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Abstract

This paper considers the problem of clustering large da&ise high-dimensional
space. Using a random forest, we first generate multipletipat of the same input
space, one per tree. The partitions from all trees are mdygedtersecting them, re-
sulting in a partition of higher resolution. A graph is themnstructed by assigning a
node to each region and linking adjacent nodes. Gnaph of Superimposed Partitions
(GSP)represents a remapped space of the input data where redibighalensity are
mapped to a larger number of nodes. Generating such a graghthe clustering prob-
lem in the feature space into a graph clustering task whiclselee with the Markov
cluster algorithm (MCL). The proposed algorithm is able &pture non-convex struc-
ture while being computationally efficient, capable of dealwith large data sets. We
show the clustering performance on synthetic data and @pplynethod to the task of
video segmentation.

1 Introduction

Clustering is the task of partitioning a data set into subsetthat the data points in each
subset are more similar to each other, according to somendistmeasure, than those from
different subsets7], 13]. It is a fundamental technique in data analysis and has rapny
plications in computer vision, including image and videgreentation {, 6, 15, 22]. This
paper mainly considers the problem of clustering data onaumvex manifolds in high-
dimensional spaces.

Many existing algorithms for clustering directly use thetdnces between input data in
an iterative process. Given the number of clustéras input, theK-means algorithm al-
ternates the computation of cluster centres and clusterbeeship. Mean shift clustering
requires a kernel bandwidth parameter and performs hitilglig in the data density space,
assigning each point to the mode it converges4to5] 12]. Spectral clustering is based
on pairwise similarities and a variety of methods have beepgsed with different defini-
tions of affinity functions 18, 21, 23]. Recent work introduces some scale invariance b
computing similarity values depending on the local neigithood of each pointg].
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(a) Input data density (b) Random forest partitions (c) Graph structure (d) Clustering result
Figure 1: Overview of the proposed clustering algorithm. (a) PDF of a 2D synthetic data set
where brighter regions correspond to higher density. (bjpact partitions (intersections of multiple
partitions from decision forest). (¢) The edges of the GraffBuperimposed Partitions (GSP), brighter
colour corresponds to larger edge weight. (d) The nodes®faBP coloured by the final cluster ID.

In this paper we present a two-stage clustering algorittatetows structure recovery of
clusters of different sizes as well as non-convex shapesteris. We first construct multiple
partitions of the data using a random fore3t [ This process spreads the density of data
samples evenly, similar to histogram equalization, buliagpo a high dimensional space.
The partitions of each tree are then merged by intersedti@n { resulting in a partition of
higher resolution.

We subsequently construct a graph by assigning a node taegioim and connect neigh-
bouring nodes. Graph-based clustering methods use caumass between points, allowing
to cluster non-convex and elongated structut@s14, 24, 25. We employ the Markov Clus-
ter algorithm (MCL) which is based on stochastic flow simioia{20]. The main parameter
of this algorithm is the resolution which controls the siZ¢he generated clusters. A lower
resolution parameter results in fewer clusters. See Fityfioe an example with a synthetic
data set involving non-convex manifolds and varying sandplasities.

The two steps of the method presented here, remapping tlve spal clustering the
resulting graph, are independent and alternative methaudls e used for each step. Our
motivation to use a random forest in the first step is that fa& to train and extremely
fast to evaluate new data points. The overlapping naturkeofrees can be efficiently used
to link the regions without using an explicit notion of dist®, which can lead to incorrect
connections in the case of thin, elongated manifolds. F@s#tond step, the Markov cluster
algorithm (MCL) [20] is employed owing to its scalability to large data sets.

Related work can be found in the literature on clusteringgisiees. Decision trees have
been used for clustering, for example by assuming the existef a distance measurg |
or by assuming a second, uniformly distributed, backgrociads [L6]. Decision forests
have also recently been applied to visual codebook corgiruehere leaf indices from
multiple trees are stacked into a single vectbr,[19]. The resulting partitions are useful
for the task of codebook generation, but do not necessapiuce the underlying structure
of the data. Random projections of the data have been shovadte the dimensionality
of the data while sufficiently preserving distances. Theyehlaeen applied to clustering
high dimensional data in combination with EM clusteri®} [Recently, random projection
trees have been used to learn the structure of manifoldsedotmingk-d trees in terms of
guantisation errorl1].

