
Security Reductions of the Second Round SHA-3 Candidates

Elena Andreeva, Bart Mennink and Bart Preneel

Dept. Electrical Engineering, ESAT/COSIC and IBBT
Katholieke Universiteit Leuven, Belgium

{elena.andreeva, bart.mennink}@esat.kuleuven.be

Abstract. In 2007, the US National Institute for Standards and Technology announced a call for the
design of a new cryptographic hash algorithm in response to vulnerabilities identified in existing hash
functions, such as MD5 and SHA-1. NIST received many submissions, 51 of which got accepted to the
first round. At present, 14 candidates are left in the second round. An important criterion in the selection
process is the SHA-3 hash function security and more concretely, the possible security reductions of
the hash function to the security of its underlying building blocks. While some of the candidates are
supported with firm security reductions, for most of the schemes these results are still incomplete. In
this paper, we compare the state of the art provable security reductions of the second round candidates.
We discuss all SHA-3 candidates at a high functional level, and analyze and summarize the security
reduction results. Surprisingly, we derive some security bounds from the literature, which the hash
function designers seem to be unaware of. Additionally, we generalize the well-known proof of collision
resistance preservation, such that all SHA-3 candidates with a suffix-free padding are covered.

1 Introduction

Hash functions are a building block for numerous cryptographic applications. In 2004 a series of
attacks by Wang et al. [57,58] have exposed security vulnerabilities in the design of the most widely
adopted and deployed SHA-1 hash function. As a result, the US National Institute for Standards
and Technology (NIST) recommended the replacement of SHA-1 by the SHA-2 hash function family
and announced a call for the design of a new SHA-3 hashing algorithm. The SHA-3 hash function
must allow for message digests of length 224, 256, 384 and 512 bits, it should be efficient, and
most importantly it should provide an adequate level of security. In the current second round, 14
candidate hash functions are still in the race for the selection of the SHA-3 hash function. These
candidates are under active evaluation by the cryptographic community. As a result of the per-
formed comparative analysis, several classifications of the SHA-3 candidates, mostly focussed on
hardware performance, appeared in the literature [29,56,28,38]. A classification based on the spec-
ified by NIST security criteria is however still due.

NIST Security Requirements. NIST specifies a number of security requirements [48] to be sat-
isfied by the future SHA-3 function: (i) at least one variant of the hash function must securely
support HMAC and randomized hashing. Furthermore, for all n-bit digest values, the hash function
must provide (ii) preimage resistance of approximately n bits, (iii) second preimage resistance
of approximately n−L bits, where the first preimage is of length at most 2L blocks, (iv) collision
resistance of approximately n/2 bits, and (v) all variants must be resistant to the length-extension
attack. Finally, (vi) for any m ≤ n, the hash function specified by taking a fixed subset of m bits
of the function’s output is required to satisfy properties (ii)-(v) with n replaced by m.

Our Contribution. In this work we provide a survey of the 14 remaining SHA-3 candidates, in
which we compare their security reductions. More concretely, we consider preimage, second preim-
age and collision resistance (security requirements (ii)-(iv)) for the n = 256 and n = 512 variants.
Most of our security analysis is realized in the ideal model, where one or more of the underlying

integral building blocks (e.g., the underlying block cipher or permutation(s)) are assumed to be
ideal, i.e. random primitives. Additionally, to argue collision security we extend the standard proof
of Merkle-Damg̊ard collision resistance [23,46] to cover all SHA-3 candidate hash functions with a
suffix-free padding (App. A). Notice that the basic Merkle-Damg̊ard proof does not suffice in the
presence of a final transformation and/or a chopping.
Furthermore, we consider the indifferentiability of the candidates. Informally, indifferentiability
guarantees that a design has no structural design flaws [22], and in particular (as formally proven
in App. B) an indifferentiability result provides upper bounds on the advantage of finding preim-
ages, second preimages and collisions.
Our main contribution consists in performing a comparative survey of the existing security results
on the 14 hash function candidates and results derivable from earlier works on hash functions, and
suggesting possible research directions aimed at resolving some of the identified open problems.
Section 2 briefly covers the notation, and the basic principles of hash function design. In Sect. 3,
we consider all candidates from a provable security point of view. We give a high level algorithmic
description of each hash function, and discuss the existing security results. All results are summa-
rized in Table 1. We conclude the paper with Sect. 4 and give some final remarks on the security
comparison.

2 Preliminaries

For a positive integer value n ∈ N, we denote by Zn2 the set of bit strings of length n, and by (Zn2)∗

the set of strings of length a positive multiple of n bits. We denote by Z∗2 the set of bit strings of
arbitrary length. If x, y are two bit strings, their concatenation is denoted by x‖y. By |x| we denote
the length of a bit string x, and for m,n ∈ N we denote by 〈m〉n the encoding of m as an n-bit
string. The function chopn(x) chops off n bits of a bit string x.
Throughout, we use a unified notation for all candidates. The value n denotes the output size of
the hash function, l the size of the chaining value, and m the number of message bits compressed
in one iteration of the compression function. A padded message is always parsed as a sequence of
k ≥ 1 message blocks of length m bits: (M1, . . . ,Mk).

2.1 Security Notions

In this section we investigate the security of the hash functions in the ‘ideal model’ and the more
classical ‘generic’ security.

Security in the ideal model. In the ideal model, a compressing function F (either on fixed
or arbitrary input lengths) that uses one or more underlying building blocks is viewed insecure if
there exists a successful information-theoretic adversary that has only query access to the idealized
underlying primitives of F . The complexity of the attack is measured by the number of queries
q to the primitive made by the adversary. In this work it is clear from the context which of the
underlying primitives is assumed to be ideal. The three main security properties required from
the SHA-3 hash function are preimage, second preimage and collision resistance. For each of these
three notions, with Advatk

F , where atk ∈ {pre, sec, col}, we denote the maximum advantage of an
adversary to break the function F under the security notion atk. The advantage is the probability
function taken over all random choices of the underlying primitives, and the maximum is taken
over all adversaries that make at most q queries to their oracles.
Additionally, we consider the indifferentiability of the SHA-3 candidates. The indifferentiability

framework introduced by Maurer et al. [45] is an extension of the classical notion of indistinguisha-
bility, and ensures that a hash function has no structural defects. We denote the indifferentiability
security of a hash functionH by Advpro

H , maximized over all distinguishers making at most q queries
of maximal length K ≥ 0 message blocks to their oracles. We refer to [22] for a formal definition. An
indifferentiability bound guarantees security of the hash function against specific attacks. In par-
ticular, one can obtain a bound on Advatk

H , for any security notion atk: Advatk
H ≤ Pratk

RO +Advpro
H ,

where Pratk
RO denotes the success probability of a generic attack against H under atk. This bound

is proven in Thm. 2 (App. B).

Generic security. The generic collision security in the context of this work deals with analyz-
ing the collision resistance of hash functions in the standard model. A hash function H is called
generically (t, ε) collision resistant if no adversary running in time at most t can find two different

messages M,M ′ such that H(M) = H(M ′) with advantage more than ε. We denote by Advgcol
H

the generic collision resistance security of the function H, maximized over all ‘efficient’ adversaries.
We refer the reader to [51,50,3] for a more formal discussion.
To argue generic collision security of the hash function H (as domain extenders of fixed input
length compression functions) we use the composition result of [23,46] and extend it to a wider
class of suffix-free hash functions (App. A). This result concludes the collision security of the hash
function H assuming collision security guarantees from the underlying compression functions. We
then translate ideal model collision security results on the compression functions via the latter
composition to ideal model collision results on the hash function (expressed by Advcol

H). A generic
collision result, generally speaking, applies to a wider class of schemes for which no bounds on the
collision security of the underlying compression functions is known, e.g. for BLAKE and BMW.

If a compressing function F outputs a bit string of length n, one expects to find collisions with
high probability after approximately 2n/2 queries (due to the birthday attack). Similarly, (second)
preimages can be found with high probability after approximately 2n queries1. Moreover, finding
second preimages is provably harder than finding collisions, and similar for preimages (conditionally)
[51]. Formally, we have Ω(q2/2n) = Advcol

F = O(1), Ω(q/2n) = Advsec
F ≤ Advcol

F , and Ω(q/2n) =
Advpre

F ≤ Advcol
F + ε, where ε is negligible if F is a variable input length compressing function.

In the remainder, we will consider these bounds for granted, and only include security results that
improve either of these bounds. A bound is called tight if the lower and upper bound are the same
up to a constant factor, and optimal if the bound is tight with respect to the original lower bound.

2.2 Compression Function Design Strategies

A common way to build compression functions is to base it on a block cipher [49,17,54], or on
a (limited number of) permutation(s) [16,52,53]. Preneel et al. [49] analyzed and categorized 64
block cipher based compression functions. Twelve of them are formally proven secure by Black et
al. [17]. These results have been recently generalized by Stam [54]. Interestingly, the latter result
implies security bounds for some compression functions that do not fit in the PGV-model, like
ECHO, Hamsi and SIMD. Throughout, by ‘PGVx’ we denote the xth type compression function
of [49]. We note that PGV1, PGV3 and PGV5 are better known as the Matyas-Meyer-Oseas, the
Miyaguchi-Preneel and the Davies-Meyer compression functions, respectively.

