains the same for
the next transition; (2) the current network function is
applied, the PBN transitions accordingly, and a new network
function is selected for the next transition; (3) there is a
random perturbation and the network function remains the
same for the next transition; or (4) there is a random
perturbation and a new network function is selected for the
next transition.  Assuming that the individual genes
perturb independently, and letting mod(v, w) denote the
remainder left over when v is divided by w, we consider two
cases for determining the transition probability of going from
state a to state b:

Case 1: [(a  1)/2
n
] = [(b  1)/2

n
], meaning 2

n
(r  1) + 1

 a, b 2
n
r for the same r. This corresponds to the events (1)

and (3) above and the transition probabilities are given by

Pr(w(t +1) = b | w(t) = a) = (1 q)(1 p)
n

f
r ,a,b

+ (1 q)(1 p)
n h

p
h
s(h)  (49)

where h is the Hamming Distance between mod(a  1, 2
n
)

and mod(b  1, 2
n
), i.e. the number of genes which differ

between the two states,

f
r ,a ,b

=
1,  if a transitions to b in a single step in network r,

0,  otherwise

and

s(h) =
0,      if h = 0,

1,   otherwise.

The first term in Eq. 49 corresponds to event (1) above,
where 1 

_
q is the probability that the network selection does

not change, (1 
_

p)
n

is the probability that none of the n genes
undergoes a perturbation, we assume that network selection
and random gene perturbation are independent events, and
fr,a,b = 1 if that particular transition is possible in the r

th

Boolean network. The second term corresponds to event (3),
where h genes have to be perturbed to go from state a to
state b.

Case 2: 2
n
(r1  1) + 1 a  2

n
r1 and 2

n
(r2  1) + 1  b 

2
n
r2, where r1 r2. This corresponds to the events (2) and (4)

above and the transition probabilities are given by

Pr(w(t +1) = b | w(t ) = a) = qc
r
2

c
i

i=1,i r1

k
1

(1 p)
n

f
r
1
,a,b

+ (1 p)
n h

p
h
s(h)     (50)

If we define

g(a,b) =
1,    if [(a 1) / 2n ] [(b 1) / 2n ] = 0

0,        otherwise                             

then a unified transition probability expression
encompassing the two cases is given by

Pr(w(t +1) = b | w(t) = a) =

[(1 q)(1 p)
n

f
r ,a ,b

+ (1 q)(1 p)
n h

p
h
s(h)]g(a,b) +

qc
r
2

c
i

i=1,i r
1

k
1

(1 p)
n

f
r
1
,a,b

+ (1 p)
n h

p
h
s(h) [1 g(a,b)]       (51)

By letting a and b range over all integers from 1 to 2
n
k

and using Eq. 51, we can determine all the entries of the 2
n
k

x 2
n
k matrix of transition probabilities.

In practice, it will likely be impossible to detect the
Boolean network from which the current gene activity
profile is being emitted. In most cases, we will only have
knowledge of the states of the genes. To handle such
situations, we can derive an expression for the transition
probability from state s2 to state s1, where these states run
from 1 to 2

n
and reflect only the expression status of the n-

gene state vector:

Pr[z(t +1) = s
1

| z(t) = s
2
] = Pr[z(t +1) = s

1
,s

2
i=1

k

                                                    belongs to network i | z(t) = s
2
]

= Pr[z(t +1) = s
1

| z(t) = s
2
,s

2
 belongs to network i]

i=1

k

Pr[s
2
 belongs to network i]

= Pr[z(t +1) = s
1

| w(t) = s
2
+ 2

n
(i 1)].c

i
i=1

k

= c
i
.Pr[w(t +1) = s

1
+ 2

n
( j 1) | w(t) = s

2
+ 2

n
(i 1)]

j=1

k

i=1

k

       (52)

Note that here state s1 is equivalent to the distinct states
s1, s1 + 2

n
,…, s1 +(k

_
1)2

n
in the previous 2

n
k formulation.

Similarly s2 here is equivalent to s2, s2 + 2
n
,…, s2 + (k

_
 1)2

n

in the earlier formulation. By letting s1 and s2 range from 1 to
2

n
and using Eq. 52, we can derive the 2

n
x 2

n
transition

probability matrix A corresponding to the context-sensitive
PBN.

If a control action is applied, then the transition
probability expressions will change. Suppose our control
action consists of forcibly altering the value of a single gene,
g, from 0 to 1 or from 1 to 0. Thus, m = 1. Then the new
transition probabilities with control, denoted by Prc1, are
given by

Prc1(w(t + 1) = b | w(t) = a) = Pr(w(t + 1) = b | w(t) = a + 2
n-g

)

func(a)

+ Pr(w(t + 1) = b | w(t) = a
_
 2

n-g
)(1

_
func(a))       (53)

where

func(a) =
1,  if state of gene g  is 0 for a,

0,  if state of gene g  is 1 for a,

and the transition probabilities, Pr, without control are given
by Eq. 51. Here, a and b range over 1 through 2

n
k. As before
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we can reduce the dimension of the state space by replacing
the ws in Eq. 53 by zs and using Eq. 52 to determine the
transition probabilities without the control action:

Prc1(z(t + 1) = b | z(t) = a) = Pr(z(t + 1) = b | z(t) = a + 2
n-g

)func(a)

+ Pr(z(t + 1) = b | z(t) = a
_
 2

n-g
)(1

_
func(a))  (54)

By letting a and b vary over 1 to 2
n
 and making use of

Eq. 54, we can determine the 2
n

x 2
n

matrix A(v(t)) of
control-dependent transition probabilities.

