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Effects of Non-Identical Rayleigh Fading on
Differential Unitary Space-Time Modulation

Meixia Tao, Member, IEEE

Abstract—Non-identical fading distribution in a multiple-input
multiple-output (MIMO) channel, including unequal average
channel gains and fade rates, often occurs when antennas are not
co-located. In this paper, we present an analytical study of the
effects of non-identical Rayleigh fading on the error performance
of differential unitary space-time modulation (DUSTM). The
fading processes for different transmit-receive antenna pairs are
assumed to be independent and time-variant. We find that the
maximum-likelihood (ML) differential detector of DUSTM over
such channels is involved except for differential cyclic group
codes. The conventional detector is proved to be asymptotically
optimal in the limit of high signal-to-noise ratio (SNR) over static
fading channels. Applying the distribution of quadratic forms of
Gaussian vectors, we then derive closed-form expressions for the
exact error probabilities of two specific unitary classes, namely,
cyclic group codes and orthogonal codes. Simple and useful
asymptotic bounds on error probabilities are also obtained. Our
analysis leads to the following general findings: (1) equal power
allocation is asymptotically optimal, and (2) non-identical channel
gain distribution degrades the error performance. Finally, we
also introduce a water-filling based power allocation to exploit
the transmit non-identical fading statistics.

Index Terms—Differential detector, error probability analysis,
independent and non-identical channels, Rayleigh fading, space-
time modulation.

I. INTRODUCTION

THE use of multiple antenna elements promises con-
siderable diversity and multiplexing gains in wireless

communication systems. This motivated enormous develop-
ment of multiple-input multiple-output (MIMO) techniques
in the context of space-time (ST) coding and modulation
in the last decade. Existing ST techniques can be broadly
divided into coherent schemes and non-coherent schemes,
based on whether or not instantaneous channel knowledge is
needed by the receiver. As channel estimation is waived, non-
coherent schemes can not only reduce receiver complexity
but also lower transmission overhead required for sending
pilot symbols. Among the non-coherent schemes, differential
unitary space-time modulation (DUSTM) [1], [2] is known
for its good error performance and high spectral efficiency.
DUSTM is often viewed as a multiple-antenna counterpart of
differential phase-shift-keying (DPSK) modulation, where the
signal constellation is a set of unitary matrices spread over
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both time and space. A number of unitary ST signal sets
have been designed, including orthogonal codes [3]–[5], cyclic
group codes [6], and Cayley differential codes [7].

It is commonly assumed in the design and performance
analysis of space-time coding that the channels on different
transmit-receive antenna pairs are statistically identical. The
assumption typically holds when antennas in the system
are co-located and hence the channel path loss, as well as
potential shadowing, experienced by each signaling branch is
the same to each other. There are many occasions, however,
that the antennas are not necessarily co-located. For instance,
in distributed antenna systems [8], [9], the antennas are
geographically distributed at different radio ports and are
connected together through high-speed cables. It is natural to
expect different path loss as well as fade rates on different
links. Similarly, in aeronautical telemetry communications
[10], multiple antennas can be placed at different parts of
the air vehicle and hence they experience different attenuation
during maneuvers. Cooperative communications among mo-
bile nodes in a network is another important scenario. After
knowing each other’s data to be sent, the cooperating nodes
can form a virtual multiple-antenna system and employ space-
time coding in a distributed manner [11], [12]. Clearly, the
different signaling branches in the cooperation phase can have
unequal fading statistics. In all the aforementioned MIMO (or
virtual MIMO) communication settings, the resulting channels
can be modeled as independent and non-identically distributed
(i.n.i.d) fading.

The goal of this paper is to study the effects of non-
identical fading distribution on the performance of existing ST
codes, in particular differential unitary space-time modulation.
There are two issues to be addressed. First, whereas uniform
power allocation in the spatial domain for both coherent and
non-coherent ST codes is capacity-achieving in traditional
independent and identically distributed (i.i.d) fading, it may
not be so in i.n.i.d fading. Therefore, it is of interest to
investigate the optimal power allocation among the distributed
antennas (or cooperating nodes). Second, the conventional
differential detector for DUSTM over i.i.d channels may no
longer be optimal in the maximum-likelihood (ML) sense.
Hence, optimal differential detector is to be discussed.

Attempts have been made recently to study the effects of
non-identical channels in MIMO systems from different as-
pects. The outage probability of mutual information and power
control over distributed multiple-input single-output (MISO)
channels with independent Rayleigh fading are studied in [13].
The bit error probabilities (BEP) of coherent orthogonal space-
time block codes (OSTBC) over i.n.i.d Rayleigh/Riciean and
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Nakagami fading channels are analyzed in [14] and [15],
respectively. In [16], the authors derived the BEP of differ-
ential OSTBC, i.e., the orthogonal-design based DUSTM [3],
[5], over independent and semi-identically distributed (i.s.i.d)
Rayleigh channels, where the non-identical fading occurs at
the receiver side only. The study in [16] shows that in i.s.i.d
channels the ML differential detector (DD) for differential
OSTBC is still on a per symbol basis but should weight
the output from each receive antenna according to its fading
statistics. Moreover, the ML detector significantly outperforms
the conventional one at high signal-to-noise ratio (SNR) region
when the channel fluctuates rapidly over time.