1 Kelsey and Schneier [37] describe a second preimage attack on the Merkle-Damg̊ard hash function that requires
at most approximately 2n−L queries, where the first preimage is of length at most 2L blocks. This attack does,
however, not apply to all SHA-3 candidates. In particular, wide-pipe designs remain mostly unaffected due to their
increased internal state [37].

In the context of permutation based compression functions, Black et al. [16] analyzed 2l- to l-bit
compression functions based on one l-bit permutation, and proved them insecure. This result has
been generalized by Rogaway and Steinberger [52], Stam [53] and Steinberger [55] to compression
functions with arbitrary input and output sizes, and an arbitrary number of underlying permu-
tations. Their bounds indicate the number of queries required to find collisions or preimages for
permutation based compression functions.

2.3 Hash Function Design Strategies

In order to allow the hashing of arbitrarily long strings, all SHA-3 candidates employ a specific
mode of operation. Central to all designs is the iterated hash function principle [40]: on input of an
initialization vector IV, the iterated hash function Hf based on the compression function f proceeds
a padded message (M1, . . . ,Mk) as follows:

Hf (IV;M1, . . . ,Mk) = hk, where: h0 = IV,

hi = f(hi−1,Mi) for i = 1, . . . , k.

This principle is also called the plain Merkle-Damg̊ard (MD) design [46,23]. Each of the 14 remain-
ing candidates is based on this design, possibly followed by a final transformation (FT), and/or a
chop-function2.

The padding function pad : Z∗2 → (Zm2)∗ is an injective mapping that transforms a message of ar-
bitrary length to a message of length a multiple of m bits (the number of message bits compressed
in one compression function iteration). Most of the candidates employ a sufficiently strong padding
rule (cf. App. C). Additionally, in some of the designs the message blocks are compressed along
with specific counters or tweaks, which may strengthen the padding rule. We distinguish between
‘prefix-free’ and/or ‘suffix-free’ padding.
A padding rule is called suffix-free, if for any distinct M,M ′, there exists no bit string X
such that pad(M ′) = X‖pad(M). The plain MD design with any suffix-free padding (also called
MD-strengthening [40]) preserves collision resistance [46,23]. We generalize this result in Thm. 1
(App. A): informally, this preservation result also holds if the iteration is finalized by a distinct
compression function and/or the chop-function. Other security properties, like preimage resistance,
are however not preserved in the MD design [3]. It is also proven that the MD design with a
suffix-free padding need not necessarily be indifferentiable [22]. However, the MD construction is
indifferentiable if it ends with a chopping function or a final transformation, both when the un-
derlying compression function is ideal or when the hash function is based on a PGV compression
function [22,34,44].
A padding rule is called prefix-free, if for any distinct M,M ′, there exists no bit string X such
that pad(M ′) = pad(M)‖X. It has been proved that the MD design, based on ideal compression
function or ideal PGV construction, with prefix-free padding is indifferentiable from a random or-
acle [21,22,34,44]. Security notions like collision-resistance, are however not preserved in the MD
design with prefix-free only padding.

HAIFA design. A concrete design based on the MD principle is the HAIFA construction [14]. In
HAIFA the message is padded in a specific way so as to solve some deficiencies of the original MD
construction: in the iteration, each message block is accompanied with a fixed (optional) salt of s

2 A function g is a final transformation if it differs from f , and is applied to the final state, possibly with the injection
of an additional message block. The chop-function is not considered to be (a part of) a final transformation.

bits and a (mandatory) counter Ci of t bits. The counter Ci keeps track of the number of message
bits hashed so far, and equals 0 by definition if the ith block does not contain any message bits.
Partially due to the properties of this counter, the HAIFA padding rule is suffix- and prefix-free. As
a consequence, the construction preserves collision resistance (cf. Thm. 1) and the indifferentiability
results of [22] carry over. For the HAIFA design, these indifferentiability results are improved in
[12]. Furthermore, the HAIFA construction is proven secure against second preimage attacks if the
underlying compression function is assumed to behave like an ideal primitive [19].
Wide-pipe design. In the wide-pipe design [43], the iterated state size is significantly larger
than the final hash output: at the end of the iteration, a fraction of the output of a construction
is discarded. As proved in [22], the MD construction with a distinct final transformation and/or
chopping at the end is indifferentiable from a random oracle.
Sponge functions. We do not explicitly consider sponge functions [11] or their generalization
[1] as a specific type of construction: all SHA-3 candidates known to be sponge(-like) functions,
CubeHash, Fugue, JH, Keccak and Luffa, can be described in terms of the chop-MD construction
(possibly with a final transformation before or instead of the chopping).

3 SHA-3 Hash Function Candidates

In this section, we analyze the security of the 14 remaining SHA-3 candidates in more detail. For
simplicity, we only consider the proposals of the SHA-3 candidates that output digests of 256 or
512 bits. Observe that in many candidate SHA-3 hash function families, the algorithms that output
224 or 384 bits are the same as the 256- or 512-bits algorithms, except for an additional chopping
at the end. Particularly, the results of [22] and Thm. 1 carry over in most of the cases. The same
remark applies to requirement (vi) of NIST.

Requirement (i). All designers claim that their proposal can safely be used in HMAC mode [5]
or for randomized hashing [36], and we do not discuss it here;

Requirements (ii)-(iv). Preimage, second preimage and collision resistance of each hash func-
tion are discussed in this section. Additionally, we consider the indifferentiability of the candi-
dates;

Requirement (v). All hash function candidates are secure against the length extension attack,
and thus we do not discuss it further.

Below, we examine the SHA-3 candidate hash functions in more detail. Each paragraph contains
an informal discussion for each of the second round SHA-3 candidates and their security reduc-
tion results. The mathematical descriptions of the (abstracted) designs are given in Fig. 1, and
the candidates’ padding functions are summarized in App. C. The concrete security results for all
current candidate hash functions are summarized in Table 1. More precisely, for each candidate and
each security notion, this table includes the security bound, as far as it exists, and the underlying
assumption.

3.1. The BLAKE hash function [4] is a HAIFA construction. The message blocks are accompanied
with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free padding
rule. The compression function f is block cipher based3. It moreover employs an injective linear
function L, and a linear function L′ that XORs the first and second halves of the input.
Security of BLAKE. The compression function of BLAKE shows similarities with the PGV5 com-
pression function [17], but no security results are known for this variation. The mode of operation

3 As observed in [4, Sect. 5], the core part of the compression function can be seen as a permutation keyed by the
message, which we view here as a block cipher.

BLAKE:
(n, l,m, s, t) ∈ {(256, 256, 512, 128, 64),

(512, 512, 1024, 256, 128)}
E : Z2l

2 × Zm
2 → Z2l

2 a block cipher

L : Zl+s+t
2 → Z2l

2 , L′ : Z2l
2 → Zl

2 linear functions

f(h,M, S, C) = L′(EM (L(h, S, C)))⊕ h⊕ (S‖S)

BLAKE(M) = hk, where:
(M1, . . . ,Mk)← pad1(M); h0 ← IV

S ∈ Zs
2; (Ci)

k
i=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k

BMW:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
E : Zm

2 × Zl
2 → Zm

2 a block cipher

L : Zl+m+l
2 → Zl

2 a compressing function
f(h,M) = L(h,M,Eh(M))
g(h) = f(IV′, h)

BMW(M) = h, where:
(M1, . . . ,Mk)← pad2(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[g(hk)]

CubeHash:
(n, l,m) ∈ {(256, 1024, 256), (512, 1024, 256)}
P : Zl

2 → Zl
2 a permutation

f(h,M) = P (h⊕ (M‖0l−m))

g(h) = P10(h⊕ (0992‖1‖031))

CubeHash(M) = h, where:
(M1, . . . ,Mk)← pad3(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[g(hk)]

ECHO:
(n, l,m, s, t) ∈ {(256, 512, 1536, 128, 64/128),

(512, 1024, 1024, 256, 64/128)}
E : Z2048

2 × Zs+t
2 → Z2048

2 a block cipher

L : Z2048
2 → Zl

2 a linear function
f(h,M, S, C) = L(ES,C(h‖M)⊕ (h‖M))

ECHO(M) = h, where:
(M1, . . . ,Mk)← pad4(M); h0 ← IV

S ∈ Zs
2; (Ci)

k
i=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k
h← chopl−n[hk]

Fugue:
(n, l,m) ∈ {(256, 960, 32), (512, 1152, 32)}
P, P̃ : Zl

2 → Zl
2 permutations

L : Zl
2 × Zm

2 → Zl
2 a linear function

f(h,M) = P (L(h,M))

Fugue(M) = h, where:
(M1, . . . ,Mk)← pad5(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k

h← chopl−n[P̃ (hk)]

Grøstl:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
P,Q : Zl

2 → Zl
2 permutations

f(h,M) = P (h⊕M)⊕Q(M)⊕ h
g(h) = P (h)⊕ h

Grøstl(M) = h, where:
(M1, . . . ,Mk)← pad6(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[g(hk)]

Hamsi:
(n, l,m) ∈ {(256, 256, 32), (512, 512, 64)}
P, P̃ : Z2n

2 → Z2n
2 permutations

Exp : Zm
2 → Zn

2 a linear code
f(h,M) = h⊕ chopn[P (Exp(M)‖h)]

g(h,M) = h⊕ chopn[P̃ (Exp(M)‖h)]

