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Urban Road User Detection and Classification 

using 3D Wire Frame Models 

N. Buch, J. Orwell and S.A. Velastin 

 

This paper presents a detection and classification system for vehicles and pedestrians 

in urban traffic scenes. This aims to guide surveillance operators and reduce human 

resources for observing hundreds of cameras in urban traffic surveillance. We perform 

per frame vehicle detection and classification using 3D models on calibrated cameras. 

Motion silhouettes (from background estimation) are extracted and compared to a 

projected model silhouette to identify the ground plane position and class of vehicles 

and pedestrians. The system is evaluated with the reference i-LIDS datasets from the 

UK Home Office. Performance for varying numbers of classes, for three different 

weather conditions and for different video input filters is evaluated. The full system 

including detection and classification achieves a recall of 87% at a precision of 85.5% 

outperforming similar systems in the literature. The i-LIDS dataset is available to 

other researchers to compare with our results. We conclude with an outlook to use 

local features for improving the classification and detection performance. 

1 Introduction 

We are addressing detection and classification of vehicles and pedestrians in urban 

traffic scenes. The advanced digital data infrastructure of deployed surveillance 

systems enables the development of automated video analysis tools. This can allow 

online and post-event detection of events of interest, which is useful for surveillance 

operators. The current main bottleneck of surveillance is the limitation of human 

resources for observing hundreds of cameras. Automatic pre- processing allows 

efficient guidance for the operators to pick cameras to view and accumulate statistics, 

with the aim to improve traffic flow. 

Detection and classification results can be used to detect events and 

raise alarms. Systems should work independently of camera shake, weather, day or 

night, rain and so on. This highlights the difficult task of dealing with outdoor scenes. 
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Please refer to Figure 1 for two examples of typical cases. Note the low angle camera 

view which is inherent to urban scenes leading to occlusion of vehicles. 

The problem we solve is vehicle classification on a per frame basis of a 

video stream. Every frame is treated independently for classification and no reasoning 

about the movement of vehicles is performed. Silhouettes extracted by foreground 

analysis are the input to our classifier. The classification process is based on 3D 

models for vehicles and can be restricted to an active region of the camera view. This 

allows the configuration of suitable locations for classification and restrictions to 

lanes. 

 

Figure 1 Example views from the i-LIDS data set with active windows and detected 

vehicles and pedestrians 

The following assumptions are made: Every silhouette contains exactly one vehicle 

being fully visible. This implies no occlusion in the scene and between vehicles. The 

orientation of the vehicles throughout the scene remains approximately constant, 

which implies vehicles following a straight road. Every active region in Figure 1 can 

be processed for a different orientation. 

There are five categories used for our classifier: 

• Bus / Lorry 

• Van 

• Car / Taxi 

• Motorbike / Bicycle 

• Pedestrian 

Our novel contribution is twofold. Firstly the use of 3D models for road 

user classification. In particular, matching those 3D models with closed contours 
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extracted from motion foreground is novel. All main road users are detected and 

classified with a single framework. The second contribution is the system evaluation 

on a public dataset. We present evaluation results on the i-LIDS dataset from the UK 

Home Office which can be licensed by research institutions and manufacturers [1]. 

The rest of the paper is organised as follows. Section 2 gives an 

overview of related work and our solution. The detector is introduced in section 3. 

Section 4 covers the classifier and models used. The evaluation of the proposed system 

is given in section 5. Finally, conclusions and future research can be found in section 

6. 

2 Related work 

This section introduces the basic idea of traffic surveillance and discusses the literature 

dealing with vehicle detection and classification. The last sub-section provides an 

outline for our new approach. 