From this point onwards the formulation and solution of
the control problem is exactly the same as in Section 5. To
avoid unnecessary repetition we proceed directly to the
melanoma example considered in the two previous sections.

Melanoma Example

We consider a 7-gene network with genesWNT5A, pirin,
S100P, RET1, MART1, HADHB and STC2. Although
derived from the same data, this network is designed based
on steady-state considerations and, therefore, differs from
the PBNs considered in Sections 5 and 6. Carrying out the
new design can be justified by the fact that most microarray-
based gene-expression studies do not involve controlled time
series experimental data; rather, it is assumed that data result
from sampling from the steady state. Consequently, to obtain
the PBN here, we have used a Bayesian connectivity-based
approach of [23] to construct four highly probable Boolean
networks that are used as the constituent Boolean networks
in the PBN, with their selection probabilities based on their
Bayesian scores. The four generated Boolean networks are
shown in Fig. 9 through 12, where the states are labeled from
1 to 128 = 2

7
. Each constituent network is assumed to be

derived from steady-state gene-expression data, and the
attractor states and the level sets are shown in the figures.
Observe that in each of these networks the state enters an
attractor cycle in a small number of steps (at most nine),
which is consistent with what is expected in real networks
[23]. The control strategy of this section has been applied to
the designed PBN with pirin chosen as the control gene and
p = q = 0.01. Fig. 13 shows the expected cost for a finite
horizon problem of length 5 originating from each of the 128
states. In these simulations, the problem formulation for 2

n

states has been used. The cost of control is assumed to be 0.5
and the states are assigned a terminal penalty of 5 if WNT5A
is 1 and 0 if WNT5A is 0. The control objective is to down-
regulate the WNT5A gene. From Fig. 13, it is clear that the
expected cost with control is much lower than that without
control, which agrees with our objective.

8. CONCLUDING REMARKS

We have discussed several approaches that have been
recently developed for addressing the issue of intervention in
probabilistic gene regulatory networks. The results reported
indicate that significant progress has been made in this area;
however, numerous open issues remain and these will have
to be successfully tackled before the methods suggested in
this paper find application in actual clinical practice. We next
discuss some of the issues that we are aware of at the current
time:

Methodical Assignment of Terminal Penalties

The formulation of the optimal control problem in
Section 5 assumes that there is a terminal penalty associated

with each state of the PBN; however, assignment of these
terminal penalties for cancer therapy is by no means a
straightforward task. The reason is that while the intervention
will be carried out only over a finite horizon, one would like
to continue to enjoy the benefits in the steady state. For such
purposes, the kind of terminal penalty used for the melanoma
cell line study of Section 5 is inadequate since it fails to
capture the steady state behavior once the intervention has
ceased. To remedy the situation, we propose to assign
terminal penalties based on equivalence classes. The results
of preliminary simulation studies in this regard [24] appear to
be encouraging.

Choice of Control Input

In the case of the melanoma cell line study presented in
Section 5, one of the genes in the PBN, namely pirin, has
been used as a control input. The question is how to decide
which gene to use. Of course, one consideration is to use
genes for which inhibitors or enhancers are readily available.
However, even if such a gene is chosen, how can we be
certain that it is capable of controlling some other gene(s)?
Although the answer is not clear at this stage, we do believe
that the traditional control theoretic concepts such as
controllability and observability [25] may yield some useful
insights. Another possibility is to use the concept of gene
influence introduced in [1], an approach that we have
preliminarily explored in [9].

Intervening to Alter the Steady-State Behavior

Given a Boolean network, one can partition the state-
space into a number of attractors along with their basins of
attraction. The attractors characterize the long-run behavior
of the Boolean network and have been conjectured by
Kauffman to be indicative of the cell type and phenotypic
behavior of the cell. Consequently, a reasonable objective of
therapeutic intervention could be to alter the attractor
landscape in the associated Boolean network. Such an idea
can be generalized to PBN's and a brute force approach
aimed at such intervention has been presented in Section 4.
More systematic approaches for affecting the steady-state
behavior will need to be developed possibly by exploiting
and building upon existing control-theoretic results.

PBN Design from Steady State Data

Yet another aspect that merits further investigation is
motivated by the fact that most currently available gene-
expression data comes from steady-state phenotypic
behavior and really does not capture any temporal history.
Consequently, the process of inferring PBNs from the data
will have to be modified, in the sense that it will have to be
guided more by steady-state and limited connectivity
considerations. Major research efforts in these directions are
currently under way [23, 26]. This last aspect further
underscores the fact that the category of intervention cannot
be researched in isolation. Issues that arise upstream will
definitely impact intervention and vice versa.

The optimal control results presented in this paper
assume known transition probabilities and pertain to a finite-
horizon problem of known length. Their extension to the
situation where the transition probabilities and the horizon
length are unknown is a topic for further investigation.
Finally, the results presented in this paper correspond to the
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following stages in standard control design: modeling,
controller design and verification of the performance of the
designed controller via computer simulations. The designed
controllers will have to be successfully implemented in
practical studies, at least with cancer cell lines, to validate the
use of engineering approaches in translational medicine. A
considerable amount of effort needs to be focused on this
endeavor.
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Fig. (9). Network 1 [9].

Fig. (10). Network 2 [9].
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Fig. (11). Network 3 [9].

Fig. (12). Network 4 [9].
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Fig. (13). Expected cost for a finite horizon problem of length 5 originating from the different initial states [9].
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