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Abstract

This paper presents a content-based digital image-watermarking scheme, which is robust against a variety of common

image-processing attacks and geometric distortions. The image content is represented by important feature points obtained

by our image-texture-based adaptive Harris corner detector. These important feature points are geometrically significant

and therefore are capable of determining the possible geometric attacks with the aid of the Delaunay-tessellation-based

triangle matching method. The watermark is encoded by both the error correcting codes and the spread spectrum

technique to improve the detection accuracy and ensure a large measure of security against unintentional or intentional

attacks. An image-content-based adaptive embedding scheme is applied in discrete Fourier transform (DFT) domain of

each perceptually high textured subimage to ensure better visual quality and more robustness. The watermark detection

decision is based on the number of matched bits between the recovered and embedded watermarks in embedding

subimages. The experimental results demonstrate the robustness of the proposed method against any combination of the

geometric distortions and various common image-processing operations such as JPEG compression, filtering,

enhancement, and quantization. Our proposed system also yields a better performance as compared with some peer

systems in the literature.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The development of high-speed Internet and com-
pression technology allows the widespread use of
multimedia applications. Nowadays, digital documents
can be distributed via the World Wide Web to a large
number of people in a cost-efficient way. Protection of
multimedia information, especially its copyright,
attracts more and more attention. There is a strong
e front matter r 2006 Elsevier B.V. All rights reserved
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need to keep the distribution of digital multimedia
works both profitable for the owner and reliable for
the customer. Consequently, digital watermarking
emerges as one possible and popular solution. Water-
marking, also called tamper-proofing or content
verification, hides a secret and personal message to
protect a product’s copyright or to demonstrate its data
integrity. In contrast to cryptography, which immedi-
ately arouses suspicion of something secret or valuable,
the watermark hides a message within digital media
without noticeable changes to the host.

In watermarking applications, the robustness of
the watermark to common image processing and
geometric attacks is essential to the system [1].
.
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However, geometric manipulations are difficult to
tackle because they can introduce the synchroniza-
tion errors into the watermarking system and render
the watermark detection impossible. A lot of
research has been conducted to reduce or prevent
the asynchronous problem caused by geometric
distortions. These methods can be roughly divided
into the following three categories:
�
 Template-based watermarking methods [2–4]:
These methods intentionally embed additional
templates into the image. These templates func-
tion as anchor points for the alignment and
therefore assist the watermark synchronization in
detection process.

�
 Invariance-domain-based watermarking methods

[5–8]: These methods generally provide rota-
tion, scaling, and translation (RST) invariant
domains, namely log-polar domain [7] and
Fourier–Mellin transformation domain [5,6,8],
for embedding the watermark and maintaining
synchronization under affine transforms.

�
 Moment-based watermarking methods [9–13]:

These methods utilize the geometric invariants
of the image including ordinary moments [9–11]
and normalized Zernike moments [12,13] to
reduce the synchronization errors in watermark
detection process.

In general, all these aforementioned self-synchro-
nizing watermarking schemes can somehow detect
the watermark after either geometric distortions
such as RST transformations or local distortions
like Stirmark attacks. However, their robustness is
limited. For instance, the image independent tem-
plate features can be exploited to derive a new
attack [14] to destroy the templates without any
prior knowledge. The interpolation accuracy asso-
ciated with the invariance domain and the discreti-
zation errors associated with the moments increase
the synchronization errors and therefore make
embedding and detection misaligned. As a result, a
second-generation watermarking scheme [15] (i.e., a
content-based watermarking scheme) is widely
exploited to restore the synchronization of the
watermark. This scheme extracts the image content
in terms of the feature points and embeds the
watermark into the regions associated with the
image content. The extracted image feature points
represent invariant references to geometric trans-
formations and therefore can be used as anchor
points for self-synchronization. A few content-
based watermarking approaches are briefly re-
viewed here.

Bas et al. [16] use the Harris detector for feature
extraction. These feature points are combined with
a Delaunay tessellation to mark each triangle for
embedding the watermark. The original watermark
triangle will be warped during the detection to
correlate with the corresponding marked triangles.
Simulation results show that the robustness of the
scheme depends on the capacity of the Harris
detector to preserve feature points after geometric
transformations, especially on images with more
texture and images with less texture and large
homogeneous areas. This scheme is also not robust
to most common image processing attacks except
JPEG compression. Tang and Hang [17] adopt the
Mexican hat wavelet scale interaction method to
extract feature points. They embed and extract the
watermark in the normalized disks centered at the
extracted feature points. However, this scheme
performs well under only mild geometric distortions
and certain common image processing attacks due
to the interpolation errors induced by the normal-
ization. In [15,18], the same Mexican hat wavelet
method is used to locate feature points, which form
the Voronoi diagrams for watermark embedding
and detection. Experimental results show that both
schemes are robust to high-quality JPEG compres-
sion and affine transformations. However, the
watermarks have to be searched throughout the
rotated images.

Several hybrid approaches [19–23] have also been
employed to counterattack geometric distortions.
For example, Delannay and Macq [19] embed an
image-partition-based secret binary mask to mod-
ulate a spectral spreading of the synchronization
mark for resisting template attacks. However, mask
recovering may present an error which reduces the
synchronization accuracy. Su et al. [20] apply
segmentation to determine feature-based spatially
localized structures for watermark embedding and
detection. This method offers good tolerance to
collusion attacks and reasonable robustness to
geometric distortions. Kang et al. [21] use a
DWT–DFT composite image watermarking algo-
rithm to provide robustness against both affine
transformations and JPEG compression. However,
the scheme is not robust to common image-
processing attacks.