In this paper, we extend the previous work in [16] to
a general framework of DUSTM over i.n.i.d time-varying
Rayleigh fading channels. We first show that for a general
unitary space-time constellation the ML differential detector
needs to perform joint optimization of the current data matrix
and the previously transmitted signal matrix. However, for
cyclic group codes, it is independent of the previous signals
and differs from the conventional DD only by appropriate
weights. The conventional DD is shown to be asymptotically
optimal in the limit of high SNR over static fading channels.
We then apply the well-established distribution of quadratic
forms of Gaussian variables to derive the error performance
for two specific unitary classes: orthogonal codes and cyclic
group codes. For cyclic group codes, closed-form expressions
for the exact pairwise error probabilities (PEP) with both ML
and conventional DD at arbitrary channel fluctuation rates
are derived. For orthogonal codes, closed-form expressions
for the exact BEP with conventional DD in static fading
are derived. Furthermore, simple asymptotic bounds on error
probabilities for both codes are obtained. These bounds lead to
several useful findings applied to any DUSTM design. Lastly,
we propose a water-filling based power control to exploit
the transmit non-identical fading statistics. This is carried
out by minimizing the Chernoff bound of approximate error
probabilities under a total power constraint.

The rest of the paper is organized as follows. In Section
II we present the system model of DUSTM over i.n.i.d
time-varying flat Rayleigh fading channels. The optimal and
suboptimal detectors are presented in Section III. The analysis
of error probabilities is presented in Section IV, followed by
the derivation of transmit power control in Section V. Some
numerical examples are illustrated in Section VI. Finally,
Section VII offers some concluding remarks.

Notations: E [·] denotes expectation over the random vari-
ables within the brackets. Tr(A) and ReTr(A) stand for the
trace and the real part of the trace of matrix A, respectively.
‖·‖2 represents the squared Frobenius norm. IM is the M×M
identity matrix. diag(a1, . . . , aM ) is the diagonal matrix with
element am on the m-th diagonal. Superscripts (·)T , (·)∗,
and (·)H denote transpose, conjugate, and conjugate trans-
pose, respectively. Notation � and ⊗, respectively, represent
the Hadamard product and Kronecker product. Res[f(x), p]
denotes the residue of function f(x) at pole x = p.

II. SYSTEM MODEL

Consider a communication system with M transmit and
N receive antennas over a flat Rayleigh fading channel. The

antenna elements at both the transmitter side and receiver
side are not necessarily co-located. At each time block k,
a set of log2 L information bits are mapped onto a data
matrix D[k] ∈ V , where V = {Di, 0 ≤ i < L} denotes
a unitary space-time signal constellation with cardinality L.
Each element of V is an M × M unitary matrix, satisfying
DiDH

i = IM , for 0 ≤ i < L. For the special case of
differential cyclic group codes [2], [6], the constellation set V
forms a group under matrix multiplication and each element
of it is a diagonal matrix. In the case of differential OSTBC,
each element Di is a linear mapping of a set of P M-ary PSK
modulated information symbols, denote as {sp = ejθp}P

p=1,
and is given by D[k] = 1√

P

∑P
p=1 (Φp cos θp + jΨp sin θp).

Here the set of encoding matrices {Φp,Ψp}P
p=1 are chosen

subject to certain orthogonality constraints [17].
Let S[k − 1] denote the M × M dimensional code matrix

at the (k − 1)-th time block. The data matrix D[k] is then
differentially encoded as

S[k] = D[k]S[k − 1],

where the initial code matrix S[0] is an arbitrary unitary
matrix. The actual signal matrix to be transmitted at time block
k over M antennas is given by

X[k] =
√

EsS[k]Σ1/2, (1)

where Es is the total transmit power, and Σ1/2 =
diag{√ε1, . . . ,

√
εM} is the diagonal power allocation matrix.

The power allocation coefficients εm’s are subject to the
constraint

∑M
m=1 εm = M and to be optimized.

Since the transmission is on a per block basis, we assume
the channel is block-wise time-varying with each block con-
taining M symbol intervals. Let H[k] denote the M × N
channel matrix of the k-th transmission block, where the
(m, n)-th entry hmn[k] represents the fading coefficient from
the m-th transmit antenna to the n-th receive antenna. Each
{hmn[k]}k is modeled as a complex Gaussian wide-sense
stationary random process with zero mean and autocorrelation
function 2Rmn[l] = E [hmn[k]h∗

mn[k − l]], and is independent
for different m and n. The channel variance and block
correlation coefficient are denoted as σ2

mn = 2Rmn[0] and
ρmn = Rmn[1]/Rmn[0], respectively. The parameters {σ2

mn}
and {ρmn} represent the unequal average channel gains and
unequal channel fluctuation rates, respectively.

Let Y[k] denote the M ×N received signal matrix from N
antennas at the k-th transmission block. It is modeled as

Y[k] = X[k]H[k] + W[k], (2)

where W[k] is the complex-valued additive white Gaussian
noise matrix whose entries are i.i.d with zero mean and
variance N0.

III. DIFFERENTIAL DETECTION

Detection techniques of DUSTM over time-varying fading
channels have evolved from traditional one-shot differential
detection based on two consecutive blocks of received signals
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[2] to more advanced sequence detection which jointly pro-
cesses multiple blocks, e.g., [18]–[22]. While these multiple-
symbol based sequence detectors are able to attain coherent-
like performance, they are difficult to analyze. To quantita-
tively study the effects of non-identical fading statistics, we
focus on the one-shot differential detection for the convenience
of analytical tractability. In this section, we first discuss a
general structure of the one-shot optimal differential detector
of DUSTM in the ML sense over the considered channel
model. Simplified detectors under certain constraints are then
discussed. For notation brevity, we define γ0 = Es/N0 as
the total transmit SNR, and define γmn = εmσ2

mnγ0 as the
SNR on the branch between transmit antenna m and receive
antenna n, for 1 ≤ m ≤ M and 1 ≤ n ≤ N . In our high
SNR assumption, all γmn’s approach infinity as γ0 → ∞, but
the ratios between one another are kept constant and finite.
We also omit the time index k in the data matrix D[k] and
rewrite S[k − 1] as S−1 hereafter as only one data matrix is
processed at one time.