2.1 Vehicle detection and classification 

The most common application for vehicle classification is counting to generate 

statistics about road usage. This is often applied to highways and free flowing traffic 

with cameras mounted high above the ground. A growing area of deployment for 

automatic surveillance systems is the urban environment where traffic control or 

policing like bus lane enforcement is desirable to allow better attention coverage of 

existing cameras. Often inductive loops are used to detect vehicles at traffic lights in 

order to control traffic flow. Those loops are expensive to install and maintain and 

could be replaced by cameras. The potentially denser urban traffic increases the 

difficulty for vehicle detection and classification. Path information is required to deal 

with advanced requirements such as detection of traffic infringements. 

2.2 Previous work 

This section reviews work on detection and classification of vehicles in particular for 

urban scenes. The classification of vehicles has lacked attention compared to detection 
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and is usually performed on a low number of classes. In addition, pedestrians and 

vehicles are rarely considered within a single framework. 

A motion region- based vehicle detection and classification system is 

proposed in [6]. The main focus of that paper is on detection. Effort is put into a fast 

background estimation using the ‘instantaneous background’ to get good 

segmentation, however a risk of persistent artefacts arises. Tracking is performed 

using graph correspondence based on blob overlap. The proposed classifier uses only 

two classes (cars, non cars) with size based features, which are not robust to occlusion 

common for urban conditions. Full camera calibration is required to normalise those 

features. On the validation sequence of 20 minutes, only 70% of vehicles are correctly 

classified. 

The paper of Messelodi et al. [9] introduces a real time system to track 

and classify vehicles at intersections in urban areas. 3D models are used to initialise an 

object list for every fifth frame based on the convex hull overlap of model projection 

and motion map which requires camera calibration. Homogenous texture of the road 

surface (no markings) is required, which is very limiting. A feature tracker follows the 

detected objects along some frames before a new initialisation takes place due to 

complexity constraints. The objects are classified into 8 classes based on a two stage 

classifier. Performance is evaluated on 45 minutes of video data from two different 

sites. The system has a recall of 82.8%. The classification rate for the classifier 

independently is given with 91.5% for the test data. 

In a previous paper [2], the authors used 3D models matched to motion 

foreground from Gaussian Mixture Models (GMM). Performance is given for diverse 

weather conditions on the public i-LIDS [1] dataset. In this paper we provide more 

input image filters and include pedestrian models to allow the framework to operate on 

both vehicles and pedestrians at the same time. We have also considered a more 

balanced population of classes: motorbike/bicycle, car/taxi, van and bus/lorry. In 

addition, we introduce quantitative pedestrian evaluation and hence report more results 

which are more representative of operational performance. 

A real time monitoring system for intersections is proposed in [17]. A 

standard Gaussian Mixture Model [14] is used for foreground segmentation similar to 

our approach. Tracking of foreground regions is done with graph correspondence. The 

tracked objects are classified into two classes, pedestrians and vehicles based on the 
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main orientation of the bounding box which is not reliable for low camera angles. 

Further distinction between vehicle classes would be desirable. No quantitative 

evaluation is given. 

In [4] a vehicle classification algorithm is introduced. Standard 

foreground segmentation is performed to get bounding boxes of vehicles. The pixel 

values inside the bounding boxes form a basic feature vector. Independent Component 

Analysis (ICA) is performed on the training images to reduce the dimension of the 

feature space. This is similar to the image based features (IB) described in [10], 

however they were found to be the weaker approach. To assign one of the three class 

labels to new feature vectors during operation, three one class Support Vector 

Machines (SVM) are used. The reported performance is roughly 65% recall at 75% 

precision. A more advanced classifier for vehicles based on local features is presented 

in [8], where a tracking algorithm produces normalised images of vehicles. Good 

results are shown for binary classification between vehicle categories, however, a 

multi class classifier is missing. Car versus Minivan achieves precision of up to 

98.5%, whereas Sedan versus Taxi achieves 96.5%. 