In this paper, we develop a robust content-based
watermarking scheme. This scheme combines
the advantages of important feature extraction,
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Delaunay-tessellation-based triangle matching, per-
ceptual analysis, one-way hash functions, error
correcting codes, and spread-spectrum-based blind
watermark embedding and retrieval to reduce the
watermark synchronization problem and resist
geometric distortions and common image proces-
sing attacks. Section 2 describes the proposed
texture-based adaptive image content extraction
method. Section 3 briefly reviews the variants of
several important techniques used in our scheme.
Section 4 contains the description of our watermark
embedding procedure. Section 5 covers the details
of our watermark detection procedure. Section 6
shows the simulation results by comparing our
scheme with two content-based approaches in terms
of robustness against both geometric distortions
and common image processing attacks. In addition,
we also demonstrate the performance of our
proposed watermarking scheme on 105 images of
different textures under different Stirmark attacks.
Section 7 concludes this presentation.

2. Image content extraction

Extracting the image content in terms of the
feature points is an important step in the proposed
digital image-watermarking scheme. In order to
detect watermarks without access to the original
images, we look for the image content that is
perceptually significant and can, thus, resist various
types of common image processing and geometric
distortions. The image-content-bounded feature
points can be further used as synchronization
markers in watermark detection.

2.1. The common Harris corner detector

Bas et al. [16] evaluate the performance of three
commonly used detectors (i.e., the Harris corner
detector [24], the Achard-Rouquet detector [25],
and the SUSAN detector [26]) and conclude the
Harris corner detector is the most robust. Schmid
et al. [27] also compare the Harris corner detector
with the Heitger detector [28], the Forstner detector
[29], the Horaud detector [30], and the Cottier
detector [31] with regards to the repeatability of the
detector when the detected corner points are used
for matching purposes. That is, for different
distorted versions of the same scene, the detector
should be able to extract similar, if not identical,
points, despite variations due to a change of
orientation or sharpness. The results of these studies
prove the Harris detector is the most stable. The
commonly used Harris corner detector refines the
detection function [32] by using the following shape-
factor-based matrix:

Mðx; yÞ ¼
Ax;y Cx;y

Cx;y Bx;y

" #

¼
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where I(x, y) is the gray level intensity,
qIðx; yÞ=qx � Iðx; yÞn½�1; 0; 1�, qIðx; yÞ=qy � Iðx; yÞ
n½�1; 0; 1�T, and � denotes the convolution product.
The corner points are located at the positions with
large corner response values, which are determined
by the corner response function R(x, y):

Rðx; yÞ ¼ detðMðx; yÞÞ � k traceðMðx; yÞÞ½ �
2

¼ Ax;yBx;y � C2
x;y

� �
� k Ax;y þ Bx;y

� �2
, ð2Þ

where k is a constant that is set to be 0.04.

2.2. The image-texture-based adaptive Harris corner

detector

The image content extraction algorithm uses our
image-texture-based adaptive Harris corner detector
to find important feature points (i.e., corner points)
to reduce the synchronization errors in watermark
detection. The major contributions are:
�
 Apply some pre-processing techniques to reduce
the noise effect.

�
 Regulate the number of important feature points

based on the texture of the image.

The following four steps detail the image content
extraction procedure:
1.
 Apply a Gaussian low-pass filter to original
image I(x, y) to avoid corners due to image noise.
2.
 Apply a rotationally symmetric 3� 3 Gaussian
low-pass filter with the standard deviation of 0.5
to three derivative images, namely, Ax, y Bx, y and
Cx, y, to achieve additional resistance to possible
image noise.
3.
 Calculate R(x, y) within a circular window, which
is at the image center and covers the largest area
of the original image. The resulting function
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reduces the effect of image-center-based rotation
attacks.
4.
 Apply a threshold T on R(x, y) and search for
important feature points based on the local
maxima

Rðx; yÞjRðx; yÞ4T ^ Rðx; yÞ � Rðu; vÞ;8ðu; vÞ 2 Vx;

� �
(3)

where T is a predefined threshold value that is
empirically set to be 106 in our scheme to extract
a desired number of corner points, and Vx, y

represents a circular neighborhood centered at
(x, y).
We choose the circular neighborhood window to
avoid the increasing detector anisotropy and to
obtain a homogeneous distribution of feature points
in the image. It is also important to determine the
appropriate window size. If the window is too small,
the distribution of feature points is concentrated on
textured areas. If the window is too large, the
feature points become isolated. Fig. 1 illustrates the
effect of different window sizes on the resultant
feature points, which are shown as large white
squares for display purpose. We can easily observe
that the number of detected feature points remains
relatively constant to the window size of the
detector. That is, decreasing the window size will
increase the number of detected feature points, and
vice versa. It therefore follows that one can increase
the good matches of feature points on both the
original and probe images by decreasing the size of
the window. However, this is done at the price of a
proportional increase of the total number of corner
points to analyze. In order to compensate, we
determine a suitable window size based on the
Fig. 1. The effect of different window sizes on the feature points.
dimension and texture of the image. The diameter of
the circular window is calculated:

D ¼

ffiffiffiffiffiffi
wh

np

s
, (4)

where
�

(a)
Integers w and h, respectively, represent the
width and height of the image.

�
 Integer p is an empirical value for obtaining a

reasonable number of feature points for images
with large homogeneous areas. It is set to be 60 in
our implementation.

�
 Integer n is the window size quantizer, which

depends on the texture of the image. It is set to
be:

n ¼

1:5; if ratioX0:01ðhigh textureÞ;

2:5; if ratioX0:002ðmedium textureÞ;

3:5; if ratioX0:0001ðlow textureÞ;

8><
>: (5)

where the ratio is computed as the proportion of the
feature points to the total number of pixels in the
image. These feature points are obtained by using
our proposed adaptive Harris corner detector with a
3� 3 neighborhood window.