Hamsi(M) = h, where:
(M1, . . . ,Mk)← pad7(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k − 1
h← g(hk−1,Mk)

JH:
(n, l,m) ∈ {(256, 1024, 512), (512, 1024, 512)}
P : Zl

2 → Zl
2 a permutation

f(h,M) = P (h⊕ (0l−m‖M))⊕ (M‖0l−m)

JH(M) = h, where:
(M1, . . . ,Mk)← pad8(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[hk]

Keccak:
(n, l,m) ∈ {(256, 1600, 1088), (512, 1600, 576)}
P : Zl

2 → Zl
2 a permutation

f(h,M) = P (h⊕ (M‖0l−m))

Keccak(M) = h, where:
(M1, . . . ,Mk)← pad9(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chopl−n[hk]

Luffa:
(n, l,m,w) ∈ {(256, 768, 256, 3), (512, 1278, 256, 5)}
Pi : Zm

2 → Zm
2 (i = 1, . . . , w) permutations

L : Zwm+m
2 → Zwm

2 , L′ : Zwm
2 → Zm

2 linear functions

f(h,M) = (P1(h′1)‖ · · · ‖Pw(h′w))
where (h′1, . . . , h

′
w) = L(h,M)

g(h) = (L′(h)‖L′(f(h, 0m)))

Luffa(M) = h, where:
(M1, . . . ,Mk)← pad10(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k
h← chop512−n[g(hk)]

Shabal:
(n, l,m) ∈ {(256, 1408, 512), (512, 1408, 512)}
E : Z896

2 × Z1024
2 → Z896

2 a block cipher
f(h,C,M) = (y1, h3 −M, y3)

where h ∈ Zl
2 → h = (h1, h2, h3) ∈ Z384+m+m

2
and (y1, y3) = EM,h3

(h1 ⊕ (0320‖C), h2 + M)

Shabal(M) = h, where:
(M1, . . . ,Mk)← pad11(M); h0 ← IV
hi ← f(hi−1, 〈i〉64,Mi) for i = 1, . . . , k
hk+i ← f(hk+i−1, 〈k〉64,Mk) for i = 1, . . . , 3
h← chopl−n[hk+3]

SHAvite-3:
(n, l,m, s, t) ∈ {(256, 256, 512, 256, 64),

(512, 512, 1024, 512, 128)}
E : Zl

2 × Zm+s+t
2 → Zl

2 a block cipher
f(h,M, S, C) = EM,S,C(h)⊕ h

SHAvite-3(M) = hk, where:
(M1, . . . ,Mk)← pad12(M); h0 ← IV

S ∈ Zs
2; (Ci)

k
i=1 HAIFA-counter

hi ← f(hi−1,Mi, S, Ci) for i = 1, . . . , k

SIMD:
(n, l,m) ∈ {(256, 512, 512), (512, 1024, 1024)}
E, Ẽ : Zl

2 × Zm
2 → Zl

2 block ciphers
f(h,M) = L(h,EM (h⊕M))

g(h,M) = L(h, ẼM (h⊕M))

SIMD(M) = h, where:
(M1, . . . ,Mk)← pad13(M); h0 ← IV
hi ← f(hi−1,Mi) for i = 1, . . . , k − 1
hk ← g(hk−1,Mk)
h← chopl−n[hk]

Skein:
(n, l,m) ∈ {(256, 512, 512), (512, 512, 512)}
E : Zm

2 × Z128
2 × Zl

2 → Zm
2 a tweakable block cipher

f(h, T,M) = Eh,T (M)⊕M

Skein(M) = h, where:
(M1, . . . ,Mk)← pad14(M); h0 ← IV

(Ti)
k
i=1 round-specific tweaks

hi ← f(hi−1, Ti,Mi) for i = 1, . . . , k
h← chopl−n[hk]

Fig. 1. The padding rules employed by the functions are summarized in App. C. In all algorithm
descriptions, IV denotes an initialization vector, h denotes state values, M denotes message blocks,
S denotes a (fixed) salt, C denotes a counter and T denotes a tweak. The functions L,L′,Exp
underlying BLAKE, BMW, ECHO, Fugue, Hamsi and Luffa, are explained in the corresponding
section.

of BLAKE is based on the HAIFA structure, and as a consequence all security properties regarding
this type hold [14]. In particular, the design preserves collision resistance, and as a consequence
we obtain Advcol

H = Θ(q2/2n) (if f is assumed ideal). Also, the design is secure against second
preimage attacks. Additionally, a preimage for BLAKE implies a preimage for its last compression
function, and we obtain Advpre

H = Θ(q/2n). Furthermore, the BLAKE hash function is indifferen-
tiable from a random oracle if the underlying compression function is assumed to be ideal, due to
the HAIFA counter [22,12].

3.2. The Blue Midnight Wish (BMW) hash function [33] is a chop-MD construction, with a final
transformation before chopping. The hash function employs a suffix-free padding rule. The com-
pression function f is block cipher based4, and the final transformation g consists of the same
compression function with the chaining value processed as a message, and with an initial value as
chaining input. The compression function employs a function L which consists of two compression
functions with specific properties as specified in [33].
Security of BMW. The compression function of BMW shows similarities with the PGV3 com-
pression function [17], but no security results are known for this variation. Thm. 1 applies to BMW,
where the final transformation has no message block as input, and as a consequence we obtain
Advcol

H = Θ(q2/2n) (if f is assumed ideal). Additionally, a preimage for BMW implies a preimage
for its final transformation, and we obtain Advpre

H = Θ(q/2n). Furthermore, albeit no indifferentia-
bility proof for the BMW hash function is known, we note that BMW can be seen as a combination
of the HMAC- and the chop-construction, both proven indifferentiable from a random oracle [22].

3.3. The CubeHash hash function [8] is a chop-MD construction, with a final transformation be-
fore chopping. The compression function f is permutation based, and the final transformation g
consists of flipping a certain bit in the state and applying 10 more compression function rounds on
zero-messages.
Security of CubeHash. The compression function of CubeHash is based on one permutation5, and
collisions and preimages for the compression function can be found in one query to the permutation
[16]. The CubeHash hash function is as parazoa design proven indifferentiable from a random oracle
if the underlying permutation is assumed to be ideal [1]. Using Thm. 2, this indifferentiability bound
additionally renders an optimal collision resistance bound for CubeHash, Advcol

H = Θ(q2/2n), as

well as an improved upper bound O
(
q

2n + q2

2l−n

)
on the preimage and second preimage resistance.

Note that these bounds are optimal for the n = 256 variant.

3.4. The ECHO hash function [7] is a chop-HAIFA construction. The message blocks are accom-
panied with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free
padding rule. The compression function f is block cipher based6. It moreover employs a linear
function L that chops the state in blocks of length l bits, and XORs these.
Security of ECHO. The compression function of ECHO is a ‘chopped single call Type-I’ com-
pression function in the categorization of [54]. Therefore, the results of [54, Thm. 15] carry over,
yielding optimal security bounds for the compression function. Observe that these results can eas-
ily be adjusted to obtain bound Advcol

chop◦f = Θ(q2/2n). ECHO is a combination of HAIFA and
chop-MD, but it is unclear whether all HAIFA security properties hold after chopping. Still, Thm. 1

4 As observed in [33], the compression function can be seen as a generalized PGV3 construction, where the function
f0 of [33] defines the block cipher keyed with the chaining value.

5 Effectively, this permutation consists of one simpler permutation executed 16 times iteratively.
6 As observed in [7], the core part of the compression function can be seen as a permutation keyed by the salt and

counter, which we view here as a block cipher. This cipher is AES-based.

applies to ECHO, and as a consequence we obtain Advcol
H = Θ(q2/2n). Additionally, a preimage

for ECHO implies a preimage for its last compression function, and we obtain Advpre
H = Θ(q/2n).

Furthermore, the ECHO hash function would be indifferentiable from a random oracle if the un-
derlying compression function is assumed to be ideal, due to the chopping function at the end [22].
However, the compression function of ECHO is easily differentiable from a random oracle [31], and
we cannot directly apply the results of [22].

3.5. The Fugue hash function [35] is a chop-MD construction, with a final transformation before
chopping. The hash function employs a suffix-free padding rule. The compression function f is
permutation based, and the final transformation consists of a permutation P̃ which differs from P
in the parametrization. The compression function employs a linear function L for message injection
(TIX of [35]).
Security of Fugue. The compression function of Fugue is based on one permutation, and collisions
and preimages for the compression function can be found in one query to the permutation [16]. As a
consequence, the result of Thm. 1 is irrelevant, even though the padding rule of Fugue is suffix-free.
The Fugue hash function is as parazoa design proven indifferentiable from a random oracle if the
underlying permutations P and P̃ are assumed to be ideal [1]. Using Thm. 2, this indifferentiability
bound additionally renders an optimal collision resistance bound for Fugue, Advcol

H = Θ(q2/2n),

as well as an improved upper bound O
(
q

2n + q2

2l−m−n

)
on the preimage and second preimage resis-

tance. Note that these bounds are optimal for the n = 256 variant.