The use of 3D models for vehicle detection and classification was 

proposed in [15]. First, a hypothesis for a vehicle position is generated by correlating 

1D templates with the image. The hypothesis is verified by correlating the gradient 

input image with the wire frame image of vehicles. A classification into cars and vans 

takes place based on the hypothesis. The performance is evaluated in a very short 1 

minute video sequence, where 45 out of 46 vehicles were classified correctly. This 

approach is followed up in [19]. Another approach for urban vehicle tracking with 3D 

models is presented in [13]. However, only a single model for cars is used to estimate 

a vehicle constellation. A Bayesian problem is formulated for multiple vehicle 

positions and solved with a Markov Chain Monte Carlo (MCMC) algorithm to give 

several good solutions. A Viterbi algorithm is used to find the optimal track through 

the set of solutions for every frame. The reported detection rates are 96.8% and 88% 

for two videos, but the system is limited to dealing with vehicles of a single size in the 

scene. 

The paper of Morris and Trivedi [11] presents a combined tracking and 

classification approach for side views of highways. This combination is an extension 

to [10]. A single Gaussian background model is used for foreground segmentation. For 
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every segmented foreground silhouette, a feature vector based on silhouette 

measurements is calculated. The evaluation on a 24 hour test sequence shows a 

classification accuracy of 74.4% for independent tracking and classification. The 

accuracy can be increased by combining tracking and classification to 88.4% which is 

desirable. An earlier paper [10] focuses on the classification task assuming known 

segmentation information for the input video data. A comparison between image based 

features (IB) like pixels and image measurements features (IM) like region size is 

given. IM with Linear Discriminant Analysis LDA was used for the final algorithm as 

it gave the best performance, however, it relies on correct motion silhouettes. The 

features are classified using a weighted k- nearest neighbour algorithm. A Kalman 

filter is used to track the foreground regions based on the centroids. The tracking 

improves the classification result from 82.9% to 91.4% by rejecting single miss-

classification. 

2.3 Outline of the proposed approach 

In the system reported here, a classifier generates a hypothesis of a vehicle or 

pedestrian being present in the scene by placing each 3D model onto the scene’s 

ground plane and projecting it to the camera view. A match measure is calculated for 

every hypothesis by comparing the model with the image silhouette. Every model is 

placed on a grid of positions on the ground plane to produce the match measure for 

every silhouette based on superior (IM) features according to [10]. The highest 

measure indicates the most likely position of the vehicle given the silhouette. The 

highest match measures of different classes are compared to make a decision about the 

class of a silhouette. Silhouettes with consistently low match measures for all classes 

are rejected as ambiguous. To use the 3D models, cameras are calibrated by means of 

a map and five corresponding points with the image. 

The orientation of vehicles is assumed to be constant, as pointed out 

earlier. One orientation is defined for every detection region of interest. A single 

object is assumed for every silhouette (i.e. no overlap). With those assumptions, the 

score is a size and overlap measure between the silhouette and the projected wire 

frame of the model. 
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3 Detection 

The detector uses background estimation to extract motion silhouettes from a video 

frame. See Figure 2 for a block diagram of the proposed system. The detector is 

described in more detail in this section, followed by the classifier in section 4. 

 

Figure 2 Block diagram of the detection and classification system 

Surveillance videos are commonly captured with analogue cameras producing 

interlaced video signals. To rectify the zigzag boundary artefacts generated for moving 

objects, a pre-processing step linearly interpolates odd video lines between even lines. 

Performance will be demonstrated with and without de-interlacing filtering. A 

Gaussian Mixture Model implementation [7] from the OpenCV library [12] was used. 

The GMM, first introduced in the seminal paper of Stauffer and Grimson [14], is used 

to generate an initial foreground mask. Five Gaussians are estimated using a 

background threshold of 0.7 , which is the default value. The window size which is the 

inverse of the learning rate is chosen at 50 to allow fast adaptation to illumination 

changes. Stationary changes are therefore incorporated into the background within 15 

seconds. The outdoor scene recorded with an auto iris function of the camera requires 
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fast learning to accommodate illumination changes. Large objects in the scene can 

change the overall illumination conditions due to this gain control. 