A. ML Detection of a General Constellation

Define Y =
[
YT [k − 1], YT [k]

]T
. Given D and S−1,

it can be shown easily that the column vectors of the
sufficient statistics Y, denoted as yn for n = 1, . . . , N ,
are mutually independent Gaussian vectors with zero mean
and covariance (see (3) at top of next page). Here, Kni’s,
for i = 0, 1 and n = 1, . . . , N , are M × M diagonal
matrices defined as Kn0 = diag{γ1n, . . . , γMn} and Kn1 =
diag{ρ1nγ1n, . . . , ρMnγMn}. Applying the formula for the
determinant of a partitioned matrix [23], we can show that
the determinant of the covariance matrix Λn is independent
of the data matrix D and the previous code matrix S−1. The
inverse of Λn, however, in general depends not only on D, but
also on S−1. Using the Sherman-Morrison-Woodbury formula
for the inverse of the matrix of the form A + BCD [23] and
utilizing the diagonal structure of Kni, we obtain the inverse
of Λn as

(Λn)−1 = 1
N0

I2M − 1
N0

S̃
[

Cn0 Cn1

Cn1 Cn0

]
︸ ︷︷ ︸

C̃n

S̃H , (4)

where matrices Cni, for i = 0, 1 and n = 1, . . . , N , are also
diagonal, whose m-th diagonals, for m = 1, . . . , M , are given
by

[
Cn0

]
m

=
γmn[1 + γmn(1 − ρ2

mn)]
(1 + γmn)2 − (ρmnγmn)2

, (5)[
Cn1

]
m

=
γmnρmn

(1 + γmn)2 − (ρmnγmn)2
. (6)

The ML differential detector of D is to choose the candidate
D̂ ∈ V that maximizes the joint likelihood function of the
received signal matrix Y over all possible S−1. Note that the
dependence of ML detection on S−1 also arises in transmit-
correlated channels as mentioned in [24] and [25]. But no
explicit ML decision metric is given therein due to the lack
of closed-form expression for (Λn)−1. Applying (4), we have
the quadratic-form based ML differential detector of DUSTM

over i.n.i.d channels:

D̂ML = arg max
D∈V

max
S−1

N∑
n=1

yH
n S̃C̃nS̃Hyn. (7)

The complexity of the ML detector is proportional to the
product of the constellation size L and the total number of
all possible previous code matrices. For those constellations
with group structure, S−1 also belongs to the signal set V and
hence the complexity is in the order of L2. For constellations
without group structure, such as OSTBC, the total number of
possible S−1 can grow rapidly as L increases.

For the semi-identical channel [16] and with equal power
allocation, we have γmn = γn and ρmn = ρn, for all m.
It follows that both Cn0 and Cn1 become scaled identity
matrices. Therefore, the ML detector no longer depends on
S−1 and is simplified to

D̂ML,semi = argmax
D∈V

N∑
n=1

wnyH
n

[
I
D

] [
I DH

]
yn,

where wn = γnρn/[(1+γn)2−(ρnγn)2]. This detector differs
from the conventional detector for i.i.d channel [2] at the
weights wn’s only. The weights exploit the knowledge of
fading statistics and total transmit SNR, and are optimal for
any unitary constellation including OSTBC [16].

B. ML Detection of Cyclic Group Codes

It is shown in [6] that every full-diverse unitary constellation
having a group structure can be made equivalent to a cyclic
(also called diagonal in [2]) group for odd M , and either a
cyclic group or dicyclic group for even M . Therefore, the
cyclic group constellations are of particular interest to us.
Because of the diagonal structure inherent in cyclic groups,
the code matrix S−1 is always diagonal as long as the
initial matrix S[0] is diagonal, say IM . Since multiplication
commutes for diagonal matrices, we have S−1CniSH

−1 = Cni,
for all i and n. Therefore, the ML detector for cyclic group
codes reduces to:

D̂ML,c = arg max
D∈V

N∑
n=1

yH
n

[
I

Cn1D

] [
I Cn1DH

]
yn (8)

which can be further expressed as:

D̂ML,c = arg max
D∈V

ReTr
{
(Y[k − 1] � W)HDHY[k]

}
, (9)

where W is an M×N matrix with the (m, n)-th entry formed
by the m-th diagonal of Cn1 and repeated as:

wmn =
γmnρmn

(1 + γmn)2 − (ρmnγmn)2
. (10)

It is clear from (9) that the ML DD for cyclic group codes
resembles the conventional DD but applies a weight wmn to
the (m, n)-th element of Y[k − 1]. The resulting Hadamard
product Y[k−1]�W behaves as the equivalent channel matrix
as in coherent receivers.

Authorized licensed use limited to: Shanghai Jiao Tong University. Downloaded on May 26, 2009 at 21:06 from IEEE Xplore.  Restrictions apply.



1362 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 57, NO. 5, MAY 2009

Λn = E [ynyH
n ]

= N0

[
S−1 0
0 DS−1

]
︸ ︷︷ ︸

S̃

·
[

Kn0 Kn1

Kn1 Kn0

]
·
[

SH
−1 0
0 SH−1D

H

]
︸ ︷︷ ︸

S̃H

+ N0I2M . (3)

C. Asymptotically Optimal Detection of a General Constella-
tion in Static Channels

In static fading channels the channel coefficients are as-
sumed to remain unchanged over the duration of two trans-
mission blocks. Therefore it has ρmn = 1 for all m and n. In
the limit γmn → ∞ for all m and n, the matrices Cn0 and
Cn1 defined in (5) (6) all approach (1/2)IM . Applying these
into (7), we obtain the asymptotically optimal detector:

D̂AO = argmax
D∈V

N∑
n=1

yH
n

[
I
D

] [
I DH

]
yn. (11)

This is identical to the conventional DD [2]. Hence we
conclude that the conventional DD is suboptimal in i.n.i.d
time-varying channels but asymptotically optimal (high SNR)
in i.n.i.d static channels.