3.6. The Grøstl hash function [32] is a chop-MD construction, with a final transformation before
chopping. The hash function employs a suffix-free padding rule. The compression function f is
permutation based, and the final transformation g is defined as g(h) = P (h)⊕ h.
Security of Grøstl. The compression function of Grøstl is permutation based, and the results of
[52,53] apply. Furthermore, the preimage resistance of the compression function is analyzed in [30],
and an upper bound for collision resistance can be obtained easily. As a consequence, we obtain
tight security bounds on the compression function, Advpre

f = Θ(q2/2l) and Advcol
f = Θ(q4/2l).

Thm. 1 applies to Grøstl, where the final transformation has no message block as input. Observe
that we also have Advcol

chop◦g = Θ(q2/2n), and as a consequence we obtain Advcol
H = Θ(q2/2n).

Additionally, a preimage for Grøstl implies a preimage for its final transformation, and we obtain
Advpre

H = Θ(q/2n). Furthermore, the Grøstl hash function is proven indifferentiable from a random
oracle if the underlying permutations are ideal [2].

3.7. The Hamsi hash function [39] is a MD construction, with a final transformation before chop-
ping. The hash function employs a suffix-free padding rule. The compression function f is permu-
tation based, but the last round is executed with a compression function g based on a permutation
P̃ which differs from P in the parametrization. The compression functions employ a linear code
Exp for message injection [39].
Security of Hamsi. The compression function of Hamsi is a ‘chopped single call Type-I’ compres-
sion function in the categorization of [54]. Therefore, the results of [54, Thm. 15] carry over, yielding
optimal security bounds for the compression function. Observe that these bounds also apply to the
function g. Thm. 1 applies to Hamsi, and as a consequence we obtain Advcol

H = Θ(q2/2n). Addi-
tionally, a preimage for Hamsi implies a preimage for its last compression function, and we obtain
Advpre

H = Θ(q/2n). Furthermore, albeit no indifferentiability proof for the Hamsi hash function is
known, we note that Hamsi can be seen as a variation of the NMAC-construction, which is proven

indifferentiable from a random oracle [22].

3.8. The JH hash function [59] is a chop-MD construction. The hash function employs a suffix-free
padding rule. The compression function f is permutation based.
Security of JH. The compression function of JH is based on one permutation, and collisions and
preimages for the compression function can be found in one query to the permutation [16]. As a
consequence, the result of Thm. 1 is irrelevant, even though the padding rule of JH is suffix-free.
The JH hash function is proven optimally collision resistant [41], and proven indifferentiable from a
random oracle if the underlying permutation is assumed to be ideal [13]. Using Thm. 2, this indif-

ferentiability bound additionally renders an improved upper bound O
(
q

2n + q3

2l−m

)
on the preimage

and second preimage resistance.

3.9. The Keccak hash function [10] is a chop-MD construction. The compression function f is
permutation based. The hash function output is obtained by chopping off l − n bits of the state7.
Notice that the parameters of Keccak satisfy l = 2n+m.
Security of Keccak. The compression function of Keccak is based on one permutation, and col-
lisions and preimages for the compression function can be found in one query to the permutation
[16]. The Keccak hash function is proven indifferentiable from a random oracle if the underlying
permutation is assumed to be ideal [9]. Using Thm. 2, this indifferentiability bound additionally
renders an optimal collision resistance bound for Keccak, Advcol

H = Θ(q2/2n), as well as an optimal
preimage second preimage resistance bound Θ(q/2n).

3.10. The Luffa hash function [24] is a chop-MD construction, with a final transformation before
chopping. The compression function f is permutation based, and the final transformation g is built
on this compression function and a linear function L′ that chops the state in blocks of length m
bits, and XORs these. The compression function employs a linear function L for message injection
(MI of [24])8. Notice that the state size of Luffa satisfies l = w ·m.
Security of Luffa. The compression function of Luffa is based on w permutations executed inde-
pendently. As a consequence, collisions and preimages for the compression function can be found
in at most 5 queries to the permutations [16]. The Luffa hash function borrows characteristics from
the sponge design and is similar to the parazoa design, if the permutation P consisting of the w
permutations Pi is considered ideal, and ideas from the indifferentiability proofs of [1,9] may carry
over. However, for the case of w different permutations Pi this is not immediately clear.

3.11. The Shabal hash function [20] is a chop-MD construction. The message blocks are accompa-
nied with a counter, and the last block is iterated three times. In particular, the function employs
a suffix- and prefix-free padding rule. The compression function f is block cipher based9. Notice
that the parameters of Shabal satisfy l = 384 + 2m.
Security of Shabal. A bound on the collision resistance of the compression function of Shabal is
derived in [20]. Concretely, it is proven that the Shabal compression function is collision resistant up
to q = 2(l−m)/2 queries. Thm. 1 applies to Shabal. Collision and preimage resistance of Shabal are
studied in [20], yielding optimal bounds Advpre

H = Θ(q/2n) and Advcol
H = Θ(q2/2n). Furthermore,

the same authors prove the Shabal hash function to be indifferentiable from a random oracle if the

7 We notice that sponge functions are designed more general [11], but for Keccak this description suffices.
8 We defined the output transformation in a slightly more complicated but unified way. Essentially, Luffa256 simply

outputs L′(h). Observe that we implicitly captured the extra compression function call in the adjusted padding.
9 Essentially, it is a permutation tweaked by a 1024-bit key, which we view here as a block cipher.

underlying block cipher is assumed to be ideal [20]. Using Thm. 2, this indifferentiability bound

additionally renders an improved upper bound O
(
q

2n + q2

2l−m

)
on the second preimage resistance.

Note that this bound is optimal for the n = 256 variant.

3.12. The SHAvite-3 hash function [15] is a HAIFA construction. The message blocks are accom-
panied with a HAIFA-counter, and more generally, the function employs a suffix- and prefix-free
padding rule. The compression function f is block cipher based.
Security of SHAvite-3. The compression function of SHAvite-3 is the PGV5 compression function,
and the security results of [17] carry over. As a consequence, we obtain optimal security bounds on
the compression function. The mode of operation of SHAvite-3 is based on the HAIFA structure,
and as a consequence all security properties regarding this type hold [14]. In particular, the design
preserves collision resistance, and as a consequence we obtain Advcol

H = Θ(q2/2n). Also, the design
is secure against second preimage attacks. Additionally, a preimage for SHAvite-3 implies a preim-
age for its last compression function, and we obtain Advpre

H = Θ(q/2n). Finally, the SHAvite-3 hash
function is indifferentiable from a random oracle if the underlying block cipher is assumed to be
ideal, due to the prefix-free padding [22]. This result has been improved under the assumption that
the underlying compression function is ideal [12]. However, the compression function of SHAvite-3
is easily differentiable from a random oracle due to the presence of fixed-points.

3.13. The SIMD hash function [42] is a chop-MD construction, with a final transformation before
chopping. The hash function employs a suffix-free padding rule. The compression function f is block
cipher based, but the last round is executed with a compression function g based on a block cipher
Ẽ which differs from E in the parametrization. These function employ a quasi-group operation10

L [42].
Security of SIMD. The compression function of SIMD is a ‘rate-1 Type-I’ compression function in
the categorization of [54]. Therefore, the results of [54, Thm. 6] carry over, yielding optimal secu-
rity bounds for the compression function. Observe that these bounds also apply to the function g.
Observe moreover that these results can easily be adjusted to obtain bound Advcol

chop◦g = Θ(q2/2n).

Thm. 1 applies to SIMD, and as a consequence we obtain Advcol
H = Θ(q2/2n). Additionally, a preim-

age for SIMD implies a preimage for its last compression function, and we obtain Advpre
H = Θ(q/2n).

Furthermore, the SIMD hash function would be indifferentiable from a random oracle if the under-
lying compression functions are assumed to be ideal, due to the chopping function at the end [22].
However, the compression functions of SIMD are easily differentiable from a random oracle [18],
and we cannot directly apply the results of [22].

3.14. The Skein hash function [27] is a chop-MD construction. The message blocks are accompanied
with a round-specific tweak11, and more generally, the function employs a suffix- and prefix-free
padding rule. The compression function f is based on a tweakable block cipher.
Security of Skein. The compression function of Skein is the PGV1 compression function, with a
difference that a tweak is involved. As claimed in [6], the results of [17] carry over, which in turn
results in optimal security bounds on the compression function. Thm. 1 applies to Skein, and as a
consequence we obtain Advcol

H = Θ(q2/2n). Additionally, a preimage for Skein implies a preimage

10 For any of the variables fixed, the function L is a permutation.
11 More formally, the design is based on the UBI (unique block identifier) chaining mode which queries its underlying

tweakable block cipher on additional tweaks, that differ in each iteration. The general description of Skein involves
a specific final transformation. In the primary proposal of the hash function, however, this final transformation
consists of another execution of the compression function, with an output-specific tweak and with message 0m. As
we included this final message block in the padding, the given description of Skein suffices.

for its last compression function, and we obtain Advpre
H = Θ(q/2n). Furthermore, the Skein hash

function is proven indifferentiable from a random oracle if the underlying tweakable block cipher
is assumed to be ideal [6]. This proof is based on the preimage-awareness approach [26]. Using

Thm. 2, this indifferentiability bound additionally renders an improved upper bound O
(
q

2n + q2

2l

)
on the second preimage resistance. Note that this bound is optimal for the n = 256 variant.