The foreground pixels are post processed with a constant chromaticity 

shadow removal algorithm like in Cucciara et al. [5]. The background image, as well 

as the current input image, is transformed into the HSV (Hue, Saturation, Value) 

space. This algorithm assumes that hue and saturation stay constant and only the value 

changes for shadowed surfaces. This assumption holds for light shadows as seen in 

overcast condition if the camera is not saturated. Value reductions down to 55% of the 

input with respect to the background are considered shadows. 

Closed contours { }mS  are extracted from the final foreground mask. A 

filter operation is used to produce a smaller set of valid silhouettes { }kS  considering 

size and location with respect to the region of interest. Those silhouettes { }kS  will be 

used as input for classification. The length operator ( )L pixelsmS ∈  computes the 

circumference of the contour. Based on the area operator ( )A pixels∈ , the overlap 

ratio operator ( ) [ ]O , 0,1mS R ∈  gives the overlap of a contour with the region of 

interest mask R  (red outline in images e.g. Figure 1): 

 ( )
( )

( )

A
O ,

A

m

m

m

S R
S R

S

∩
=  (1) 

Valid silhouettes { }kS  have to satisfy the length threshold pixels
L

τ ∈  and the overlap 

threshold [ ]0,1Oτ ∈ . We use 200
L

τ =  and 0.25
O

τ =  for our experiments: 

 { } ( ) ( ){ }L O ,
k m m L m O

S S S S Rτ τ= > ∧ >  (2) 
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Figure 3 Wire frame models { }iF  used for classification 

4 Classification 

The classifier uses 3D wire frame models to find the corresponding class label j  for 

every silhouette 
k

S  generated by the detector. The camera requires calibration to be 

able to use 3D models. The algorithm of Tsai [16] is used to obtain the ground plane 

calibration for the camera using a map of the road and defining at least five 

corresponding points between map image and camera image. Based on the calibration, 

ground plane coordinates can be converted to image coordinates ( )IM . Conversion 

from image to ground plane ( )GP  requires definition of the z  coordinate of the 

image point. 

First, 3D hypothesis are generated from the silhouettes. The centroids 

{ }kc  of { }kS  are back projected to the ground plane assuming zero height giving 

reference points { }kr  
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 ( )GPk k=r c . (3) 

The zero height assumption of the centroids { }kc  introduces position noise, which is 

dealt with by generating several hypotheses around the reference point. The full set of 

3D hypotheses ground plane positions { }, ,x y k
h  is generated by placing square grids 

( )G  of points at the reference points { }kr  

 ( ), , Gx y k k=h r . (4) 

For our experiments, the total grid width was 7 metres square containing 7 rows and 

columns. The 2D projection generates model masks { }, , ,x y i k
M  for every 3D hypothesis 

, ,x y k
h . Figure 3 shows the full set of wire frame models { }iF  used for classification. 

The model dimensions are based on current manufacturers’ information. The function 

( )SIL  projects the wire frame to the image and gives the silhouette 

 ( ), , , , ,SIL ,
x y i k i x y k

M F= h . (5) 

Every model point is projected independently and the wire frame is drawn in the 

image between the projected points. The silhouette of this image is returned. The 

measure of quality of fit between the silhouettes { }kS  and model masks { }, , ,x y i k
M  is 

defined by the normalised overlap area ( )ON : 

 ( )
( )
( )

, , ,

, , ,

, , ,

A
ON ,

A

x y i k k

x y i k k

x y i k k

M S
M S

M S

∩
=

∪
 (6) 

which is similar to the approach in [9]. Figure 4 gives an illustration of the normalised 

overlap output. Note the well shaped peak of the overlap function. A maximum 

operation is performed to find the highest quality of fit [ ]0,1KP ∈  for every silhouette 

k
S  

 ( ), , ,
, ,

max ON ,k x y i k k
x y i

P M S=  (7) 

with corresponding ground plane position ( , )x y  and model label i . The configuration 

table T  is used to retrieve the class label j  for the model i  as there can be many 

models for one class to cope with intra class variability 
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 ( )Tj i= . (8) 

A final threshold 0.48
P

τ =  is applied to { }kP  to eliminate silhouettes which do not 

correspond to any class. The set of detected vehicles { }LD  with L k<  is given by 

 { } { }L k k P
D P P τ= > . (9) 

The intermediate results and internal steps of the algorithm are illustrated in Figure 5 

showing mask and silhouette images. 

