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Abstract 

 
Two promising approaches for handling large-scale 

biodata are presented and illustrated in several new 
contexts: molecular structure bitmap image processing 
for chemoinformatics, and fractal visualization 
methods for genome analyses. It is suggested that two-
dimensional structure databases of bioactive 
molecules (e.g. proteins, drugs, folded RNAs), 
transformed to bitmap image databases, can be 
analysed by a variety of image processing methods, 
with an example of microRNA folded 2D structures. 
Another compact and efficient visualization method is 
comparison of huge amounts of genomic and 
proteomic data through fractal representation, with an 
example of comparing oligomer frequencies between 
bacterial genomes. Bitmap visualization of 
bioinformatics data seems promising for complex 
parallel pattern discovery and large-scale genome 
comparisons, as powerful modern image processing 
methods can be applied to the 2D images. 
 
1. Introduction 
 

Massive amounts of information keep accumulating 
into many complex chemical structure databases, 
including protein and RNA structures, drug molecules, 
drug-ligand databases, and so on. Surprisingly, there is 
no commonly accepted standard for recoding and 
managing chemical structure data, e.g. drug molecules, 
suitable for automated data mining [1]. Also genomic 
data are accumulating at increasing speed, with almost 
2,000 microbial and eukaryotic genomes listed in the 
Genomes OnLine Database (GOLD), either completed 
or being sequenced [2]. Increasing interest is now 
being focused on characterizing various genomes, 
especially for their repetitive DNA and repeated DNA 

motifs, especially in the non-coding regions, important 
for chromatin condensation and gene regulation [3]. 

We present and illustrate two promising approaches 
to handle large-scale chemo-informatics and genomics 
data, based on visualization as bitmaps and applicable 
to standardized pattern analysis and knowledge 
discovery. 

 
2. Protein, RNA and other chemo-
informatics databases  
 
2.1. Current analysis methods 

 
There are currently some 35,000 databased protein 

structures (X-ray and NMR) in the Protein Data Bank 
PDB [4], and many more structures have been 
estimated by computational comparison of amino acid 
sequences to secondary and tertiary structures, either 
by ab initio folding programs or supervised methods 
involving sequence threading to a known protein 
structure. A large number of web servers are available 
on the internet to compare protein structures with each 
other, see e.g. [5].  The underlying structural alignment 
algorithms are crucial for drug design, e.g. ligand to 
protein binding simulation. However, these algorithms 
currently cannot handle simultaneous comparison and 
classification of large numbers of structures, except by 
brute force, using very large distributed computing 
infrastructures, like FightAIDS@Home on the World 
Community Grid, which performs AutoDock analysis 
of drug and HIV virus target matching on thousands of 
PCs around the world [6]. However, currently there is 
no efficient solution for matching, clustering and 
classifying large numbers of molecular structures 
efficiently. 

Amino acid sequence similarity has been used as a 
proxy to compare similar protein structures, but a 
minimum of 30% sequence identity and a known 
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structure is needed for modelling protein structures. 
For accurate drug design, up to 60% sequence identity 
is needed to ensure proper ligand binding models. 
Also, in this respect the current set of protein structures 
do not yet cover sufficiently the protein structure space 
[7]. In addition, protein structure is known to be 
clearly more conserved than sequence similarity.  

Similarly to proteins, the folding of the RNA 
molecules is also known to be often more conserved 
than their sequence, and most recent estimates suggest 
that the number of non-coding genes with stable 2D 
RNA structures of transcripts is in the thousands [8], 
and may match the total number of protein coding 
genes in eukaryotic genomes. 

There is thus a need for new efficient methods for 
comparing and clustering of large numbers of 
macromolecule structures that could avoid the use of 
complicated and detailed data structures pertaining to 
the 3D atomic coordinates of proteins, RNAs, and 
organic molecules. Such an alternative approach 
advocated in this paper is to generate 2D projections of 
molecular structures, transform the data into bitmap 
images and then analyze the bitmap images using a 
variety of advanced methods developed in the artificial 
intelligence community for face recognition, 
fingerprint classification and so on. An example of 
using this approach for RNA structures is described 
below. 