4 Summary and Conclusions

In this survey, we compared the security achieved by the remaining round 2 SHA-3 hash function
candidates, when their underlying primitives are assumed to be ideal. The main contribution of this
paper is the summary of the security reductions for the hash function candidates in Table 1. Before
giving an interpretation of these results, we first make some remarks on the provided classification.

– Assuming ideality of the underlying primitives (permutations or block ciphers) is not realistic. In
particular, none of the candidates’ primitives is ideal, and some even have identified weaknesses.
However, assuming ideality of these primitives gives significantly more confidence in the security
of the higher level structure and is the only way to get useful (and comparable) security bounds
on the candidate hash functions;

– The fact that different hash functions have different bounds, does not directly imply that one
of the functions offers a higher level of security: albeit the underlying structure of the basic
primitives is abstracted away (see the previous item), still many differences among the schemes
remain (chaining size, message input size, etc.). Moreover, not all bounds are tight.

Security of the compression function. For the sponge(-like) hash functions, CubeHash, Fugue,
JH, Keccak and Luffa, collisions and preimages for the compression function can be found in a
constant number of queries. This does not have direct implications for the security of the hash
function. In fact, the only consequence is that it becomes unreasonable to assume ideality of
the compression function in order to prove security at a higher level. Most of the remaining
nine candidates are provided with a tight bound for collision and/or preimage resistance of
the compression function, merely due to the results of [17,54]. Single exceptions are BLAKE
and BMW, for which the results of [54] are not directly applicable. No security results are
known for the second preimage resistance of the nine remaining candidates: albeit collision
resistance implies second preimage resistance [51], the obtained security bounds would be below
the requirements of NIST [48];

Indifferentiability of the hash function. Nine of the candidates are proven indifferentiable
from a random oracle, and six of the candidates have a similar constructions to ones proven
indifferentiable. We note that there exist some differences among the bounds. For instance, for
the hash function variant outputting n = 512 bits, the indifferentiability bounds vary between
O(Kq3/2512) and O((Kq)2/21024). These differences are mainly caused by the fact that the
bounds are parameterized by the internal chaining value size l, rather than the output size n
(as is the case for bounds on the collision resistance). As a consequence, a higher state size often
results in a better indifferentiability bound. The indifferentiability results are powerful, as they
render bounds on the (second) preimage and collision resistance of the design (Thm. 2);

(Second) preimage resistance of the hash function. Most of the hash functions are not pro-
vided with an optimal security bound on the second preimage resistance. Main cause for this is
that the MD design does not preserve second preimage resistance [3]. Additionally, the second
preimage bound that can be derived via the indifferentiability (Thm. 2) is not always sufficiently
tight. Proving security against these attacks could be attempted either by making a different

(possibly weaker) assumption on the compression function or by basing it directly on the ideal-
ity of the underlying block cipher or permutation(s). We notice that a fruitful direction might
be the graph based approach followed by the designers of Shabal [20];

Collision resistance of the hash function. Except for the sponge(-like) functions, the collision
resistance preservation result of Thm. 1 (App. A) applies to all candidates. This theorem results
in a bound on the generic collision resistance of the hash function, which, intuitively, means
that ‘finding collisions for the hash function is at least as hard as finding collisions for (one of)
the underlying function(s)’. Together with the collision resistance bounds on the compression
functions in the ideal model, the preservation result allows for obtaining a collision resistance
bound on the entire hash function. This leads to optimal bounds on the collision resistance for
ECHO, Grøstl, Hamsi, SHAvite-3, SIMD and Skein. For BLAKE, CubeHash, Fugue, JH, Keccak
and Shabal, the same optimal bound is obtained differently (e.g. based on the indifferentiability
of the hash function). Again, the graph based approach may be suitable to prove collision
resistance of the candidates for which no collision resistance bound is yet obtained.

A hash function that is provided with a sound security analysis, is not necessarily a ‘good’ function,
nor is it a ‘bad’ function if only little security results are known. The quality of the hash function
depends further on other criteria not covered in this classification, such as the strength of the basic
underlying primitives and software/hardware performance. Yet, security reductions guarantee that
the hash function has no severe structural weaknesses, and in particular that the design does not
suffer weaknesses that can be trivially exploited by cryptanalysts. Therefore, we see the provided
security analysis as a fair comparison of the SHA-3 candidates and an important contribution to
the selection of the finalists. To the best of our knowledge, we included all security results to date.
However, we welcome suggestions, remarks or information about provable security results that could
improve the quality of this work.

Acknowledgments. This work has been funded in part by the IAP Program P6/26 BCRYPT
of the Belgian State (Belgian Science Policy), and in part by the European Commission through
the ICT program under contract ICT-2007-216676 ECRYPT II. The first author is supported by a
Ph.D. Fellowship from the Flemish Research Foundation (FWO-Vlaanderen). The second author
is supported by a Ph.D. Fellowship from the Institute for the Promotion of Innovation through
Science and Technology in Flanders (IWT-Vlaanderen).
We would like to thank Joan Daemen, Praveen Gauravaram, Charanjit Jutla and Christian Rech-
berger for the helpful comments.

References

1. Andreeva, E., Mennink, B., Preneel, B.: The parazoa family: Generalizing the sponge hash functions. Cryptology
ePrint Archive, Report 2011/028 (2011)

2. Andreeva, E., Mennink, B., Preneel, B.: On the indifferentiability of the Grøstl hash function. In: SCN ’10. LNCS,
vol. 6280, pp. 88–105. Springer-Verlag, Berlin (2010)

3. Andreeva, E., Neven, G., Preneel, B., Shrimpton, T.: Seven-property-preserving iterated hashing: ROX. In:
ASIACRYPT ’07. LNCS, vol. 4833, pp. 130–146. Springer-Verlag, Berlin (2007)

4. Aumasson, J.P., Henzen, L., Meier, W., Phan, R.: SHA-3 proposal BLAKE (2009)
5. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: CRYPTO ’96.

LNCS, vol. 1109, pp. 1–15. Springer-Verlag, Berlin (1996)
6. Bellare, M., Kohno, T., Lucks, S., Ferguson, N., Schneier, B., Whiting, D., Callas, J., Walker, J.: Provable security

support for the skein hash family (2009)
7. Benadjila, R., Billet, O., Gilbert, H., Macario-Rat, G., Peyrin, T., Robshaw, M., Seurin, Y.: SHA-3 Proposal:

ECHO (2009)
8. Bernstein, D.: CubeHash specification (2009)

ty
p

e
sf

p
f

(n
,l
,m

)
A

d
v

p
re

f
A

d
v

se
c

f
A

d
v

c
o
l

f
A

d
v

p
re H

A
d

v
se

c
H

A
d

v
g
c
o
l

H
A

d
v

c
o
l
H

A
d

v
p
ro H

B
L

A
K

E
H

A
IF

A
!
!

(2
5
6
,2

5
6
,5

1
2
)

o
r

(5
1
2
,5

1
2
,1

0
2
4
)

P
G

V
5
-l

ik
e

E
id

ea
l

P
G

V
5
-l

ik
e

E
id

ea
l

Θ
(q
/
2
n

)
f

id
ea

l
Θ

(q
/
2
n

)
f

id
ea

l
≤

A
d

v
g
c
o
l

f

Θ
(q

2
/
2
n

)
f

id
ea

l
(p

ro
o
f

b
y

p
re

se
rv

a
ti

o
n

)

Θ
(K
q
2
/
2
n

)
f

id
ea

l

B
M

W
ch

o
p

-(
M

D
+

F
T

)
!
%

(2
5
6
,5

1
2
,5

1
2
)

o
r

(5
1
2
,1

0
2
4
,1

0
2
4
)

P
G

V
3
-l

ik
e

E
id

ea
l

P
G

V
3
-l

ik
e

E
id

ea
l

Θ
(q
/
2
n

)
f

id
ea

l

≤
A

d
v

g
c
o
l

f

+
A

d
v

g
c
o
l

ch
o

p
◦g

Θ
(q

2
/
2
n

)
f

id
ea

l
(p

ro
o
f

b
y

p
re

se
rv

a
ti

o
n

)

ch
o
p

H
M

A
C

-l
ik

e
f

id
ea

l

C
u

b
eH

a
sh

ch
o
p

-(
M

D
+

F
T

)
%
%

(2
5
6
,1

0
2
4
,2

5
6
)

o
r

(5
1
2
,1

0
2
4
,2

5
6
)

Θ
(1

)
P

id
ea

l
Θ

(1
)

P
id

ea
l

Θ
(1

)
P

id
ea

l
O
(q 2

n
+

q
2

2
l−

n

)
P

id
ea

l

O
(q 2

n
+

q
2

2
l−

n

)
P

id
ea

l

(n
o

p
re

se
rv

a
ti

o
n

)
Θ

(q
2
/
2
n

)
P

id
ea

l
O

((
K
q
)2
/
2
l−

n
)

P
id

ea
l

E
C

H
O

ch
o
p

-H
A

IF
A
!
!