Snap shot of video

10
12

14

36

38

40

0

50

100

 

Groundplane X [m]

01111_00041    model ID 3

Groundplane Y [m]
 

M
a
tc

h
 m

e
a
s
u
re

 [
%

]

raw

int.

∆min

∆max

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Cross−section position [m]

M
a
tc

h
 m

e
a
s
u
re

 [
%

]

Comparison of minimal decay of match measure (green)

 

 

ID  2

ID  3

ID  4

ID  5

ID  6

ID  7

ID  8

ID  9

−3 −2 −1 0 1 2 3
0

20

40

60

80

100

Cross−section position [m]

M
a
tc

h
 m

e
a
s
u
re

 [
%

]

Comparison of maximum decay of match measure (blue)

 

 

ID  2

ID  3

ID  4

ID  5

ID  6

ID  7

ID  8

ID  9

 

Figure 4 Match measure for one silhouette 
k

S . The upper left image shows the 

silhouette and best fitting model i at ( , )x y .Top right: the winning match surface 

( ), , ,max ON ,x y i k k
i

M S  with data points. Bottom: Cross- section through every model's 

match surface ( ), , ,ON ,
x y i k k

M S along the minimum and maximum decay direction at 

( , )x y . 

k
P  



 12 

 

 

Figure 5 Illustration of data flow for the detection and classification framework 

5 Evaluation 

The proposed system was evaluated on video from the i-LIDS datasets [1]. Ground 

truth { }nGT  was provided in Viper format [18] consisting of bounding boxes and class 

labels for vehicles. The classifier produces bounding boxes and class labels for 

detected vehicles { }LD  also in Viper format. For every detected vehicle 
L

D , the best 
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matching bounding box out of the ground truth { }nGT is considered as matching 

vehicle 
n

GT . The entry in the confusion matrix depends on the class labels. If no 

overlapping vehicle 
n

GT is found in the ground truth, the detected vehicle 
L

D  is 

entered in column FP (false positive). Finally, all non matched vehicles in the ground 

truth { }nGT  within the region of interest are entered in row FN (false negatives). The 

next section introduces the dataset used. Section 5.2 gives results for vehicle detection 

and classification. Joint operation of vehicles and pedestrians is evaluated in section 

5.3. The influence of weather conditions is demonstrated in section 5.4. 

5.1 Data set 

The i-LIDS datasets [1] are licensed by the UK Home Office for image research 

institutions and manufacturers. Each dataset comprises 24 hours of video sequences 

under a range of realistic operational conditions. They are used by the UK government 

to benchmark video analysis products. They are ideal for evaluating and comparing 

algorithms in the computer vision community and there is a gradual increase in take-

up. Out of the Parked Car dataset, scenario 1 was chosen. Refer to Figure 1, Figure 6 

and Figure 7 for example views. There is no public dataset commonly used for urban 

traffic analysis. This makes direct comparison of reported results difficult. Our 

contribution is the use of this public data set to allow quick future comparison of 

systems in the same environment. Approximately one hour of video for sunny, 

overcast and changing conditions is selected for our evaluation: (PVTRA10xxxx) 1a03, 

1a07, 1a13, 1a19, 1a20, 1a21, 2a04, 2a05, 2a06, 2a08, 2a09, 2a10, 2a11 and 2a15. The 

recordings use a camera with an auto iris function which keeps the average 

illumination of the view constant. Large vehicles with a predominant colour can cause 

adjustments in the iris and a changed background. In addition, the overcast videos 

contain saturated areas in the middle and far end of the view. 