 
2.2. Bitmap image processing approach for 
folded RNAs 
 

RNA molecules commonly self-assemble, resulting 
in more or less stable specific conformations in which 
nucleotide pairs A-U and C-G are formed for a 
reduced free energy level. The conformations are 
characteristic of the different RNAs, e.g. eukaryotic 
ribosomal RNAs, microbial riboswitches, human 
microRNAs and so on. With the latest algorithms, 
secondary 2D structures can be computed quite fast 
and reliably from RNA sequence [9]. Normally only 
the most stable structure with the lowest 
thermodynamic energy (�G) is considered, but there 
can also be several other more or less likely 
conformations, collectively known as the Bolzmann 
ensemble, which can nowadays also be computed with 
reasonable accuracy [10]. Ideally, these alternative 
conformations should be taken into account in 
comparative analysis of different RNAs. 

Consensus structure comparisons for a set of RNA 
sequences have been previously made in three basic 
ways: 1) multiple alignment of sequences, followed by 
structure folding of the consensus, 2) Sankoff method 

of simultaneously aligning sequences and folds and 3), 
folding sequences to structures, followed by structural 
alignment [11].  

The first method may not cluster together all related 
sequences, as RNA structure is more conserved than 
its sequence. With the Sankoff method it is not easy to 
cluster large numbers of sequences/structures and the 
method is also computationally very demanding for 
large-scale use. The third method is a novel field, and 
demands a very good method to align structures to 
start with. Several approaches have been introduced, 
including RNA as topological graphs or trees.  
     Representative algorithms in this field are 
RNAFORESTER, MARNA, reviewed in [9] and 
TREEMINER [12]. Their performance in analysing 
and clustering very large RNA sets is not yet known. 

A new generic approach proposed by us [13] for 
large-scale analysis of RNA structures consists of first 
computing the 2D structures for the set of RNA 
sequences, followed by transformation of the 
structures into bitmap images and analysis of the image 
set with a suitable image processing algorithm (Figure 
1). 

 
 

 
 

Figure 1. Bitmap image analysis approach to RNA 
structure classification. 
 

 
2.3. Example of human microRNAs analysed 
by Gabor Filter method 
 

MicroRNAs are short, 80-150 basepairs long RNAs 
that do not code for protein, but fold into hairpin 
structures and exert their effect on gene regulation by 
binding to matching sequences of messenger RNAs of 
protein-coding genes, reviewed in [14]. They are now 
known from plants, mammals and many lower 
eukaryotes as well. 

In a first case study of the general approach [13], 
the set of 222 known human microRNAs was folded 
by RNAFold algorithm of the Vienna package [15] and 
transformed into bitmap images, which were then used 
to extract classificatory information using Gabor Filter 
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method. Gabor Filter produces rotation-invariant 
features, which are used to calculate measures of 
similarity to compare images. Greyscale bitmaps of 
512x512 pixels were used, with low-resolution spatial 
frequencies and four angular directions.  

Figure 2 (top middle and right) shows two examples 
of Gabor filter transformed bitmap images of folded 
RNA (top left) at low angular resolution. From the 
transformed images, feature vectors were obtained, and 
Manhattan distances between vectors of all pairs of 
microRNAs calculated. The heat map of all versus all 
comparisons of the 222 microRNAs (Figure 2) shows 
clearly the diagonal of similar items (the microRNAs 
were ordered by known microRNA families). or 
structural motifs together. 

 

 
 
Figure 2. Gabor filter analysis of microRNA 

structures. Top: left, a sample folded RNA structure, 
middle, Gabor filtered image at � = 0 rotation angle, 
right, image at � =�/2.  Bottom: Heatmap matrix of 
Gabor filter feature vector Manhattan distance 
similarities of 222 human microRNAs. Modified from 
[16]. X- and y-axes: microRNA identification number, 
heatmap colourscale: Blue: most similar, Red: least 
similar. 

 
In the heatmap colour scaling blue pixels show the 

most similar microRNA pairs, and red pixels the least 
similar ones.  In addition, many other putative 
similarities between microRNAs that do not share 
sequence similarity are also indicated for a large 
number of other microRNA pairs. For more details, see 

[13]. These additional similarities are worth exploring 
further, because they may correlate with specific 
structures in the folded RNAs. Thus the bitmap image 
similarity could help in sequence pattern discovery by 
providing additional information for clustering RNAs 
with weakly similar sequences 

 
2.4. Further improvements of the approach 

 
For improving the bitmap utilization method, other 

ways of visualizing the 2D structure could be used, 
e.g. by using different colours or shapes for different 
bases or basepairs. Subsequently, various other image 
feature extraction methods could be used to derive 
informative colour/shape/contour/curvature data for 
clustering and classification of the microRNA structure 
images. The approach is a general one, applicable to all 
kinds of macromolecules for which an informative 2D 
structure representation is easily computed. This 
method could reveal relevant features not previously 
considered by chemists or biologists, or it could be 
used as a prefiltering step in very large databases of 
molecular structures. Then the challenge is to develop 
the image clustering methods to handle large numbers 
of bitmap images efficiently. Automation of the 
procedure involves suitable cutoffs for similarity 
measures for desired statistically significant clustering 
of the similar structures. 