(2
5
6
,5

1
2
,1

5
3
6
)

o
r

(5
1
2
,1

0
2
4
,1

0
2
4
)

Θ
(q
/
2
l)

E
id

ea
l

Θ
(q

2
/
2
l)

E
id

ea
l

Θ
(q
/
2
n

)
E

id
ea

l
ch

o
p

-H
A

IF
A

f
id

ea
l

≤
A

d
v

g
c
o
l

ch
o

p
◦f

Θ
(q

2
/
2
n

)
E

id
ea

l
(p

ro
o
f

b
y

p
re

se
rv

a
ti

o
n

)

ch
o
p

M
D

co
n

st
ru

ct
io

n

F
u

g
u

e
ch

o
p

-(
M

D
+

F
T

)
!
%

(2
5
6
,9

6
0
,3

2
)

o
r

(5
1
2
,1

1
5
2
,3

2
)

Θ
(1

)
P

id
ea

l
Θ

(1
)

P
id

ea
l

Θ
(1

)
P

id
ea

l
O
(q 2

n
+

q
2

2
l−

m
−

n

)
P
,P̃

id
ea

l

O
(q 2

n
+

q
2

2
l−

m
−

n

)
P
,P̃

id
ea

l

(n
o

p
re

se
rv

a
ti

o
n

)
Θ

(q
2
/
2
n

)

P
,P̃

id
ea

l

O
((
K
q
)2
/
2
l−

m
−
n

)

P
,P̃

id
ea

l

G
rø

st
l

ch
o
p

-(
M

D
+

F
T

)
!
%

(2
5
6
,5

1
2
,5

1
2
)

o
r

(5
1
2
,1

0
2
4
,1

0
2
4
)

Θ
(q

2
/
2
l)

P
,Q

id
ea

l
Θ

(q
4
/
2
l)

P
,Q

id
ea

l
Θ

(q
/
2
n

)
P

id
ea

l

≤
A

d
v

g
c
o
l

f

+
A

d
v

g
c
o
l

ch
o

p
◦g

Θ
(q

2
/
2
n

)
P
,Q

id
ea

l
(p

ro
o
f

b
y

p
re

se
rv

a
ti

o
n

)

O
((
K
q
)4
/
2
l)

P
,Q

id
ea

l

H
a

m
si

M
D

+
F

T
!
%

(2
5
6
,2

5
6
,3

2
)

o
r

(5
1
2
,5

1
2
,6

4
)

Θ
(q
/
2
n

)
P

id
ea

l
Θ

(q
2
/
2
n

)
P

id
ea

l
Θ

(q
/
2
n

)

P̃
id

ea
l

≤
A

d
v

g
c
o
l

f

+
A

d
v

g
c
o
l

g

Θ
(q

2
/
2
n

)

P
,P̃

id
ea

l
(p

ro
o
f

b
y

p
re

se
rv

a
ti

o
n

)

N
M

A
C

-l
ik

e
f
,g

id
ea

l

J
H

ch
o
p

-M
D

!
%

(2
5
6
,1

0
2
4
,5

1
2
)

o
r

(5
1
2
,1

0
2
4
,5

1
2
)

Θ
(1

)
P

id
ea

l
Θ

(1
)

P
id

ea
l

Θ
(1

)
P

id
ea

l
O
(q 2

n
+

q
3

2
l−

m

)
P

id
ea

l

O
(q 2

n
+

q
3

2
l−

m

)
P

id
ea

l

(n
o

p
re

se
rv

a
ti

o
n

)
Θ

(q
2
/
2
n

)
P

id
ea

l
O

(q
3

2
l−

m
+
K
q
3

2
l−

n

)
P

id
ea

l

K
ec

ca
k

ch
o
p

-M
D

%
%

(2
5
6
,1

6
0
0
,1

0
8
8
)

o
r

(5
1
2
,1

6
0
0
,5

7
6
)

Θ
(1

)
P

id
ea

l
Θ

(1
)

P
id

ea
l

Θ
(1

)
P

id
ea

l
Θ

(q
/
2
n

)
P

id
ea

l
Θ

(q
/
2
n

)
P

id
ea

l
(n

o
p

re
se

rv
a
ti

o
n

)
Θ

(q
2
/
2
n

)
P

id
ea

l
Θ

((
K
q
)2
/
2
l−

m
)

P
id

ea
l

L
u

ff
a

ch
o
p

-(
M

D
+

F
T

)
%
%

(2
5
6
,7

6
8
,2

5
6
)

o
r

(5
1
2
,1

2
7
8
,2

5
6
)

Θ
(1

)
P
i

id
ea

l
Θ

(1
)

P
i

id
ea

l
Θ

(1
)

P
i

id
ea

l
(n

o
p

re
se

rv
a
ti

o
n

)
sp

o
n

g
e-

li
k
e

P
i

id
ea

l

S
h

a
b

a
l

ch
o
p

-M
D

!
!

(2
5
6
,1

4
0
8
,5

1
2
)

o
r

(5
1
2
,1

4
0
8
,5

1
2
)

O
(q

2
/
2
l−

m
)

E
id

ea
l

Θ
(q
/
2
n

)
E

id
ea

l
O
(q 2

n
+

q
2

2
l−

m

)
E

id
ea

l
≤

A
d

v
g
c
o
l

ch
o

p
◦f

Θ
(q

2
/
2
n

)
E

id
ea

l
O

((
K
q
)2
/
2
l−

m
)

E
id

ea
l

S
H

A
vi

te
-3

H
A

IF
A

!
!

(2
5
6
,2

5
6
,5

1
2
)

o
r

(5
1
2
,5

1
2
,1

0
2
4
)

Θ
(q
/
2
n

)
E

id
ea

l
Θ

(q
2
/
2
n

)
E

id
ea

l
Θ

(q
/
2
n

)
E

id
ea

l
Θ

(q
/
2
n

)
f

id
ea

l
≤

A
d

v
g
c
o
l

f

Θ
(q

2
/
2
n

)
E

id
ea

l
(p

ro
o
f

b
y

p
re

se
rv

a
ti

o
n

)

O
((
K
q
)2
/
2
n

)
E

id
ea

l

S
IM

D
ch

o
p

-(
M

D
+

F
T

)
!
%

(2
5
6
,5

1
2
,5

1
2
)

o
r

(5
1
2
,1

0
2
4
,1

0
2
4
)

Θ
(q
/
2
l)

E
id

ea
l

Θ
(q

2
/
2
l)

E
id

ea
l

Θ
(q
/
2
n

)

Ẽ
id

ea
l

≤
A

d
v

g
c
o
l

f

+
A

d
v

g
c
o
l

ch
o

p
◦g

Θ
(q

2
/
2
n

)

E
,Ẽ

id
ea

l
(p

ro
o
f

b
y

p
re

se
rv

a
ti

o
n

)

ch
o
p

M
D

co
n

st
ru

ct
io

n

S
ke

in
ch

o
p

-M
D

!
!

(2
5
6
,5

1
2
,5

1
2
)

o
r

(5
1
2
,5

1
2
,5

1
2
)

Θ
(q
/
2
l)

E
id

ea
l

Θ
(q

2
/
2
l)

E
id

ea
l

Θ
(q
/
2
n

)
E

id
ea

l
O
(q 2

n
+

q
2

2
l

)
E

id
ea

l
≤

A
d

v
g
c
o
l

f

Θ
(q

2
/
2
n

)
E

id
ea

l
(p

ro
o
f

b
y

p
re

se
rv

a
ti

o
n

)

O
((
K
q
)2
/
2
l)

E
id

ea
l

T
a
b

le
1
.

A
sc

h
em

a
ti

c
su

m
m

a
ry

o
f

a
ll

re
su

lt
s.

T
h

e
fi

rs
t

co
lu

m
n

d
es

cr
ib

es
th

e
h

a
sh

fu
n

ct
io

n
co

n
st

ru
ct

io
n

,
a
n

d
th

e
se

co
n

d
a
n

d
th

ir
d

co
lu

m
n

sh
o
w

w
h

ic
h

h
a
sh

fu
n

ct
io

n
s

h
a
v
e

a
su

ffi
x
-f

re
e

(s
f)

o
r

p
re

fi
x
-f

re
e

(p
f)

p
a
d

d
in

g
.

T
h

e
fo

u
rt

h
co

lu
m

n
su

m
m

a
ri

ze
s

th
e

m
a
in

p
a
ra

m
et

er
s
n
,l
,m

,
w

h
ic

h
d

en
o
te

th
e

h
a
sh

fu
n

ct
io

n
o
u

tp
u

t
si

ze
,

th
e

ch
a
in

in
g

v
a
lu

e
si

ze
a
n

d
th

e
m

es
sa

g
e

in
p

u
t

si
ze

,
re

sp
ec

ti
v
el

y.
In

th
e

re
m

a
in

in
g

co
lu

m
n

s,
th

e
se

cu
ri

ty
b

o
u

n
d

s
a
re

su
m

m
a
ri

ze
d

to
g
et

h
er

w
it

h
th

e
u

n
d

er
ly

in
g

a
ss

u
m

p
ti

o
n

s.
A

gr
ee

n
b

o
x

in
d

ic
a
te

s
th

e
ex

is
te

n
ce

o
f

a
n

o
p

ti
m

a
l

u
p

p
er

b
o
u

n
d

,
a

y
el

lo
w

b
o
x

in
d

ic
a
te

s
th

e
ex

is
te

n
ce

o
f

a
n

o
n

-t
ri

v
ia

l
u

p
p

er
b

o
u

n
d

w
h

ic
h

is
n

o
t

y
et

o
p

ti
m

a
l

fo
r

b
o
th

th
e

2
5
6

a
n

d
5
1
2

b
it

s
v
a
ri

a
n
t.