IV. ERROR PROBABILITY ANALYSIS

In this section, we derive the error performance of DUSTM
with two specific constellation designs: cyclic group codes
and orthogonal codes. Through the analysis, we obtain several
general findings that are applicable to an arbitrary DUSTM
design.

A. Pairwise Error Probability for Cyclic Group Codes

Since the exact bit or block error probability of a cyclic
group code V with L > 2 elements is usually not computable,
we resort to the union bound by summing up pairwise error
probabilities. In specific, the block error probability (BkEP)
for equiprobable elements is bounded by

Pe,UB =
1
L

L−1∑
i=0

L−1∑
j=0
j �=i

Pe,ij , (12)

where Pe,ij denotes the PEP of deciding in favor of data
matrix Dj given that Di is sent. In the following we derive
the exact expressions for Pe,ij and the asymptotics.

Based on the quadratic form of the ML and suboptimal
detectors given in (8) and (11) respectively, the PEP can be
expressed as

Pe,ij = P (zij < 0|Di) , (13)

where the pairwise decision variable zij is defined as

zij =
N∑

n=1

yH
n Ωij,nyn, (14)

with Ωij,n given by

Ωij,n =
[

0 Cn1(Di − Dj)H

Cn1(Di − Dj) 0

]
(15)

for ML detection and

Ωij,n = Ωij =
[

0 (Di − Dj)H

(Di − Dj) 0

]
, ∀n (16)

for conventional detection. Since each vector yn is inde-
pendent and zero-mean complex Gaussian distributed, the
pairwise decision variable zij is a quadratic form of Gaussian
vectors. Therefore, the evaluation of PEP can be carried out by
using the well-established techniques in, e.g., [24, Appendix
A]. We summarize the results in the following proposition.

Proposition 1: The exact pairwise error probability Pe,ij

of differential cyclic group codes over i.n.i.d time-varying
Rayleigh fading channels is (17) at the bottom of the page,
where

amn =
(ρmnγmn)2

(1 + γmn)2 − (ρmnγmn)2
dij,m (18)

with dij,m being the m-th diagonal entry of the difference
matrix (Di − Dj)(Di − Dj)H , and

bmn =
{

1, ML detector
wmn in (10), conv. detector . (19)

In the case of ML differential detection, an alternative expres-
sion is given by

Pe,ij =
1
π

∫ π/2

0

N∏
n=1

M∏
m=1

(
1 +

amn

4 sin2 θ

)−1

dθ. (20)

Proof: See Appendix A.
Although the expression for Pe,ij is exact and in closed

form, it does not offer much insight on the effects of channel
parameters. Therefore, useful asymptotic bounds are desirable.
We first consider the asymptotic Pe,ij over static channels
with ρmn = 1, for all m, n. Then we conduct the error floor
analysis in time-varying channels. The results are summarized
in the following two corollaries.

Pe,ij = −
∑

1≤k≤M
1≤l≤N

Res

⎧⎨
⎩ 1

s
∏M

m=1

∏N
n=1amn

[
1
4 + 1

amn
− ( s

bmn
− 1

2

)2] , s = bkl

(
1
2

+
√

1
4

+
1

akl

)⎫⎬
⎭ (17)
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Corollary 1: The asymptotic PEPs of differential cyclic
group codes at high SNR with ML and conventional differen-
tial detection over i.n.i.d static Rayleigh fading channels are
the same and given by

lim
γ0→∞

Pe,ij =

(
2MN − 1

MN

)( M∏
m=1

dij,m

)−N (γgm

2

)−MN

,

(21)

where γgm is the geometric mean of {γmn}, given by

γgm =
(∏N

n=1

∏M
m=1 γmn

)1/MN
, and

(
2MN−1

MN

)
denotes the

binomial coefficient.
Proof: Assuming static fading channels with ρmn = 1

and taking the limit γ0 → ∞, one finds from (18) and (10)
that amn → γmndij,m/2 and wmn → 1/2. As a result, the
MN poles, where the residues are evaluated in Proposition 1,
all approach the constant 1 for ML DD and the constant 1/2
for conventional DD. Using the residue equation of a function
f(x) at a pole p of multiplicity v

Res [f(x), p] =
1

(v − 1)!
lim
x→p

dv−1

dxv−1
[(x − p)vf(x)] (22)

and applying the formula

dm

dxm
(x + p)−k =

(−1)m(m + k − 1)!
(k − 1)!

(x + p)−(m+k) (23)

in (17), we arrive at the asymptotic results in (21) for both
ML and conventional DD.

Corollary 1 leads to several insights. First, the result that
the asymptotic PEPs of ML and conventional DD are the
same is consistent with the finding in Section III-C that the
conventional DD is in fact asymptotically optimal for a general
constellation without assuming a specific signal structure.
Second, the traditional diversity product design criterion1 for
i.i.d channels [1], [2] still applies to i.n.i.d channels. That is,
the minimum of

∏M
m=1 dij,m over all distinct pairs (Di,Dj)

should be maximized. Using the arithmetic-geometric-mean
inequality (i.e. γgm ≤ γam = 1/MN

∑N
n=1

∑M
m=1 γmn,

where the equality holds if and only if γmn’s are all the same),
we can see that the non-identical channel distribution will de-
grade the error performance compared with the identical case
if the total received SNR is kept the same. Furthermore, after
rewriting γgm as γ0(

∏M
m=1 εm)1/M (

∏N
n=1

∏M
m=1σ

2
mn)1/MN ,

where εm is the power allocation coefficient defined in (1)
subject to the constraint

∑M
m=1 εm = M , it follows that γgm

is maximized when εm = 1 for all m. Therefore, equal power
allocation is asymptotically optimal in static channels.