With an adaptive and optimized window size for
the Harris corner detector, we can make sure a
certain amount of corner points can always be
detected, neither too many, nor too few. By doing
this, the computational cost of the image content
extraction and the Delaunay-tessellation-based tri-
angle matching can be automatically balanced in
watermark detection.

Fig. 2 demonstrates the extracted important
feature points by applying our image-texture-based
Window size of 26� 26 and (b) window size of 52� 52.
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adaptive Harris corner detector on three images
(e.g., Lena, Baboon, and Pepper) with different
textures. For example, Lena includes large homo-
geneous areas with sharp edges; Baboon includes
textured areas with high frequency components; and
Pepper includes large homogeneous areas without
sharp edges and therefore is an example of the low
textured image. As shown in Fig. 2, the number of
important feature points is regulated by the texture
of the image. That is, medium and low textured
images such as Lena and Pepper have enough image
content for watermark detection process to reduce
the synchronization errors. Similarly, high textured
image such as Baboon does not have overwhelming
number of image content as suffered by other
content-based methods. On the contrary, it also
possesses sufficient image content for watermark
detection process to achieve self-synchronization. It
is worthwhile to mention that the extremely low
textured image (i.e., ratioo0.0001) will not be
considered as a candidate image for copyright
protection due to insufficient important feature
points for self-synchronization.

3. Variants of related techniques

The variants of several important techniques
employed in the proposed system are briefly
introduced in this section.

3.1. Error correcting codes

Error correcting codes [33] are incorporated into
our system to overcome the corruption of a water-
mark in the channeled communication since a
communication channel of the watermarking pro-
cedure is not noise free and will subject to
intentional or unintentional distortions. In our
system, we choose Hamming codes as an error
detection mechanism to correct single bit errors.
Specifically, the 8-bit watermark sequence is divided
into two 4-bit subsequences. The Hamming code is
then applied to each subsequence to generate its
(7, 4) single-bit error correcting code. Since trans-
mitting 4-bit data always yields more errors than
transmitting its (7, 4) single-bit error correcting
code, error-correcting capability ensures a better
quality signal at the receiver and a higher recovery
rate in watermark detection. Consequently, it
increases the possibility of the perfect match in
any embedding subimage and reduces the false
negative probability.

3.2. The PN-sequence and one-way hash functions

The pseudo-noise (PN) sequence based spread
spectrum method [34] is used in our system. This
sequence combined with the watermark is adap-
tively embedded into mid-frequency positions in
DFT domain. A variant of the one-way hash
function [35] is used in our system to generate the
highly secure mid-frequency positions. The six steps
for generating these positions are:
1.
 Save all middle frequency positions into vector V.

2.
 Randomly choose two large prime numbers p

and q, and compute the secrete key n ¼ pq.

3.
 Obtain seed Y using the encipher process:

X ¼ mK mod n; Y ¼ X 2mod n; (6)
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where m is the numerical serial number for
registering the original image and K is the second
secret key.
4.

Spread ECC
Calculate an index l by:

Y ¼ Y 2modn; l ¼ ðYmod nÞ mod lengthðV Þ;

(7)
Position 

5.
Generator 
 +
Choose the lth item in V as the embedding
position and remove it from V so no duplicated
positions are produced.
Perceptual Analysis
6.

DFT

IDFT

Fig. 3. Watermark embedding scheme.
Repeat steps 4–5 until the total number of
embedding positions is reached.

These highly secure embedding positions can be
easily reproduced by the same secret keys n and K.
In the meantime, the reproduction of these positions
is computationally infeasible without knowing n

and K. To ensure the attackers cannot find out the
watermark embedding positions by comparing
several watermarked copies, different secret keys
are used to generate the embedding positions for
each embedding subimage.

3.3. Blind embedding and retrieval

It is always desirable to extract the watermark
independent of the original image since it takes a lot of
space to store the original image. The blind retrieval
scheme of MPEG video watermark [36,37] is adopted
in our system to achieve this goal. We employ this
blind retrieval scheme in DFT instead of DCT
domain. In addition, the multiplicative instead of
additive embedding is applied in our modified scheme.

4. Watermark embedding scheme

Our watermark is designed for copyright protection.
We view all possible embedding subimages as indepen-
dent communication channels. To improve the robust-
ness of the transmitted watermark bits, all channels
carry the same copy of the chosen watermark. During
the detection process, we claim the existence of
watermark if one copy of the embedded watermark is
correctly detected in one embedding subimage.

The watermark embedding process is outlined in
Fig. 3. This scheme is detailed step by step as
follows:
1
 Image tessellation. Evenly divide the 8-bit gray-
scale image of size 512� 512 into 3� 3 nonover-
lapping subimages. The last several nondivisible
rows and columns are not used for embedding.
2
 Perceptual analysis. Apply our image-texture-
based adaptive Harris corner detector to find
the feature points in the original image by using a
fixed 3� 3 window. Choose the subimages with a
large number of feature points (i.e., the number
of feature points is more than a predetermined
threshold Num) to be the embedding blocks.
These blocks are perceptually high textured and
are marked by red margins as shown in Fig. 3.
3
 Watermark generation and error correcting coding.
The watermark message Ai is a bipolar sequence
whose length is a factor of 4 (i.e., |Ai| ¼ 8). It is
then coded by error correcting coding (ECC) to
generate an error correcting bipolar watermark
bit sequence ECAi, whose length is a factor of 7
(i.e., |ECAi| ¼ 14).
4
 Spread ECC. Generate a spread error correcting
bipolar watermark message bit sequence Wj by
repeating ECAi s times such that Wj ¼ ECAi for
ispjo(i+1)s where s is the spreading factor (i.e.,

s ¼ Len
ECAij j

j k
) and Len is the number of embedding

positions. The Wj will be further padded by zeros
to ensure its length equals Len.
5
 PN-sequence generator. Generate a PN-sequence
pjA{1,�1} with the same length as Wj by using a
secrete key.
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Fig. 4. Watermark detection scheme.
For each perceptually high textured subimage
SubA obtained from step 2:
a. DFT. Apply global DFT to obtain FSubA.
b. Position generator: Generate highly secure

embedding positions in the mid-frequencies
between f1 and f2 in the upper half plane of
FSubA by using our one-way hash function.