 
 

 
3. Genomics databases 

 
3.1. Current analysis methods 

 
Similarly to the expansion of chemoinformatics 

related databases, genomic and proteomic data is 
stretching bioinformaticians to develop efficient large-
scale methods for pattern identification, knowledge 
discovery and easily accessible and queriable 
databasing. Multiple alignments of many genomes are 
already used for interspecies comparisons [16, 17], but 
more compact data summarization methods are 
needed. Analyzing whole genomes to quickly reveal 
their salient features and to extract new knowledge is 
an essential goal for biological sciences. We advocate 
the solution of compressing information about 
oligomer frequencies in long sequences into small, 
coloured fractal representations in 2D or 3D space. 
This can achieve compression of genome data by a 
million times.  
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3.1. Fractal representation approach for DNA 
sequences  

 
Fractals in the form of iterated function system 

(IFS) and Chaos Game Representation have been used 
to visualize short DNA [18] or protein [19] sequences 
of genes, even complete genomes [20, 21], and in 
principle any symbolic sequences [22]. The iterated 
function system transforms DNA sequences to unique 
points in 2-dimensional space. The principle here is to 
map all oligomers of fixed size of N bases contained in 
the genome to a 2D space with 2Nx2N elements.  

An important characteristic of the representation 
space is that there are so-called attractor points in the 
space, e.g. in the corners, representing subsequences 
AAAA, CCCC, and so on. Similar oligomers are 
situated spatially close to each other in the 
representation space. Figure 3 illustrates the IFS 
principle. Equation (1) shows the four transformations 
in the rectangular coordinate space in successive 
basepairs of the DNA, with x and y axes ranging from 
0 to 1. 
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Every transformation contracts X to its quarter of a unit 
square. A limit set of points emerging from an infinite 
application of the IFS is called the IFS attractor.  
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Figure 3. Principle of mapping N-mers for a fractal 
space. Here all tetramer polynucleotides are mapped 
to unique positions in a 24 x 24 coordinate grid. Three 
end positions for three tetramers are shown. 
    
End positions of all the oligomers are marked on the 
grid, and their frequency in each cell counted, and the 

frequencies displayed by greyscale or colour scale. We 
show an example with a microbial genome. 

 
3.2. Example of phytoplasma genome octamers 

 
Phytoplasmas are wall-less prokaryotic microbes 

and obligate parasites of plants, with genome sizes 
below one million basepairs. They belong to 
Mollicutes, known to have AT-rich genomes. The 
Aster Yellow Witches' Broom genome has recently 
been sequenced, and is used here as an example of a 
new unexplored genome [23]. All octamer 
oligonucleotides of the whole genome (ca. 700 
kilobases) were plotted in fractal space of 256x256 = 
65,536 pixels, and their frequencies are shown as a 
colour heatmap (Figure 4). As expected, the AT-
diagonals have high frequencies of octamers, and the 
abundance of A-rich and T-rich sequences at opposite 
corners is immediately evident. This was verified by 
using RepeatScout algorithm [24] to calculate the most 
abundant non-overlapping octamers (including tandem 
ones) in the genome. Figure 5 illustrates that the most 
abundant octamers indeed are AT-rich. What is not 
easy to find out from these octamer frequency listing is 
that there are two approximately equally abundant 
types of these oligomers, A-rich and T-rich, as shown 
by the red-orange clusters in the corners A and T, 
respectively 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Aster Yellows Witches' Broom phytoplasma 
genome octamers visualized in a 256 x 256 (28 x 28) 
grid as a heatmap, red colour means higher frequency. 
The abundance of A and T rich octamers is obvious on 
the red diagonal and in the top left and bottom right 
corners. An arrow points to a cluster of GT-repeats  in 
the middle of bottom border between G and T corners. 
 