1Assume the full-rank criterion is already satisfied.

Corollary 2: The pairwise error floor of differential cyclic
group codes with ML differential detection over i.n.i.d time-
varying Rayleigh fading channels is independent of the un-
equal average channel gains {σ2

mn} but depends on the fading
correlation coefficients {ρmn} only. It is given by (24) at the
bottom of the page. In the case where ρm,n = ρ and ρ ≈ 1
but ρ �= 1, the pairwise error floor is simplified as

lim
γ0→∞

ρmn=ρ≈1

Pe,ij =

(
2MN − 1

MN

)( M∏
m=1

dij,m

)−N (
ρ2

1 − ρ2

)−MN

.(25)

Proof: The proof of the first equation in the
corollary is straightforward by observing that amn →
ρ2

mndij,m/(1 − ρ2
mn) when γ0 → ∞ in (17) (with bmn = 1).

If ρm,n = ρ and ρ ≈ 1 but ρ �= 1, the MN positive poles
all approach 1/2. Using the formulas (22) and (23) again, we
prove the second equation in the corollary.

Corollary 2 concludes that the irreducible error floors
achieved over i.n.i.d channels (with ML detection) and tra-
ditional i.i.d channels are the same, as long as their fade rates
are the same (ρm,n = ρ, ∀m, n). Moreover, the error floor
decreases exponentially with MN when ρ is very close to
but not equal to one. This condition on ρ typically holds if
the normalized Doppler frequency of the channel is much less
than one.

B. Bit Error Probability for Orthogonal Codes

In this subsection we derive the error performance of
differential OSTBC. Only the conventional DD and static
channels are considered. The analysis for time-varying fading
or ML detection is so far not tractable. Since the data matrix
D is a linear combination of P information symbols as
mentioned in Section II, the differential detector (11) reduces
to P independent symbol-by-symbol detectors. The details are
given in [5] or [16, eq.(12)]. Hence, instead of PEP, BEP is
derived.

As shown in [16, eq.(15)-(17)], the BEP conditioned on
symbol sp is the same for all p, and can be expressed as

Pb(α) = P (zp(α) < 0|sp = 1), (26)

where the decision phasor zp(α) is defined as

zp(α) =
N∑

n=1

yH
n Ωpyn (27)

lim
γ0→∞
ρmn<1

Pe,ij = −
∑

1≤k≤M
1≤l≤N

Res

⎧⎨
⎩ 1

s
∏M

m=1

∏N
n=1

ρ2
mndij,m

1−ρ2
mn

[
1
4 + 1−ρ2

mn

ρ2
mndij,m

− (s − 1
2

)2] , s =
1
2

+

√
1
4

+
1 − ρ2

kl

ρ2
kldij,k

⎫⎬
⎭ (24)

Pb(α) = −
∑

1≤k≤M
1≤l≤N

Res

⎧⎨
⎩ 1

s
∏N

n=1

∏M
m=1

[
1 + 2cγmns − (1 + 2γmn)s2

] , s =
cγkl

1 + 2γkl

(
1 +

√
1 +

1 + 2γkl

c2γ2
kl

)⎫⎬
⎭(28)
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with the Hermitian matrix Ωp given by

Ωp =
[

0 cosαΦH
p + j sinαΨH

p

cosαΦp − j sin αΨp 0

]
,

and α is some angle that depends on the symbol modulation
scheme. For BPSK, the exact BEP is obtained by letting α =
0, and for QPSK with Gray mapping we have α = −π/4.

Proposition 2: The exact bit error probability Pb(α) of
differential OSTBC over i.n.i.d static Rayleigh fading channels
with conventional differential detection is (28) (see the bottom
of the previous page), where c = cosα/

√
P .

Proof: See Appendix B
At high SNR, all the MN positive poles, where the residues

are evaluated, approach the constant c. Therefore, we obtain
the asymptotics of Pb(α) as follows by applying the definition
of residue as in the proof of Corollary 1.

Corollary 3: The asymptotic BEP of differential OSTBC
over i.n.i.d static Rayleigh fading channels with conventional
differential detection is

lim
γ0→∞Pb(α) =

(
2MN − 1

MN

)(
2 cos2 α

P
γgm

)−MN

, (29)

where γgm is the geometric mean of {γmn}.
The implications in Corollary 3 are the same as those

in Corollary 1. Therefore, we readily extend the following
remarks to the general DUSTM.

Remarks: (1) Non-identical fading degrades the error perfor-
mance compared with the identical case given the same total
received SNR; (2) Equal power allocation is asymptotically
optimal in i.n.i.d static fading channels.

V. TRANSMIT POWER CONTROL

Given the unequal channel gain distribution among different
transmit antennas, it is intuitive to use power control to
improve the error performance, especially when the total
transmit power is small. To simplify investigation, we consider
static channels only in this section. Moreover, as shown in
Section VI and [16], the conventional detector performs almost
the same as the ML detector in i.n.i.d static fading channels.
Hence, we assume conventional DD here.

Both the exact PEP in Proposition 1 for cyclic group codes
and the exact BEP in Proposition 2 for orthogonal codes
are difficult to minimize directly. We resort to minimizing a
simple but useful approximate bound of them. In the following
we present the derivation of transmit power control for the
two codes separately for the ease of presentation, though the
approaches are very similar.