c. �operation: Embed Wj into each highly
secure embedding position (xk, yk) using:

FSubA xk; yk

� �0
¼ FSubA xk; yk

� �
þ FSubAðxk; ykÞ � G �W j � pj,

ð8Þ

where G is the embedding strength. The same
changes are carried out at center-based
symmetric positions.

d. IDFT (Inverse DFT). Apply the IDFT to
FSubA0 to obtain the watermark embedded
subimage SubA0, which replaces the original
subimage SubA.
Before the watermark is embedded, we apply the
proposed image-texture-based adaptive Harris cor-
ner detector to find all important feature points in
the original image. The results on three sample
images are illustrated in Fig. 2. In our scheme, these
important feature points represent the simplest
pattern of the image features (i.e., image content),
which are relatively robust against image distor-
tions. Consequently, these important feature points
are used to restore the probe image for reducing the
synchronization errors and their positions will be
saved for watermark detection. In addition, the
threshold Num, the bipolar watermark message bit
sequence Ai, the number of embedding positions
Len, two secrete keys n and K for our one-way hash
function in each subimage, two middle frequency
ratios, and the secrete key for generating the PN-
sequence will also be saved. Since the number of
important feature points is regulated by the texture
of the image, the storage is minimal compared to the
cost of saving the original image itself. If all the
information is compressed, the storage cost can be
further minimized.

5. Watermark detection scheme

The block diagram of our watermark detection
scheme is shown in Fig. 4. The watermark detection
procedure does not need the original image. The
important feature points are first extracted by
applying the proposed image-texture-based adap-
tive Harris corner detector on the probe images.
Two sets of triangles are then, respectively, gener-
ated by using the Delaunay tessellation on the saved
important feature points and the important feature
points found in the probe image. These two sets of
triangles will be matched to determine the possible
geometric transformations that the probe image has
undergone. These determined geometric transfor-
mations will be further utilized to restore the probe
image, so the synchronization errors between the
extracted and original watermarks are minimized in
the detection.

5.1. Image restoration: triangle generation

The triangle generation method plays an impor-
tant role in watermark detection step. Though we
can generate all possible triangles based on the
important feature points to maximize the number of
triangle matches between the two sets of triangles,
doing so is very time-consuming. Suppose that we
have 50 feature points on each image, we can
generate 19 600 triangles in total on each set. If we
exhaustively match all possible triangle pairs, there
will be 19 600� 19 600 ¼ 38 41 60 000 calculations.
It probably will take a computer a couple of hours
to finish such matching process. This is obviously
unacceptable. Consequently, we need an effective
and repeatable method to exclusively generate
sufficient and useful triangles. Our choice is the
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Delaunay tessellation due to its two attractive
properties [38]:
�

Fig

are
Local property. If a vertex disappears, the
tessellation is only modified on the connected
triangles.

�
 Stability area. Each vertex is associated with a

stability area in which the tessellation pattern is not
changed when the vertex is moved inside this area.

The Delaunay tessellation results of two sets of
similar anchor points, with different displaced
points, are shown in Fig. 5. As we can see, although
losing or shifting an anchor point a will affect the
triangle(s) connected to it, the tessellation pattern of
other triangles will remain exactly the same. Thanks
to the two properties of the Delaunay tessellation,
we can always get an identical generation of
triangles if the relative positions of anchors (i.e.,
important feature points) do not change. The Qhull
algorithm [39] is utilized in our system to generate
the important-feature-points-based triangles due to
its fast speed and less memory constraints.

5.2. Image restoration: triangle matching

The triangle matching method follows the trian-
gle generation. The matching criterion is based on
the angle radians. That is, if two triangles have very
similar angle radians (i.e., the angle difference is less
than 0.01 rad), these two triangles are claimed to be
likely matched. The possible geometric transforma-
tions are determined from the matched triangle
pairs since the important-feature-points-based tri-
angles in an image undergo the same transformation
as the image itself. The detailed steps are:
1.
 Calculate the scaling factor SF by resizing the
probe triangle to the same size as the target
matched triangle.
. 5. Examples of the Delaunay tessellation of two similar point grou

a (i.e., a small shift around a). (c) Point a is shifted out of its stabili
2.
ps.

ty a
Calculate the translation factor TF by registering
one of the vertices of the matched triangle pair.
3.
 Calculate the rotation factor RF by aligning the
other two unregistered vertices of the matched
triangle pair.

These factors form a three-element-tuple
(SF, TF,RF), where SF measures the scaling ratio
up to a precision of 1/10, TF measures the
translation in pixel numbers, and RF measures the
rotation angle in an integer degree. Fig. 6 illustrates
the above three steps by using a right triangle as an
example. The three-tuple to represent this transfor-
mation is (1.5, 15, 261). Since an image and the
within triangles undergo exactly the same transfor-
mation, the majority of the identical three-element-
tuple obtained from all the matched triangle pairs
are used to restore the probe image to be aligned
with the host image.

It is worth mentioning that sufficient important
feature points can be found in case of non-geometric
attacks as long as the probe image is not extremely
low textured or undergoes JPEG compression with
a quality factor of lower than 20%. The three-
element-tuple (SF, TF,RF) for image restoration
will be (1, 0, 0). That is, the probe image has already
been aligned with the host image. However,
insufficient important feature points may be located
when the probe image is extremely low textured or
undergoes JPEG compression with a quality factor
of lower than 20%. As a result, the restoration is
likely to fail to find a majority of identical three-
element-tuple for realignment. In this case, we will
assume that there is no geometric attack and the
three-element-tuple will be set to (1, 0, 0) by default.