Some ground truth usable for our tests (the data is normally used for 

event detection tests) was provided with the dataset, however it had to be converted 

and extended for our use. This limited the total length of video used for the evaluation. 

The total number of vehicle and pedestrian appearances is 782 as in Table 3. The total 
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is divided between classes as follows: 46% car/taxi, 30% pedestrian and 8% each for 

motorbike/bicycle, van and bus/lorry. 

5.2 Detection and classification of vehicles 

This section provides results for the proposed system using vehicle models only. Good 

results are demonstrated outperforming base line solutions in the literature for vehicle 

detection and classification. Using the shadow removal filter a without de-interlacing 

filter gives the best performance. Table 1 shows an extended confusion matrix 

including FP (false positives) and FN (false negatives) for the evaluation of detector 

and classifier and Table 2 show results for the classifier only.  
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Table 1 Confusion matrix and overall performance for vehicle operation using shadow 

removal 
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Table 2 Confusion matrix for classifier using shadow removal 

All values are normalised to the ground truth count per class displayed at a bottom 

row. The overlap indicates the overlap between ground truth bounding box and 
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detection bounding box, which is obtained as the bounding box of the detected wire 

frame model. Precision P  and recall R  can be calculated from the confusion matrix. 

Separate analysis of classifier (subscript C), detector (subscript D) and the whole 

system is available. FP and FN can be read from the matrix. TP (true positives) are the 

diagonal elements for the whole system and the classifier. For the detector, the 

columns excluding FN are summed to give the TP. With the general definitions 

 
TP

R
TP FN

=
+

 (10) 

 
TP

P
TP FP

=
+

 (11) 

the whole system evaluates to a recall R  of 87% at a precision P  of 85.5%. The 

classifier achieves a high precision 
C

P  of 92.9%. By definition, the classifier recall 

C C
R P=  when considering all classes jointly. The detector has a recall 

D
R  of 93.7% at 

a precision 
D

P  of 92%. For qualitative results, refer to Figure 6 for true positive 

examples and Figure 7 for wrong classification. The higher number of false positives 

for the class bike is due to pedestrians being classified as bikes. At this stage, no 

pedestrian model was used and all the motion silhouettes resulting from pedestrians in 

the scene should have been rejected. Individual performance of the classifier can be 

found in Table 2. 
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Figure 6 Examples of correct detections and classification of vehicles using the 

shadow removal filter 

 

Figure 7 Two examples for false positives due to pedestrians being detected as bike 

and as car due to occlusion in a group. The last image shows a missed car due to its 

similar colour compared to saturated road area 

Direct comparison of quantitative results with the literature is difficult due to the lack 

of a common dataset for vehicle classification. The total recall R  and precision P  of 

the proposed system outperforms the following systems in term of their reported 

results on their own datasets. The most relevant reference is [9], as a system 

performance of 82.8% for detection and classification of urban road users into 8 

classes is reported. All the following systems use highway imagery, which highlights 
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the relevance of presenting results on a public urban dataset like i-LIDS [1] for vehicle 

classification. Total system R  65% at P  75% for classifying 150 car samples into 3 

classes after detection and tracking is achieved in [4]. On 20 minutes test video, 70% 

of vehicles are classified (cars / non cars) after detection and tracking in [6]. A 

classifier accuracy of 74.4% is reported for a 24 hour test sequence in [10] using 3 

classes. The same authors extended the system to 7 classes with classification accuracy 

of 88.4% in [11]. 