A. Power Control for Cyclic Group Codes

The pairwise decision variable in (14) for the conventional
DD can be rewritten as

zij = 2ReTr{Y[k]HEY[k − 1]} (30)

where E = Di − Dj . Given that Di is sent, substituting (2)
into (30) yields

zij = 2ReTr{EsĤHDH
i EĤ}

+ 2ReTr{
√

EsĤHDH
i EW[k − 1]}︸ ︷︷ ︸

η1

+ 2ReTr{
√

EsWH [k]EĤ}︸ ︷︷ ︸
η2

+ 2ReTr{WH [k]EW[k − 1]}︸ ︷︷ ︸
η3

, (31)

where Ĥ = S−1Σ1/2H with H being the channel matrix in
static fading. It can be easily shown that, conditioned on Ĥ,
the noise terms η1 and η2 are independent and real-valued
zero-mean Gaussian variables with variance 2N0Es‖EĤ‖2

for each. By neglecting the second-order noise term η3, which
has diminishing effect at high SNR (i.e., Es/N0  1),
and noting DH

i E + EHDi = EHE, the pairwise decision
variable zij can be approximated as a Gaussian variable with
mean Es‖EĤ‖2 and variance 4N0Es‖EĤ‖2. As a result, the
conditional probability of zij < 0 can be expressed in the form
of standard Q-function [26]. Further, applying the inequality
Q(x) ≤ 1

2 exp (−x2/2), we obtain the Chernoff bound of the
approximate PEP as

Pe � 1
2
E
[
exp

(
−γ0

8
‖EĤ‖2

)]
.

Obtaining the distribution of ‖EĤ‖2 is difficult in general if
E is the difference matrix of an arbitrary unitary constellation.
Fortunately, by utilizing the diagonal structure of cyclic group
codes, it is clear that ‖EĤ‖2 can be expressed as a weighted
sum of absolute squares of MN i.i.d complex Gaussian
variables with weights given by εmσ2

mndij,m. Hence, the
above expectation can be evaluated as

Pe,ij � 1
2

N∏
n=1

M∏
m=1

(
1 +

γ0εmσ2
mndij,m

8

)−1

. (32)

We now find the optimal power allocation coefficients εm’s
to minimize the bound in (32) for a dominant error pair,
which consequently provides a good result in minimizing the
overall block error probability. The dominant error pair of a
cyclic group code is the data matrix pair that has the small-
est

∏M
m=1 dij,m [2], denoted as ζ = min

0≤i<j<L

∏M
m=1 dij,m.

However, there can be multiple pairs in the code that result
in the same ζ, and they may differ dramatically in dij,m, for
m = 1, . . . , M . Take the cyclic group code with M = 4
and L = 16 for example, given by V4,16 = {Dk =
diag(ejkπ/8, ej3kπ/8, ej5kπ/8, ej7kπ/8), k = 0, . . . , 15} [27,
Table I]. The data matrix pair (D0,D1) is a dominant error
pair and it has d1 = 0.1522, d2 = 1.2346, d3 = 2.7654 and
d4 = 3.8478. On the other hand, the pair (D0,D3) is also
a dominant error pair but it has d1 = 1.2346, d2 = 3.8478,
d3 = 0.1522, and d4 = 2.7654. The sets of power allocation
coefficients minimizing the two pairwise error probabilities
are obviously different. To overcome this problem, we take the
mean of dij,m over all dominant error pairs for each m, denote
it as d̄m, and replace all dij,m with it in the PEP bound (32).
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Then, by using the monotonic property of logarithm function,
the power allocation problem can be formulated as

max∑
M
m εm=M

N∑
n=1

M∑
m=1

log
(

1 + εm
σ2

mnd̄mγ0

8

)
. (33)

In the case of N = 1, we obtain the water-filling based
closed-form expression for the optimal power control as [28]

εm =
(

μ − 8
σ2

md̄mγ0

)+

, (34)

where (x)+ = max{0, x}, and the Lagrange multiplier μ can
be determined by the constraint

∑M
m=1 εm = M .

If there are N > 1 number of receive antennas, closed-
form expressions of optimal power coefficients are difficult to
find. Here we propose a suboptimal approach. Applying the
inequality [29, eq.(25)]

N∏
i=1

(1 + xi) ≥ (1 + xgm)N ,

where xgm = (
∏N

i=1 xi)1/N , we can reformulate (33) as

max∑
M
m εm=M

M∑
m=1

log

(
1 + εm

σ2
m,gmd̄mγ0

8

)
,

where σ2
m,gm = (

∏N
n=1 σ2

mn)1/N . Hence, the solution in (34)
still applies after replacing σ2

m with σ2
m,gm, and is given by

εm =

(
μ − 8

σ2
m,gmd̄mγ0

)+

. (35)

In summary, the proposed transmit power control aims
to minimize the Chernoff bound of an approximate PEP of
dominant error pairs in the constellation. It has a water-filling
structure, and hence inherits the two distinguishing properties
of water-filling principle. First, when the total transmit power
is low, the transmit antennas with smaller geometric mean
of average channel gains should be turned off. Second, when
the total transmit power is high enough, the power tends to
be equally distributed among all the antennas. The second
property is consistent with the finding from Section IV that
equal power allocation is asymptotically optimal.

B. Power Control for Orthogonal Codes

The transmit power allocation for DUSTM with orthogonal
codes is similar to that for DUSTM with cyclic group codes.
The decision phasor zp(α) (27) can also be expressed as
(31), except that E should be defined as E = cosαΦH

p +
j sin αΨH

p . Using the orthogonal code structure, we can easily
show that the distribution of zp(α) can be approximated
as Gaussian with mean 2 cos(α)Es√

P
‖Σ1/2H‖2 and variance

4EsN0‖Σ1/2H‖2. Thus, we obtain the Chernoff bound of the
approximate BEP for differential OSTBC as

Pb(α) � 1
2

N∏
n=1

M∏
m=1

(
1 +

cos2(α)
2P

εmσ2
mnγ0

)−1

.
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Fig. 1. PEP performance of differential cyclic group code V2,4 over the
dominant error pair at M = 2 transmit and N = 1 receive antenna.