5.3. Watermark detection

The same embedding procedure is applied to
the restored probe image to obtain the possible
(a) Original anchor points. (b) Point a is shifted in its stability

rea (i.e., a large shift far away from a) (d) Point a disappears.
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watermark embedded DFT sequence FSubA00i for
each potential embedding subimage i. The blind
watermark retrieval scheme is then applied to
extract the error correcting bipolar watermark
message bit sequence ECA0i. The parity bits are
further used to correct 1 or 2 error bits, which may
result from transmission noise. The error corrected
possible watermark bit sequence ECA00i will be
compared with the original error corrected water-
mark bit sequence ECAi to determine the presence
of the watermark. That is, the number of matched
bits in a potential embedding subimage is compared
with a predefined threshold to determine whether
the watermark is present in the probe image.

This predefined threshold is calculated based on
the false-alarm probability that may occur in
watermark detection. The Bernoulli trails are used
to model ECA00i since every bit is an independent
random variable. The probability of a k-bit match
between n-bit extracted and original watermark bit
sequences is calculated as:

pk ¼
n

k

	 

pkð1� pÞn�k, (9)

where p is the success probability which indicates
the possibility that the extracted bit matches the
original watermark bit. We further simplify (9) by
assuming p to be 1/2:

pk ¼
1

2

	 
n
n!

k!ðn� kÞ!

	 

. (10)

The false-alarm probability Pfalse-alarm for each
embedding subimage is computed as:

Pfalse�alarmðiÞ ¼
Xn

ki¼Ti

1

2

	 
n
n!

ki!ðn� kiÞ!

	 

: (11)

That is, it is a cumulative probability of the cases
that kiXTi, where ki and Ti represent the number of
matched bits and the threshold for each subimage i,
respectively.

Fig. 7 shows the plot of Pfalse-alarm against various
threshold values. It demonstrates that the perfect
match between the extracted and original water-
mark bit sequences in a single embedding subimage
leads to a false alarm probability of 6.10� 10�5.
That is, if the extracted and original watermark bit
sequences are perfectly matched in a subimage, we
claim the presence of the watermark with a false
alarm probability of 6.10� 10�5. As a result, the
watermark detection is based on Pfalse-alarm. In our
system, we will check the perfect match in any
embedding subimage to confidently claim the
presence of the watermark since 6.10� 10�5 is a
low false alarm probability.

6. Experimental results

To evaluate the performance of the proposed
watermarking scheme, experiments have been con-
ducted on various standard 8-bit grayscale images
of size 512� 512 and different kinds of attempting
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Table 1

Several image texture dependant parameters

Lena Baboon Peppers

Ratio 0.002 0.01 0.0013

Type Medium High Low

D 42 54 35

Snum 3 9 4
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attacks. These standard images are either high
textured, medium textured, or low textured as
defined in (5).

6.1. Watermark invisibility

Watermark invisibility is evaluated on images of
Lena, Baboon, and Pepper. These three images
correspond to three texture categories. The PSNRs
of these three watermarked images are 43.33, 44.06,
and 37.62, respectively. In particular, the PSNR for
each embedded subimage is: Lena (39.42, 37.02, and
36.6), Baboon (30.91, 32.75, 30.47, 31.87, 38.35,
32.78, 33.78, 34.60, and 32.64), and Pepper (42.65,
40.09, 39.13, and 40.52). These PSNR values are all
greater than 30.00 db, which is the empirical value
for the image without any perceivable degradation
[40].

6.2. Important parameters

Several fixed parameters are used in our system.
Specifically, the length of the bipolar watermark
message bit sequence is 8. The length of the spread
error correcting watermark sequence, which corre-
sponds to the number of embedding positions in
each perceptually high textured subimage, is 8192
for the image of size 512� 512. This length linearly
changes with the image size. However, if the length
decreases to be less than 5000, we will use 2� 2
nonoverlapping subimages as the possible embed-
ding regions. The value of 5000 is an experimental
lower bound to achieve enough spread spectrum
positions for successful blind watermark retrieval.
The embedding strength G is 0.2, which ensures the
appropriate embedded values for maintaining in-
visibility and facilitating detectable changes after
image distortions on any subimage with the least
textures. The embedding area in DFT domain is a
ring with the inner and outer radii of 5% and 15%
the size of the square subimage.

In addition to these fixed parameters, several
image dependent parameters are also used in our
system. Table 1 summarizes these adaptive para-
meters for the three different textured images, where
Ratio is the factor for classifying image textures;
Type is the texture decided by (5); D is the diameter
of the circular window used by our image-texture-
based adaptive Harris corner detector; and SNum is
the number of embedding subimages determined by
perceptual analysis. In general, both D and SNum
are determined by the texture of the image. This is,
the more complicate the texture, the larger the
diameter D. Similarly, the more perceptually high
texture each subimage has, the larger the value
SNum.