Results of the proposed algorithm are compared for four different 

scenarios using input filters for shadow removal and de-interlacing. The effect of 

using different combinations of those filters is shown in Figure 8. 
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Figure 8 Performance comparison for vehicle framework using 4 different filter 

algorithms: shadow removal (Sr), shadow removal with de-interlacing (Sr+Di), de-

interlacing (Di) and no filter (-). The left diagram shows system recall R , precision P  

and classifier precision 
C

P . The right diagram indicates the detector recall 
D

R  and 

precision 
D

P  

5.3 Simultaneous operation for vehicles and pedestrians 

This section demonstrates results of the proposed algorithm, when vehicles and 

pedestrians are classified with the same framework. Results are given for the same 

four filter configurations introduced in the last section with a qualitative comparison in 

Figure 9. Best performance is shown for shadow removal without de-interlacing filter. 
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Figure 9 Two example views of the combined vehicle and pedestrian framework for 4 

different filter configurations from top to bottom: shadow removal (Sr), shadow 

removal with de-interlacing (Sr+Di), de-interlacing (Di) and no filter (-). Too large 

silhouettes can be observed without shadow removal causing missed vehicles and 

wrong classifications (last two columns). 
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5.3.1. Shadow removal filter 

The framework used with the shadow removal filter gives the best performance for 

vehicle and pedestrian detection. Refer to Table 3 for an extended confusion matrix 

with overall performance figures and to Table 4 for class wise results. Very good 

classification performance is observed for the vehicles classes, whereas confusion 

occurs between bikes and pedestrians. This is due to very similar motion silhouettes of 

both road users, especially in the far region of the camera view when bicycles are seen 

front on (see Figure 6). A higher false positive rate for the bike class observed earlier 

for the vehicle classifier (Table 1) does not appear here, as a pedestrian model was 

used. The low detection performance of pedestrians is due to their non-rigid nature. 

The basic cube-like models do not match motion silhouettes of pedestrian as well as 

they do cars, which required the detection threshold to be halved for pedestrians. In 

addition, the interlacing of the cameras does affect smaller object more, which 

explains the performance increase of pedestrians when using a de-interlacing filter in 

the next section. However, using a single algorithm for all road users is beneficial in 

terms of system complexity. 
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Table 3 Confusion matrix of full system for using shadow removal filter including 

overall performance figures 
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Table 4 Class wise performance figures 

5.3.2. Shadow removal and de-interlacing filter 

The framework with both input filters indicates best performance for pedestrians. The 

confusion matrix in Table 5 shows system recall 82% for pedestrians, which is an 

improvement of 11% compared to shadow removal filtering only. The additional de-

interlacing filter allows a better match of motion silhouettes compared to last section. 

However, the classification performance for vehicles degraded, particularly the recall 

of vans from 84% to 63%. 
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Table 5 Confusion matrix of full system for shadow removal and de- interlacing filter 

5.3.3. De-interlacing filter and no filter 

For those experiments, only the de-interlacing filter or no filters were used. In both 

cases, the performance is significantly worse than the experiment including the 
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shadow removal filter, which can be observed in Table 6. Compared to the best 

performance in section 5.3.1, recall drops by 11.7% to 67.8% and precision drops by 

10.5% to 73.4%. This is due to oversized motion silhouettes, which can be seen in 

Figure 9. Therefore, shadow removal is essential for this framework to perform well. 
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Table 6 Confusion matrix for de-interlacing filtering and no filtering 

5.4 Influence of weather conditions 

Robust operation under realistic weather conditions is important. This section 

compares the performance of the vehicle classification and detection for sunny, 

overcast and changing conditions. Direct comparison is given in Figure 10 indicating 

that sunny conditions perform best. This can be contributed to the high contrast in the 

videos and therefore good foreground estimation. The following sections give more 

details about each condition. 
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Figure 10 Performance comparison for three different weather conditions 
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5.4.1. Sunny conditions 

The best individual performance is demonstrated for sunny conditions, with the 

confusion matrix shown in Table 7. This unexpected case of sunny conditions 

outperforming overcast conditions for classification can be explained by the dynamic 

range of the images. The high contrast and the deep shadow can be seen in examples 

of Figure 11. The sun allows a precise detection of the outline of vehicles, however it 

includes a deep shadow. The classifier can deal with that shadow as the silhouette is 

only extended in a single direction which reduces the overlap match measure for all 

models but keeps the ordering. In contrast, the lower dynamic range and tendency of 

saturation for overcast conditions introduces more noise to the vehicle silhouette. This 

noise changes the size of the silhouette in general which enables the match of a wrong 

model. However, due to the shadow, the mean overlap measure of the winning class in 

sunny conditions is 0.65, lower than the corresponding figure in overcast conditions 

(0.69). 