Correspondingly, a water-filling based sub-optimal power con-
trol that minimizes the bound is given by

εm =
(

μ − 2P

cos2(α)σ2
m,gmγ0

)+

. (36)

VI. NUMERICAL RESULTS

In this section we present some numerical examples to con-
firm our analytical findings in previous sections. We first verify
the error probability analysis using a system with M = 2
transmit antennas and N = 1 or N = 2 receive antennas. Then
we demonstrate the performance of the proposed transmit
power allocation in a system with M = 4 transmit antennas
and N = 1 receive antenna.

In our first set of examples, we assume equal fade rates on
all transmit-receive antenna pairs and illustrate the effects of
non-identical channel gain distribution. The unequal average
channel gains are generated using the Kronecker model [16].
In specific, the MN × MN diagonal matrix Δ with σ2

mn

on the [(n − 1)M + m]-th diagonal is decomposed as Δ =
ΔT ⊗ΔR, where ΔT and ΔR are, respectively, the M ×M
and N × N diagonal matrices inducing non-identical fading
parameters at the transmitter and receiver. The sum of the
average channel gains is normalized so that Tr{ΔT } = M
and Tr{ΔR} = N . In the system with two transmit antennas,
we specify ΔT = diag(1

5 , 9
5 ). For one receive antenna, the

average channel gains are given by σ2
1 = 1/5 and σ2

2 = 9/5.
For two receive antennas, we let ΔR = diag(1

5 , 9
5 ), and the

set of average channel gains is given by {σ2
11 = 1/25, σ2

12 =
σ2

21 = 9/25, σ2
22 = 81/25}.

In Figs. 1-3, we show the performance of differential cyclic
group codes. The exemplary cyclic group code for M = 2
and L = 4 at rate 1-bit/s/Hz [27, Table I], denoted as V2,4, is
chosen. Figs. 1 and 2 show the analytical PEP of the dominant
error pair (D0, D1) using one and two receive antennas,
respectively. The exact PEP results over i.i.d channels are also
plotted for reference, which are obtained using (20) by letting
σ2

mn = 1, ∀m, n. Several useful observations can be made
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Fig. 2. PEP performance of differential cyclic group code V2,4 over the
dominant error pair at M = 2 transmit and N = 2 receive antennas.
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Fig. 3. BkEP performance of differential cyclic group code V2,4 at M = 2
transmit and N = 2 receive antennas in time-varying fading with fdTs =
0.02 (ρ = 0.98427).

from the two figures. First, the pairwise error performance
achieved using the conventional DD is almost the same as that
achieved by the ML detector at all SNR when ρ = 1 as well
as at low SNR in time-varying fading with ρ = 0.99. Second,
the ML detector considerably reduces the pairwise error floor
in fast fading compared with the conventional detector. In
particular, the pairwise error floor of the ML detector with
two receive antennas is two order of magnitude lower than
that of the conventional detector. Moreover, the error floors
approach those in i.i.d channels and match very well with
the flat lines predicted by the analytical result in (24). This
observation confirms our analytical finding from Corollary 2.
From the figures we also observe that the simple asymptotic
PEP bound (21) is very tight when γ0 is large enough. Finally,
compared with i.i.d channels, the non-identical channel gain
distribution degrades the PEP performance. This confirms the
analytical finding from Corollary 1.
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Fig. 4. BEP performance of differential OSTBC with QPSK modulation at
M = 2 transmit and N = 2 receive antennas in static fading.

The overall BkEP performance of this cyclic group code
obtained via simulation is shown in Fig. 3 and compared
with the BkEP union bound obtained analytically using (12).
The block-wise time-varying fading channel is generated
using Jakes model with autocorrection function 2Rmn[k] =
σ2

mnJ0(2πfdTsMk), where J0(·) is the zeroth order Bessel
function of the first kind and fdTs is the normalized Doppler
frequency. In our simulation we set fdTs = 0.02, which results
in ρ = 0.98427. It is observed that the analytical BkEP union
bound serves as a tight upper bound on the actual BkEP with
both conventional and ML detectors. This further validates our
theoretical analysis on the exact PEP in Proposition 1.

The BEP results of differential OSTBC over the i.n.i.d
channel with two transmit and two receive antennas are
depicted in Fig. 4. The orthogonal code for two transmit
antennas with P = 2 and QPSK modulation at rate 2-
bit/s/Hz is used. The analytical BEPs are from (28) and are
validated by simulations. For the i.s.i.d channel, the non-
identical fading occurs at the receiver side only with ΔT = I2

and ΔR = diag(1
5 , 9

5 ). Its exact BEP curve is obtained from
[16, eq.(27)]. The exact BEP for i.i.d channels is from [30]. As
expected, the i.n.i.d channel yields the worst performance and
the best performance is achieved over i.i.d channels. Note that
this conclusion only holds when the sum of average channel
gains is the same.

Next, we illustrate the effects of unequal channel fluctuation
rates among different signalling branches on the error floors
as γ0 → ∞. Fig. 5 shows the irreducible dominant PEP of
the differential cyclic group code V2,4 in the system with two
transmit antennas and one receive antenna. It is observed that
under the same averaged fading correlation coefficient, i.e.,
ρ = (ρ1 + ρ2)/2, the error floor reduces as the difference on
the fade rates between the two antennas increases.