In summary, the same 8-bit bipolar watermark bit
sequence is expanded to the same 14-bit error
correcting bipolar watermark bit sequence. The
same copy of this 14-bit watermark sequence is
embedded in each perceptually high textured sub-
image at different embedding positions generated by
our one-way hash function with different secret
keys. The adaptive parameters are automatically
determined based on the type of image textures.
These image dependent parameters not only im-
prove the accuracy in finding the image-content-
based important feature points but also improve the
robustness in resisting different geometric and
common image processing attacks on different
textured images.
6.3. Image restoration

The two steps of image restoration, the triangle
generation and triangle matching, are crucial in the
proposed watermarking scheme. In general, we
apply the Delaunay tessellation on the important
feature points to generate triangles and use angle
degrees to find the matched triangles between the
original and probe images. We further use these
matched triangles to find the possible geometric
attack in the three-element-tuple form since the
transformation an image undergoes is directly
reflected in the image-content-based triangles.
Fig. 8 is an example of all possible matched triangles
between the Lena image and the probe image, which
has been distorted by a few geometric attacks as
indicated in the captions of the figure. The matched
triangles are indicated by the same colors. As shown
in Fig. 8, we can always find enough number of
matching triangles to restore the probe image to be
aligned with the original image. This observation
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Fig. 8. The important-feature-points-based triangle matching under different distortions. (a) Matched triangles between the original

image and the 151 rotated probe image. (b) Matched triangles between the original image and the 25 pixels vertical shifted probe image.

(c) Matched triangles between the original image and the resized probe image with a factor of 0.8. (d) Matched triangles between the

original image and the 151 rotated, 25 pixels vertical shifted, and 0.9 resized probe image.

Table 2

Ratios under different attacks

Different images Robust IFPs Geometric attacks

(a) (b) (c) (d)

Lena 53 14/16 35/36 10/11 14/16

Baboon 50 14/19 23/25 5/10 6/6

Pepper 59 26/27 21/22 8/10 6/9
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further proves the effectiveness of the proposed
approach.

Table 2 lists the number of important feature
points on the three test images. It also lists the ratios
between the number of matched triangle pairs for
determining the geometric transformation and the
total number of matched triangle pairs under the
same four geometric attacks shown in Fig. 8. We
observe that the number of important feature points
is less than 60 for all the test images with different
textures. This observation clearly demonstrates that
our proposed adaptive Harris corner detector does
regulate the number of important feature points. It
also indicates that the cost of saving important
feature points for watermark synchronization is
minimal compared with the cost of saving the host
image. Furthermore, all simulation results yield
high ratios (most of them are higher than 70%),
which indicate a high accuracy in finding the
possible geometric transformation a probe image
may undergo. When comparing the results between
the images, it should be noted that the number of
matched triangle pairs are not linearly related to the
number of important feature points due to the
sensitivity of the important feature points to
different attacks (i.e., some important feature points
may disappear, show up, or shift a bit in the
attacked image). However, the two properties
possessed by the Delaunay tessellation always
ensure that there are enough matching triangles,
which are shown as high ratios in Table 2, for
restoring the probe image to be aligned with the
original image.

6.4. Simulation results

Simulation of common image processing attacks
and geometric distortions on a large variety of
images has been performed to validate the proposed
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watermark scheme. Tables 3 and 4, respectively,
demonstrate the simulation results of several
common image processing and geometric attacks
compared with Tang’s method [17] on three images
(i.e., 1 represents Lena, 2 represents Baboon, and 3
represents Pepper). All these attacks are intended to
simulate a complete list of possible sample inten-
tional and/or unintentional attacks occurred in the
real world. Most image processing attacks and all
the geometric attacks are performed by the bench-
mark software Stirmark 3.1. Since these two
methods use different mechanisms to determine
the presence of the watermark, the associated
similarity scores are not highly significant to the
comparison in this section. Hence, all the results will
be recorded as ‘‘pass’’ or ‘‘fail’’ or ‘‘not available’’
to give a more intuitive comparison. For the ease of
comparison, the results are listed side by side. That
is, a method with more ‘‘passes’’ on its side has a
better performance.

As shown in Table 3, our scheme performs better
than Tang’s method under common image proces-
sing attacks, such as median and Gaussian filtering,
color quantization, and JPEG compression down to
a quality factor of 30%. It also performs well under
histogram equalization and some combined com-
mon image processing attacks including sharpening
plus noise, image filtering plus JPEG compression,
and image enhancement plus JPEG compression.
This robustness against common image processing
can be further improved with a stronger watermark
embedding strength. However, a compromise be-
tween watermark robustness and invisibility needs
to be considered for choosing the optimal embed-
ding strength.

The watermark has also been correctly identified
by our method under a variety of geometric attacks
which Tang’s method failed to handle as shown in
blank cells and the cells containing ‘‘J’’ in Table 4.
These geometric attacks include random relatively
small and large rotations, scaling ratios, and any
combination of RST attacks. However, our ap-
proach does not work well for the combined linear
geometric transformation and the JPEG compres-
sion due to the possible loss of the important feature
points.

Simulation results are also compared with the
results yielded from the content-based scheme
(CBS) [16] and the Digimarc watermarking tool
available in Photoshop. In particular, Stirmark
attacks such as small shearing, rotation 101, scaling
0.8, and JPEG 50% have been performed to
compare the performance. The scanning is not
included due to lack of detailed information on this
attack. The experimental results show that the
proposed scheme can successfully detect the water-
marks under these attacks. Therefore, our approach
has comparable performance as the CBS and better
performance than the Digimarc. In addition, our
scheme can successfully resist several attacks that
the CBS failed to handle. They are attacks of lower
than 0.8 scaling on highly textured images and
attacks of compression with a quality factor of
lower than 50% as shown in Table 3.