A
re

d
b

o
x

m
ea

n
s

th
a
t

a
n

effi
ci

en
t

a
d

v
er

sa
ry

is
k
n

o
w

n
fo

r
th

e
se

cu
ri

ty
n

o
ti

o
n

.
W

e
n

o
te

th
a
t

fo
r

a
ll

ca
n

d
id

a
te

s,
a

re
d

b
o
x

d
o
es

n
o
t

h
a
v
e

a
n
y

d
ir

ec
t

co
n

se
q
u

en
ce

s
fo

r
th

e
se

cu
ri

ty
o
f

th
e

h
a
sh

fu
n

ct
io

n
.

A
ll

o
th

er
n

o
ti

o
n

s
a
n

d
n

o
ta

ti
o
n

s
a
n

d
fu

rt
h

er
ex

p
la

in
ed

in
S

ec
t.

2
.

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: On the indifferentiability of the sponge construction. In:
EUROCRYPT ’08. LNCS, vol. 4965, pp. 181–197. Springer-Verlag, Berlin (2008)

10. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The KECCAK sponge function family (2009)
11. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Sponge functions (ECRYPT Hash Workshop 2007)
12. Bhattacharyya, R., Mandal, A., Nandi, M.: Indifferentiability characterization of hash functions and optimal

bounds of popular domain extensions. In: INDOCRYPT ’09. LNCS, vol. 5922, pp. 199–218. Springer-Verlag,
Berlin (2009)

13. Bhattacharyya, R., Mandal, A., Nandi, M.: Security analysis of the mode of JH hash function. In: FSE ’10.
LNCS, vol. 6147, pp. 168–191. Springer-Verlag, Berlin (2010)

14. Biham, E., Dunkelman, O.: A framework for iterative hash functions – HAIFA. Cryptology ePrint Archive, Report
2007/278 (2007)

15. Biham, E., Dunkelman, O.: The SHAvite-3 Hash Function (2009)
16. Black, J., Cochran, M., Shrimpton, T.: On the impossibility of highly-efficient blockcipher-based hash functions.

In: EUROCRYPT ’05. LNCS, vol. 3494, pp. 526–541. Springer-Verlag, Berlin (2005)
17. Black, J., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-based hash-function constructions

from PGV. In: CRYPTO ’02. LNCS, vol. 2442, pp. 320–335. Springer-Verlag, Berlin (2002)
18. Bouillaguet, C., Fouque, P.A., Leurent, G.: Security analysis of SIMD (2010)
19. Bouillaguet, C., Fouque, P.A., Shamir, A., Zimmer, S.: Second preimage attacks on dithered hash functions.

Cryptology ePrint Archive, Report 2007/395 (2007)
20. Bresson, E., Canteaut, A., Chevallier-Mames, B., Clavier, C., Fuhr, T., Gouget, A., Icart, T., Misarsky, J.F.,

Naya-Plasencia, M., Paillier, P., Pornin, T., Reinhard, J.R., Thuillet, C., Videau, M.: Shabal, a Submission to
NIST’s Cryptographic Hash Algorithm Competition (2009)

21. Chang, D., Lee, S., Nandi, M., Yung, M.: Indifferentiable security analysis of popular hash functions with prefix-
free padding. In: ASIACRYPT ’06. LNCS, vol. 4284, pp. 283–298. Springer-Verlag, Berlin (2006)

22. Coron, J.S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard revisited: How to construct a hash function.
In: CRYPTO ’05. LNCS, vol. 3621, pp. 430–448. Springer-Verlag, Berlin (2005)

23. Damg̊ard, I.: A design principle for hash functions. In: CRYPTO ’89. LNCS, vol. 435, pp. 416–427. Springer-
Verlag, Berlin (1990)

24. De Cannière, C., Sato, H., Watanabe, D.: Hash Function Luffa (2009)
25. Dodis, Y., Puniya, P.: Getting the best out of existing hash functions; or what if we are stuck with SHA? In:

ACNS ’08. LNCS, vol. 5037, pp. 156–173. Springer-Verlag, Berlin (2008)
26. Dodis, Y., Ristenpart, T., Shrimpton, T.: Salvaging merkle-damg̊ard for practical applications. In: EUROCRYPT

’09. LNCS, vol. 5479, pp. 371–388. Springer-Verlag, Berlin (2009)
27. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The Skein Hash

Function Family (2009)
28. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: Engineering

comparison of SHA-3 candidates (2010)
29. Fleischmann, E., Forler, C., Gorski, M.: Classification of the SHA-3 candidates. Cryptology ePrint Archive,

Report 2008/511 (2008)
30. Fouque, P.A., Stern, J., Zimmer, S.: Cryptanalysis of tweaked versions of SMASH and reparation. In: SAC ’08.

LNCS, vol. 5381, pp. 136–150. Springer-Verlag, Berlin (2009)
31. Gauravaram, P., Bagheri, N.: ECHO compression function is not indifferentiable from a FIL-RO (2010)
32. Gauravaram, P., Knudsen, L., Matusiewicz, K., Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.: Grøstl –

a SHA-3 candidate (2009)
33. Gligoroski, D., Klima, V., Knapskog, S.J., El-Hadedy, M., Amundsen, J., Mjølsnes, S.F.: Cryptographic Hash

Function BLUE MIDNIGHT WISH (2009)
34. Gong, Z., Lai, X., Chen, K.: A synthetic indifferentiability analysis of some block-cipher-based hash functions.

Des. Codes Cryptography 48(3), 293–305 (2008)
35. Halevi, S., Hall, W., Jutla, C.: The Hash Function “Fugue” (2009)
36. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hashing. In: CRYPTO ’06. LNCS, vol.

4117, pp. 41–59. Springer-Verlag, Berlin (2006)
37. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less than 2n work. In: EUROCRYPT

’05. LNCS, vol. 3494, pp. 474–490. Springer-Verlag, Berlin (2005)
38. Kobayashi, K., Ikegami, J., Matsuo, S., Sakiyama, K., Ohta, K.: Evaluation of hardware performance for the

SHA-3 candidates using SASEBO-GII. Cryptology ePrint Archive, Report 2010/010 (2010)
39. Küçük, Ö.: The Hash Function Hamsi (2009)
40. Lai, X., Massey, J.: Hash function based on block ciphers. In: EUROCRYPT ’92. LNCS, vol. 658, pp. 55–70.

Springer-Verlag, Berlin (1992)
41. Lee, J., Hong, D.: Collision resistance of the JH hash function. Cryptology ePrint Archive, Report 2011/019

(2011)

42. Leurent, G., Bouillaguet, C., Fouque, P.A.: SIMD is a Message Digest (2009)
43. Lucks, S.: A failure-friendly design principle for hash functions. In: ASIACRYPT ’05. LNCS, vol. 3788, pp.

474–494. Springer-Verlag, Berlin (2005)
44. Luo, Y., Gong, Z., Duan, M., Zhu, B., Lai, X.: Revisiting the indifferentiability of PGV hash functions. Cryptology

ePrint Archive, Report 2009/265 (2009)
45. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, impossibility results on reductions, and applications

to the random oracle methodology. In: TCC ’04. LNCS, vol. 2951, pp. 21–39. Springer-Verlag, Berlin (2004)
46. Merkle, R.: One way hash functions and DES. In: CRYPTO ’89. LNCS, vol. 435, pp. 428–446. Springer-Verlag,

Berlin (1990)
47. Nandi, M.: Characterizing padding rules of MD hash functions preserving collision security. In: ACISP ’09. LNCS,

vol. 5594, pp. 171–184. Springer-Verlag, Berlin (2009)
48. National Institute for Standards and Technology. Announcing Request for Candidate Algorithm Nominations for

a New Cryptographic Hash Algorithm (SHA3) Family (November 2007)
49. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: A synthetic approach. In:

CRYPTO ’93. LNCS, vol. 773, pp. 368–378. Springer-Verlag, Berlin (1993)
50. Rogaway, P.: Formalizing human ignorance. In: VIETCRYPT ’06. LNCS, vol. 4341, pp. 211–228. Springer-Verlag,

Berlin (2006)
51. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: Definitions, implications, and separations for

preimage resistance, second-preimage resistance, and collision resistance. In: FSE ’04. LNCS, vol. 3017, pp. 371–
388. Springer-Verlag, Berlin (2004)

52. Rogaway, P., Steinberger, J.: Security/efficiency tradeoffs for permutation-based hashing. In: EUROCRYPT ’08.
LNCS, vol. 4965, pp. 220–236. Springer-Verlag, Berlin (2008)

53. Stam, M.: Beyond uniformity: Better security/efficiency tradeoffs for compression functions. In: CRYPTO ’08.
LNCS, vol. 5157, pp. 397–412. Springer-Verlag, Berlin (2008)

54. Stam, M.: Blockcipher-based hashing revisited. In: FSE ’09. LNCS, vol. 5665, pp. 67–83. Springer-Verlag, Berlin
(2009)

55. Steinberger, J.: Stam’s collision resistance conjecture. In: EUROCRYPT ’10. LNCS, vol. 6110, pp. 597–615.
Springer-Verlag, Berlin (2010)

56. Tillich, S., Feldhofer, M., Kirschbaum, M., Plos, T., Schmidt, J.M., Szekely, A.: High-speed hardware implemen-
tations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal,
SHAvite-3, SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510 (2009)

57. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: CRYPTO ’05. LNCS, vol. 3621, pp. 17–36.
Springer-Verlag, Berlin (2005)

58. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: EUROCRYPT ’05. LNCS, vol. 3494, pp.
19–35. Springer-Verlag, Berlin (2005)

59. Wu, H.: The Hash Function JH (2009)

A Preservation of Collision Resistance

For the purpose of the analysis of the SHA-3 candidates, we generalize the well-known result by
Merkle and Damg̊ard. The result of Thm. 1 differs in three cases: we consider any suffix-free padding,
the proof allows for different compression functions in one hash function evaluation, and it includes
an optional chopping at the end. Related work can, a.o., be found in [46,23,25,47].