In all the above figures, equal power allocation is assumed.
We now illustrate in Figs. 6 and 7 the performance of the
proposed transmit power allocation in a system with four
transmit antennas and one receive antenna. An exponentially
decaying average channel gain profile is used and character-
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Fig. 5. Dominant pairwise error floor of differential cyclic group code V2,4
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Fig. 6. BkEP performance of differential cyclic group code V4,16 with
transmit power control at M = 4 transmit and N = 1 receive antenna in
static fading.

ized by σ2
m = e−δ(m−1), for 1 ≤ m ≤ 4, in which δ ≥ 0 is

the decay factor.
Fig 6 shows the simulated BkEP of the differential cyclic

group code V4,16 with M = 4 and L = 16 at rate 1-bit/s/Hz
[27, Table I]. The conventional detector is employed. It is seen
that the proposed power allocation (34) cannot outperform
equal power allocation when the average channel gains are
only slightly unbalanced with δ = 1. On the other hand,
for highly unbalanced average channel gains with δ = 3,
the water-filling based power allocation can save 2 ∼ 3 dB
total transmit power at a given BkEP around 10−2. But the
gain diminishes as the target BkEP reduces. This observation
confirms our analytical finding in Section IV that equal power
allocation is asymptotically optimal.

The BEP performance of the differential orthogonal code
with M = 4, P = 3 and QPSK modulation at rate 1.5-bit/s/Hz
based on the analysis (28) is presented in Fig. 7. We see that
the gain of the proposed power allocation (36) over equal
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Fig. 7. BEP performance of differential OSTBC with transmit power control
at M = 4 transmit and N = 1 receive antenna in static fading.

power allocation is more significant than in the cyclic group
code case. This is because the power allocation for orthogonal
codes aims at minimizing the bound of the overall bit error
probability directly, whereas the one for cyclic group codes is
obtained only through minimizing the bound of the dominant
pairwise error probability with certain approximations.

VII. CONCLUSION

The effects of non-identical fading statistics in MIMO chan-
nels on the performance of DUSTM were investigated. Con-
trary to the detectors for the traditional i.i.d fading model, we
found that the ML differential detector of DUSTM generally
requires joint optimization of the current data matrix and the
previously transmitted signal matrix. However, for DUSTM
with cyclic group design, the ML detector is much simplified
and is similar to the conventional detector but applies fading
statistics-dependent weights. Based on the analysis of exact
and asymptotic error probability for both cyclic group codes
and orthogonal codes, we obtained several useful findings.
Along with numerical results, we conclude that while the ML
detector can significantly reduce the error floor over rapidly
time-varying fading channels, the conventional detector is
near-optimal at all SNR in static fading and low SNR in time-
varying fading. In addition, the non-identical channel gain
distribution degrades the error performance compared with
the identical distribution for a same total received SNR. To
exploit the non-identical fading parameters at the transmitter,
we also presented a water-filling based transmit power control.
It was shown to provide considerable improvement in error
probability at low to moderate SNR region when the average
channel gains are highly unbalanced. At sufficiently high SNR,
equal power allocation is still optimal.

APPENDIX A
PROOF OF PROPOSITION 1

By applying the result in [31], the characteristic function
(CF) of the pairwise decision variable zij in the quadratic
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form of Gaussian vectors (14) can be written as [26]

φzij (s) = E [e−szij
]

=
1∏N

n=1 det(I + sΛnΩij,n)
.(37)

Substituting (3) and (15) (or (16)) into (37), we obtain

φzij (s) =

(
N∏

n=1

M∏
m=1

amn

[
1
4

+
1

amn
−
( s

bmn
− 1

2

)2
])−1

,

(38)
where amn and bmn are given in (18) and (19), respectively.
After inverting the Laplace transform, we express Pe,ij defined
in (13) as [24, Appendix A]

Pe,ij =
1

2πj

∫ j∞+η

−j∞+η

φzij (s)
s

ds, (39)

where η > 0 is within the region of convergence. This integral
can be solved using Cauchy’s theorem in terms of residues:

Pe,ij = −
∑
pi>0

Res
[
φzij (s)

s
, s = pi

]
, (40)

where pi’s are all the positive poles of φzij (s). Finally, sub-
stituting (38) into (40) yields Pe,ij expressed more explicitly
in (17).

In the case of ML differential detection with bmn = 1, we
can choose η = 1/2 for the integration contour in (39). Then,
with a change of variables, we obtain

Pe,ij =
1

2πj

∫ j∞

−j∞

· ds

(s + 1
2 )
∏M

m=1

∏N
n=1amn

(
1
4 + 1

amn
− s2

) .

(41)

Now we let s = jw in (41) and the integration becomes along
the real axis. By further letting w = tan θ/2, an alternative
expression of Pe,ij in the form of finite integral is obtained in
(20).

APPENDIX B
PROOF OF PROPOSITION 2

The CF of the quadratic form of Gaussian vectors zp(α) in
(27) is given by

φzp(s) = E[e−sZp(α)
]

=
1∏N

n=1

∏K
i=1 (1 + sλn,i)un,i

.

where {λn,i}K
i=1 are the distinct eigenvalues of ΛnΩp with

multiplicity of {un,i}K
i=1. Thus, the BEP in (26) can be

obtained as [24]

Pb(α) = −
∑

λn,i<0

Res

[
φzp(s)

s
, s = − 1

λn,i

]
, (42)

where the residues are evaluated at the positive poles of
φzp(s)/s, that is −1/λn,i with λn,i being negative. Using a
similar approach as in the proof [25, Corollary 1], we can
show that the eigenvalues of ΛnΩp are determined by the p-
th information symbol sp = ejθp , and do not rely on the other

symbols in the data matrix D, nor the previously transmitted
signal matrix S−1. They are:

λn,i =
γmn cos(α + θp)√

P

±
√

γ2
mn cos2(α + θp)

P
+ 2γmn + 1 (43)

where λn,i < 0 for 1 ≤ i ≤ M and λn,i > 0 for M + 1 ≤
i ≤ 2M . Substituting (43) into (42) and after some algebra,
we obtain the closed-form expression of Pb(α) in Proposition
2.
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