Finally, we perform a variety of attacks on 105 8-
bit watermarked grayscale images of size 512� 512
using the benchmark software Stirmark 3.1. These
images are evenly distributed with high, medium,
and low textures according to (5). That is, the
database contains 35 images for each texture level.
The overall average PSNR value for these 105
watermarked images is 42.87 db. Table 5 sum-
marizes the simulation results of 15 kinds of
common image processing and geometric attacks
on the 105 watermarked images. The simulated
attacks correspond to a category of distortions
including no attacks, translation, scaling, rotation,
cropping up to 5%, linear geometric transform,
row and column removal with a maximum of 20
rows and columns removed, median filtering,
mean filtering, sharpening filtering, Gaussian filter-
ing, histogram equalization, and JPEG compres-
sions with quality factors of 40, 30, and 20. All
the filtering operations use the maximum filter size
of 3� 3. Each distortion category contains two
random attacks. Specifically, Table 5 lists the
average detection rates of all images in each texture
level under each distortion category using and
without using ECC in order to compare their
watermark detection performance. It clearly de-
monstrates that both our proposed scheme (i.e., the
ECC-based approach) and its variant (i.e., the non-
ECC-based approach) are robust against most
geometric and image processing distortions and
perform the worst for high textured images under
the linear geometric and mean filtering attacks.
Moreover, the average detection rates using ECC
for all simulated geometric attacks are 92.34%,
87.25%, and 76.57% for medium, low, and high
textured images, respectively. The average detec-
tion rates using ECC for all simulated image-
processing attacks are 98.77%, 98.25%, and
87.62% for medium, low, and high textured images,
respectively. The average detection rates for all
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Table 3

The comparison between the proposed method and Tang’s method under different common image processing

Attack category Attack name Tang’s result Our result Attack category Attack name Tang’s result Our result

1 2 3 1 2 3 1 2 3 1 2 3

Watermark existence testWatermarked image (no attack)K K K K K K JPEG compression 40% K K K K K

Image filtering Median filter 2� 2 K K K K 30% K K K K K

Median filter 3� 3 K K K K Image filtering+JPEG 90% Median filter 2� 2 K K K K K

Sharpening 3� 3 K K K K K K Median filter 3� 3 K K K

Gaussian filtering 3� 3 K K K K K Sharpening 3� 3 K K K K K K

Mean filter 2� 2 J J J K K K Gaussian filtering 3� 3 K K K K K

Mean filter 3� 3 J J J K K K Image enhancement Histogram equalization J J J K K K

Quantization Color quantization K K K K K Sharpening+Noise Sharpening 3� 3+noise (scale ¼ 0.1)J J J K K K

Additive uniform noise Scale ¼ 0.1 K K K K K K Image filtering+JPEG 50% Median filter 2� 2 J J J K K K

Scale ¼ 0.15 K K K K K K Median filter 3� 3 J J J K K K

Scale ¼ 0.2 K K Mean filter 2� 2 J J J K K K

JPEG compression 80% K K K K K K Mean filter 3� 3 J J J K K K

70% K K K K K K Sharpening 3� 3 J J J K K K

60% K K K K K Gaussian filter 3� 3 J J J K K K

50% K K K K K K Image enhancement+JPEG 50%Histogram equalization J J J K K K

1 represents Lena, 2 represents Baboon, and 3 represents Pepper.

‘‘K’’ indicates a ‘‘pass’’, blank cell means a ‘‘fail’’, and ‘‘J’’ indicates there is no result provided by the author.
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Table 4

The comparison between the proposed method and Tang’s method under different geometric distortions

Attack

category

Attack

name

Tang’s

result

Our result Attack category Attack

name

Tang’s

result

Our

Result

1 2 3 1 2 3 1 2 3 1 2 3

Row and column removal 1 row and 5 columns KKKK K K Rotation, cropping, and/or Scaling+JPEG 70%11+Cropping+Scale K KKK

5 rows and 17 columns K K K K 11+Cropping KK KKK

Centered cropping 5% KKKK K K 21+Cropping KKK

10% KKKK K K 51+Cropping KKK

Shearing x�1%, y�1% KK K K K Linear geometric transform+JPEG 70% (1.007, 0.01, 0.01, 1.012) KK KKK

x�0%, y�5% KK K K K (1.010, 0.013, 0.009, 1.011)KKK K

x�5%, y�5% K (1.013, 0.008, 0.011, 1.008)KK K

Rotation, cropping, and/or scaling 11+Cropping+Scale KKK K K Rotation 151 J J J KKK

11+Cropping KKKK K K 351 J J J KKK

21+Cropping K K K 2101 J J J KKK

51+Cropping K K K Translation [15,15] J J J KKK

Linear geometric transform (1.007, 0.01, 0.01, 1.012) KK K K K [0, 25] J J J KKK

(1.010, 0.013, 0.009, 1.011)KK K K K [25,0] J J J KKK

(1.013, 0.008, 0.011, 1.008)KK K K K Scaling 90% J J J KKK

Row and column removal+JPEG 70%1 row and 5 columns KKKK K K 80% J J J KKK

5 rows and 17 columns K K K K 70% J J J KKK

Centered cropping+JPEG 70% 5% KKKK K K Rotation, scaling, translation (RST) attacks 51+80%+[0, 25] J J J KKK

10% KKKK K K 151+90%+[2,25] J J J KKK

Shearing+JPEG 70% x�1%, y�1% KK K K K RST attacks+JPEG 70% 51+90%+[5,5] J J J KKK

x�0%, y�5% KK K K K 781+90%+[15,25] J J J KKK

x�5%, y�5% 101+80%+[10,10] J J J KKK

1 represents Lena, 2 represents Baboon, and 3 represents Pepper.