 

Figure 11 Sunny examples: true positive, false positive car and missed car  
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Table 7 Confusion matrix for sunny conditions 
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5.4.2. Overcast condition 

The performance for overcast conditions is second best after sunny. The confusion 

matrix in Table 8 shows many false positives for. The false positives are observations 

of pedestrians, which are not rejected as ambiguous. The miss classifications are 

mainly due to missed foreground areas due to saturation and low dynamic range of the 

scene. Refer to Figure 12 for examples. 

 

Figure 12 Overcast examples: two correct and one misclassified frame 
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Table 8 Confusion matrix for overcast conditions 

5.4.3. Overcast changing to sunny 

The worst performance can be observed for changing conditions. During those 

sequences, the sun appears several times which causes the auto iris of the camera to 

adjust. This produces ambiguous foreground silhouettes for short periods of time 

resulting in lower performance. Refer to Table 9 for the extended confusion matrix for 

this case with example views in Figure 13. The low performance of vans is due to their 

predominant white colour, which causes reduced foreground areas during times of 

saturation. This problem can be dealt with by exploiting the constraint that the same 
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vehicles are present in the scene for many frames. Temporal filters and tracking could 

be used, but this is outside the scope of what is being reported here.  

 

Figure 13 Changing weather examples: Two correct and one misclassified frame 

ground truth

  detection

bike

car/taxi

van

bus/lorry

FN

count

overlap

b
ik

e

0

0

0

0

0

0

1

c
a

r/
ta

x
i

.05

.83

.02

.02

.09

116

.66

v
a

n
.05

.24

.67

0

.05

21

.61

b
u

s
/l
o

rr
y

0

0

0

1

0

20

.8

F
P

2

.07

0

.05

0

 

Table 9 Confusion matrix for changing conditions 

6 Conclusions 

We presented a novel solution to road user detection and classification using 3D 

models. The target application is urban traffic analysis which has different requirement 

compared to highway surveillance. 3D models based on car manufactures dimensions 

are projected onto the image plane to generate a silhouette match measure. This match 

measure produces a distinctive peak at the right ground plane position and 

distinguishes different classes. 

Evaluation was performed on the public i-LIDS datasets [1]. We 

provide results with balanced numbers of vehicle and pedestrian appearances for 

several input filters and weather conditions. Good overall performance of a recall of 

87% at a precision of 85.5% is demonstrated for our algorithm using vehicle models. 

The classifier achieves a high precision of 92.9% which outperforms other reported 
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results. The model set is extended to incorporate vehicles and pedestrians into the 

same framework. This gives comparable performance to the vehicle classifier showing 

a raised confusion rate between bicycles and pedestrians. This is due to their similar 

size and motion silhouette. The evaluation of input filters indicates, that shadow 

removal filtering gives best performance increase with de-interlacing improving 

pedestrian detection. Regarding weather conditions, the best classification 

performance of 98.2% is achieved for sunny conditions outperforming overcast 

conditions and changing conditions. This result that contradicts general perception is 

due to the higher contrast and therefore less noise of the silhouettes in sunshine. As 

our classifier can deal with deep shadows, this condition gives the best results. 

6.1 Future work 

Efforts for future research should be directed towards more robust detection and 

classification of vehicles. There is little work on urban scenes which requires 

robustness against occlusions. We will focus on incorporating local feature 

information into the classifier to have a second source of information apart from the 

motion foreground. Local features indicated good performance in [8] and [3] when 

used in 2D. Additional cues will be vital to resolve occlusions at low angle camera 

views. Tracking is required to provide path information of vehicles and can increase 

classification performance as demonstrated in [10] and [11]. 
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