The basic difference of the fractal method to 
counting and comparison of frequencies of tandem and 
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interspersed repeats is also that overlapping oligomers 
are enumerated exhaustively. This is important in 
terms of RNAi and transcription factor regulating 
mechanisms of gene expression and chromatin 
remodelling., which rely on the presence of suitable 
binding site oligomers in the relevant genome location. 
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Figure 5. The most abundant Aster Yellows Witches' 
Broom phytoplasma genome octamers obtained by 
RepeatScout algorithm. The abundance of A and T rich 
oligomers is clear. 
 

Another finding easily seen in the fractal 
representation is the cluster in the middle of bottom 
border between G and T corners, which suggests an 
abundance of GT-rich octamers. Such repetitive motifs 
might have a special function in the phytoplasma for 
its host relationship. Indeed, it has been suggested that 
repetitive DNA is important in prokaryotes for genome 
plasticity, especially in host-parasite interactions [25]. 
For example, in Neisseria bacterium octamer repeats 
are specifically enriched, suggesting a special 
mechanism for their generation and instability [26]. 

Short direct tandem repeats (microsatellites) seem 
to be rare in the closely related onion yellows 
phytoplasma genomes, based on searching the 
Microorganisms Tandem Repeats Database [27, 28]. 
Thus the common GT-rich octamers mentioned above 
are most likely interspersed multicopy sequences of 
unknown function.  

In summary, the fractal histogram plot thus seems 
very useful to show simultaneously over-represented 
and under-represented oligomers that may be under 
special evolutionary selection pressures.  

 
3.3. Further improvements of the approach  

 
For a more detailed analysis of any genome, one 

would draw fractal histograms with different oligomer 
lengths to identify specific repeated interspersed motifs 
in the genome. Overlaying/substracting from a plot of 

similar length random sequence with same ratios of 
A/T/C/G could show statistically significant 
differences according to a specific cutoff. 

Similarly, comparing two or more genomes by 
overlaying could be easily accomplished, to pinpoint 
the relevant changes in abundant or under-represented 
oligomers in the genome. This would be effective for 
immediate and informative genome scale visual 
comparisons.  

The oligomer lengths could be variable, depending 
on the scale of interest, up to oligomer size 20 or so, 
which would map all unique single-copy sequences in 
a separate grid cell. The fractal spaces of the different 
length oligomers could be viewed successively as a 
moving colour video track for quick visualization of 
the relevant features, with several genomes shown side 
by side in synchrony. 

Successive sections of the genome could be 
analyzed separately, so that one could find out repeat-
rich regions, coding and non-coding regions and so on 
in the genome. Keeping track of the oligomer 
coordinates as well would enable one to map specific 
oligomer groups to specific locations in the genome as 
well. Such a tool could thus be a very versatile method 
of visual exploration and comparison of genomes. 

A specific application for short oligomer based 
microarray technology is visualization of the set of 
oligos (the “oligome”) on an array, and comparison 
between arrays and the target transcriptomes/genomes 
for completeness of coverage of possible hybridization 
sites. 

Further extension to larger alphabets to encompass 
also complete proteomes, rather than short single 
protein sequences is also an interesting possibility. 

Finally, automation of the method could be 
accomplished by image processing of the 
overlayed/subtracted images to highlight/extract the 
oligomer clusters of interest in the fractal space, down 
to the specific most common oligomers differing in 
frequency between the genomes. 
 
4. Discussion 
 

We have presented two promising visualization and 
classification methods, both based on transforming a 
bioinformatics problem to the image analysis domain, 
to deal with large sets of molecular structures and 
oligomer motifs in large genomes and proteomes.  

An example on transforming folded RNA 
molecules to 2D structure bitmaps was given, but the 
approach applies to several domains, including 
complex organic molecule databases and even protein 
secondary structure diagrams.  
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For fractal coding of genome oligomer distribution, 
an example of phytoplasma genome showed that 
specific types of repeats can be visualized effectively. 
Various extensions of the fractal method seem worth 
pursuing for novel types of DNA sequence pattern 
clustering and classification.  

Finally, moving the bioinformatics domain 
symbolic data into bitmap representation domain 
makes it possible to use the wide variety of bitmap 
image analysis methods developed in other fields 
outside biology. This interdisciplinary approach should 
be both interesting and fruitful for informative 
visualization, data mining and knowledge discovery in 
bioinformatics and chemoinformatics datasets. 
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