‘‘K’’ indicates a ‘‘pass’’, blank cell means a ‘‘fail’’, and ‘‘J’’ indicates there is no result provided by the author.
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Table 5

The average successful detection rates using ECC and without using ECC for three kinds of textured images under geometric and common

image processing attacks using Stirmark

Attack category High textured images Medium textured images Low textured images

With ECC (%) Without ECC

(%)

With ECC (%) Without ECC

(%)

With ECC (%) Without ECC

(%)

No attacks 100 100 100 100 100 100

Translation 100 91.43 100 97.14 92.85 91.43

Scaling 62.86 60.00 85.71 80.00 100 98.57

Rotation 65.71 62.86 97.14 91.43 88.57 85.71

Cropping up to 5% 100 97.14 94.29 91.43 100 97.14

Linear geometric

transform

54.29 51.43 82.86 74.29 58.57 54.29

Row and column

removal

74.29 71.43 94.29 94.29 84.28 81.43

Median filtering 62.86 60.00 97.14 94.29 100 95.71

Mean filtering 57.14 54.29 94.29 91.43 100 97.14

Sharpening

filtering

100 100 100 97.14 100 100

Gaussian filtering 100 100 100 97.14 100 100

Histogram

equalization

100 100 100 97.14 100 100

JPEG 40% 100 97.14 100 97.14 100 100

JPEG 30% 100 97.14 100 95.71 100 100

JPEG 20% 94.29 91.43 97.14 94.29 100 98.57
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simulated attacks are 96.28%, 94.90%, and 84.62%
for medium, low, and high textured images,
respectively. The overall average detection rate for
all images under all simulated attacks is 91.93%.
Compared with the simulation results obtained
without using ECC, our proposed scheme improves
the average detection rates for all simulated
geometric attacks by 5.92%, 3%, and 5.51% for
medium, low, and high textured images and
improves the average detection rates for all simu-
lated image processing attacks by 2.83%, 1.31%,
and 2.22% for medium, low, and high textured
images, respectively. The average detection im-
provement for all simulated attacks is 3.59%,
1.73%, and 3.01% for medium, low, and high
textured images, respectively. The overall average
detection improvement for all images under all
simulated attacks is 2.77%. The detailed compar-
ison illustrates that the ECC-based approach
improves the average detection rates for water-
marked images under both geometric and image
processing attacks. However, it achieves more
improvement for the geometric attacks since im-
perfect image restoration yields relatively more
mismatches between the extracted and embedded
watermark sequences and the ECC may correct
these small errors.

In summary, our proposed watermarking scheme
outperforms the peer content-based schemes [16,17].
It yields positive detection results for most images
with low, medium, and high textures under different
geometric distortions and common image proces-
sing attacks. This robustness is mainly due to the
following three factors:
1.
 The image-texture-based adaptive Harris corner
detector is capable of finding the important
feature points for different textured images to
roughly represent invariant references to various
geometric transformations.
2.
 The Delaunay-tessellation-based triangle genera-
tion and matching can detect and correct the
possible geometric attacks on the watermarked
image even when some important feature points
disappear, show up, or shift a bit in the attacked
image. In particular, the triangle generation is
able to eliminate the effect of the fake important
feature points showed up in high textured images
and minimize the synchronization errors between
the extracted and original watermarks. The
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triangle matching process requires substantially
fewer interpolation operations than other peer
systems [16,17] and therefore significantly im-
proves the accuracy in extracting and detecting
watermarks.
3.
 The DFT domain itself is robust to translation
and moderate cropping so it can accommodate
the cropping attacks and further compensate the
slightly inaccurate important feature points
based geometric correction.

The success of the proposed watermarking
scheme is also due to the following three fea-
tures: (1) The perceptually high textured sub-
image embedding scheme helps our watermarking
system to survive some localized image attacks
in Stirmark. (2) The image-texture-based adap-
tive Harris corner detector is capable of regu-
lating the important feature points for different
textured images and therefore enables our scheme
to perform reasonably well for high textured
images, which cannot be handled by other peer
systems [16,17]. (3) The robustness of the spread
spectrum embedding and detection makes our
scheme more resistant to common image processing
attacks.

However, our scheme does not perform well for
the extremely low textured images due to the
insufficient important feature points. It also fails
the JPEG compression with a quality factor of
lower than 20% due to the missing important
feature points resulted from high compression.
Furthermore, it fails under mirror and flip attacks
since the algorithm cannot correctly match two
triangles which are mirrored or flipped.

7. Conclusions

In this paper, we propose a novel and effective
content-based robust watermarking approach. The
major contributions consist of:
1.
 Image-texture-based adaptive image content ex-
traction: This extraction method is capable of
finding the important feature points, which are
robust against geometric attacks, for images with
high, medium, and low textures.
2.
 Error correcting bipolar watermark bit sequence:
This sequence can correct one or two transmis-
sion errors in the extracted watermark sequence
to improve the detection accuracy with a low
false alarm and false negative probability.
3.
 Image dependent perceptually high textured
subimage selection for embedding: These embed-
ding subimages carry the same copy of the error
correcting bipolar watermark bit sequence to
improve the robustness of transmitted watermark
bits. They also aid our watermarking scheme
in surviving some localized image attacks in
Stirmark.
4.
 Spread-spectrum-based blind watermark embed-
ding and retrieval in DFT domain: The spread
spectrum scheme makes our system more resis-
tant to common image processing attacks. The
DFT domain ensures more resistant to transla-
tion and moderate cropping. The blind embed-
ding and retrieval scheme does not require any
information about the original image at the
detection stage.
5.
 Delaunay-tessellation-based triangle generation
and matching: This scheme can efficiently elim-
inate the effect of inaccurate important feature
points and correctly determine the possible
transformation a probe image may undergo with
fewer interpolation operations.

The proposed method is robust against a wide
variety of tests as indicated in the experimental
results. In particular, it is more robust against JPEG
compression and the combination of the geometric
distortions with large scaling ratios and rotations
than other content-based watermarking techniques.
It works successfully for images with high, medium,
and low textures. Our approach can be further
improved by developing a more reliable feature
extraction method under severe geometric distor-
tions and a more efficient and accurate triangle
generation and matching method. In the real world,
this watermarking technique can be applied to a lot
of different areas, such as photograph, audio, and
video. One example is that computer graph artists
can use this method to impose an invisible water-
mark into their works for identifying the ownership.
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