Theorem 1. Let l,m, n ∈ N such that l ≥ n. Let pad : Z∗2 → (Zm2)∗ be a suffix-free padding and
let f, g : Zl2 × Zm2 → Zl2 be two compression functions. Consider the hash function H : Z∗2 → Zn2
defined as follows (cf. Fig. 2), where h0 = IV is the initialization vector:

H(M) = h, where: (M1, . . . ,Mk) = pad(M),

hi = f(hi−1,Mi) for i = 1, . . . , k − 1,

hk = g(hk−1,Mk),

h = chopl−n(hk).

Define the function g′ : Zl2×Zm2 → Zn2 by g′ = chopl−n ◦g. Then, the advantage of finding collisions
for H is upper bounded by the advantage of finding collisions for f or g′. Formally, if f is (t1, ε1)

collision secure, and g′ is (t2, ε2) collision secure, then H is (t, ε) collision secure for ε = ε1 + ε2,
and t = min{t1, t2}− 2(K − 1)τf , where τf is the time to evaluate f and K is the maximum length
of the messages, in blocks.

Proof. Suppose A is a (t, ε) collision finding attacker for H. We construct collision finding adver-
saries B1 and B2 for f and g, respectively, using the following observation.
Let M,M ′ be two distinct messages such that H(M) = H(M ′). Let (M1, . . . ,Mk) be the padded
message of M , and (M ′1, . . . ,M

′
k′) be the padded message of M ′. Define the intermediate state values

hi, h
′
i similarly. A collision on M,M ′ means that chopl−n

(
g(hk−1,Mk)

)
= chopl−n

(
g(h′k′−1,M

′
k′)
)
.

Now, if (hk−1,Mk) 6= (h′k′−1,M
′
k′) this results in a collision for g′. Assume the contrary, and let

j ∈ {1, . . . ,min{k, k′}− 1} be the minimal index such that (hk−j−1,Mk−j) 6= (h′k′−j−1,M
′
k′−j). We

notice that such index j exists: in case k = k′ it exists as M 6= M ′, and in case k 6= k′ it exists as
the padding rule is suffix-free. By definition of the index j, we have hk−j = h′k′−j , and in particular
we obtain a collision for f :

f(hk−j−1,Mk−j) = hk−j = h′k′−j = f(h′k′−j−1,M
′
k′−j).

Both B1,B2 follow this procedure. If M,M ′ define a collision for f , B1 outputs this collision.
Similarly for B2 and g′. Both adversaries work in time at most t + 2(K − 1)τf , from which we
deduce t ≥ min{t1, t2} − 2(K − 1)τf . The messages M,M ′ define a collision for f or g′. Thus, we
obtain ε ≤ ε1 + ε2. ut

In case the design is based on the compression function f only (but it may still include the chopping),

the above result can easily be simplified to Advgcol
H (A) ≤ Advgcol

f ′ (B1), where f ′ is defined by
f ′ = chopl−n ◦ f . Observe that this result also holds if l = n, and in particular, the basic theorems
of Merkle and Damg̊ard are covered as well. We note that Thm. 1 can be generalized arbitrarily,
e.g. to more different compression functions, but for the purpose of this paper, the mentioned
generalization of the Merkle-Damg̊ard structure suffices.

Fig. 2. A generalized Merkle-Damg̊ard structure. f, g are two compression functions, and chopl−n
chops off l − n bits of the state.

B Security Implications of Indifferentiability

Indifferentiability assures that a design is structurally correct, and that it can replace a random
oracle without security loss. In particular, it guarantees that, up to a certain degree, the design is
secured against any generic attack, like finding preimages, collisions, multicollisions, etc. In Thm. 2,
we formally prove a security reduction to derive security against specific attacks from the indiffer-
entiability of a hash function. This proof is based on a personal communication with Joan Daemen.

Theorem 2. Let H be a hash function, built on underlying primitive π, and RO be a random oracle,
where H and RO have the same domain and range space. Denote by Advpro

H (q) the advantage of
distinguishing (H, π) from (RO,S), for some simulator S, maximized over all distinguishers D
making at most q queries. Let atk be a security property of H. Denote by Advatk

H (q) the advantage
of breaking H under atk, maximized over all adversaries A making at most q queries. Then:

Advatk
H (q) ≤ Pratk

RO(q) + Advpro
H (q), (1)

where Pratk
RO(q) denotes the success probability of a generic attack against H under atk, after at

most q queries.

Proof. Let A be any (q, ε) attacker for H under security notion atk, and assume ε > Pratk
RO(q). We

define a distinguisher D for the indifferentiability of H as follows: D makes the same queries as A,
and obtains a query history Q (with query answers coming from either H or RO). Next, D outputs
1 if Q violates security notion atk, and 0 otherwise. Denote by Advpro

H (D) the success probability
of D. By definition, we have

∣∣Pr
(
DH,π = 1

)
−Pr

(
DRO,S = 1

)∣∣ = Advpro
H (D) ≤ Advpro

H (q).
By EH (resp. ERO), we denote the event that Q defines a set of query pairs that break H (resp. RO)
under security notion atk. The distinguisher outputs 1 if and only if Q violates security notion atk,
and hence we obtain:

Pr
(
DH,π = 1

)
= Pr

(
DH,π = 1 | EH

)
Pr (EH) + Pr

(
DH,π = 1 | ¬ EH

)
Pr (¬ EH)

= 1 ·Pr (EH) + 0 = ε.

Similarly, we get Pr
(
DRO,S = 1

)
= Pr (ERO) = Pratk

RO(q). As ε > Pratk
RO(q), we consequently derive

ε ≤ Pratk
RO(q)+Advpro

H (q). This holds for any (q, ε) adversary for H under security notion atk, which
completes the proof. ut

C Padding Rules

The padding rules of all SHA-3 hash function candidates are summarized. All padding functions
output bit strings parsed as sequences of m-bit blocks, where m is the message block length of
the corresponding function. Formally, for each candidate, for n ∈ {256, 512} the padding function
pad : Z∗2 → (Zm2)∗ is defined as follows. For the hash functions BLAKE, ECHO, Shabal, SHAvite-3
and Skein, the complete padding rule of the corresponding hash function is additionally defined by
a counter or tweak (as explained in Sect. 3). Particularly, all hash functions employ an injective

padding rule.

BLAKE : pad1(M) = M‖1‖0−|M |−t−2 mod m‖1‖〈|M |〉t,
BMW : pad2(M) = M‖1‖0−|M |−65 mod m‖〈|M |〉64,

CubeHash : pad3(M) = M‖1‖0−|M |−1 mod m,

ECHO : pad4(M) = M‖1‖0m−1−(|M |+144 mod m)‖〈n〉16‖〈|M |〉128,

Fugue : pad5(M) = M‖0−|M | mod m‖〈|M |〉64,

Grøstl : pad6(M) = M‖1‖0−|M |−65 mod l‖〈d(|M |+ 65)/le〉64,

Hamsi : pad7(M) = M‖1‖0−|M |−1 mod m‖〈|M |〉64,

JH : pad8(M) = M‖1‖0383+(−|M | mod m)‖〈|M |〉128,

Keccak : pad9(M) = M‖1‖0−|M |−1 mod 8‖〈n/8〉8‖〈m/8〉8‖1‖0−(|M |−(|M | mod 8))−25 mod m,

Luffa : pad10(M) = M‖1‖0(−|M |−1 mod m)+256,

Shabal : pad11(M) = M‖1‖0−|M |−1 mod m,

SHAvite-3 : pad12(M) = M‖1‖0−|M |−t−17 mod m‖〈|M |〉t‖〈n〉16,

SIMD : pad13(M) = M‖0−|M | mod m‖〈|M |〉m,

Skein12 : pad14(M) = M ′‖0(−|M ′| mod m)+m,where M ′ =

{
M if |M | ≡ 0 mod 8,

M‖1‖0−|M |−1 mod 8 otherwise.

12 For Skein, the null string λ is padded to pad(λ) = 02m.

	Security Reductions of the Second Round SHA-3 Candidates
	Elena Andreeva, Bart Mennink and Bart Preneel