With the goal of maintaining the benefits of tree-based agpghies, the proposed algo-
rithm employs a random forest to create multiple partitiohthe input space. The subse-
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Figure 2:Feature Space Partitioning Using a Random ForestSketch of a random forest with three
trees splitting 2D input feature space into different paotis. An example of a region is filled with a
colour for each partition. The identical input region in tfeature space marked by ‘x’(left), will have
a different partition index in each tree (right). An exampféntersection (compact partition) is shown
in green.

quent graph construction allows the application of effitgmaph clustering methods, which
in the case of video segmentation needs to handle milliorgat# points. The algorithm
does not require the number of clusters, nor kernel radiuspag, however the number of
trees, the tree depth and the resolution parameter in thghgilastering step need to be
determined.

2 Clustering Algorithm

Given is a set oN data points{x;}, wherex; € RP fori =1,...,N, our task is to assign a
cluster indexc € (1,...,C), to everyx; as well as to find a meaningful number of clusi€rs
We would also like to acquire a function that returns a clustéex for any new query data.
The strategy is to use a random foregtfpr constructing a Graph of Superimposed Partitions
(GSP) that maps the high dimensional data to a lower dimeak&pace. We subsequently
aggregate the regions represented by the GSP nodes interslbg employing MCL.

2.1 Data Partitioning

Partition Defined by a Single Tree. We first partition the input data with a forest, i.e. an
ensemble oF trees{T;},j=1,...,F. Starting at the root node, the input data is recursivel
split at each node when a certain number of data points @ifpione thousand) has reached
this node. At each node, we compute a random split functiore ftata poink; as the inner
product with a vectof € RP. The vectorf is a random unit vector generated using a norma
distribution for each element, followed by normalisatidine resulting value' f can also
be interpreted as a projection onto a random direction. Bheg are histogrammed and the
median taken as the split threshold in order to evenly dpdiitput data. An initial sampling
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Figure 3:Random Forest Mapping. Intersection index vectors have leaf indices across thestes
their elements, and represent a compact partition.

step allows the adaptation of the histogram range. The Btgppiterion is defined by the
depth of the tree.

Then; leaf nodes of tred; represent the regions of the induced partition. An inpuadat
pointx; is assigned to one of these leaves to obtain a unique ihdexX1,...,n;}, called
the partition indexof x; in the j-th tree. All data points assigned to the same leaf nodg of
belong to the samig-region of the input data space. We denote the partitionefdature
space induced by; as ;.

Multiple Partitions Defined by a Forest. Multiple random trees result in different parti-
tions of the input space, see Figutelt shows that the identical input will not necessarily
have the same patrtition index in each tree. Thus, there i®nsistency between the parti-
tion indices obtained from different trees. By concaterthe partition indices of; from

all F trees, we define thiatersection index vectas

I(xi) = (I1,...,Ig)T €NE

where each elemeni of the vector represents the leaf indexTiiy see Figure3. We now
define theintersections.7 (1), of the output ofF trees according to thtersection index
vectorsand merge all partitions?;, j = 1,...,F by intersection, i.e. by subdividing every
region such that eaclf (1) consists of inputs with only a singleAs these intersections form
compact partition regions, we also refer.#0(1) ascompact partitions For each compact
region with a sufficiently large number of sample points wepate the first two moments
of its data points to compute volume and density estimates.

2.2 GSP: Graph of Superimposed Partitions

The input data is represented by a gr&p(V, E), consisting of a set of nod& and edges
E, which we call the Graph of Superimposed Partitions (GSP).

Assignment of a Node to Each Compact Partition. Let us consider a certain compact
partition .7 (I) and call it.#, for now. We assign a nodé, to .#, as a representative of
the group of inputsy; € .#,. All the input data of.#; is therefore associated witly. We
characteris&/y by its mean,u,, and the sample density of input instancég, which we
define as
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respectively, wherdl(.#) is the number of input instances.ifi, andS(.#,) an approxima-
tion to its volume. We se¥(.7,) = [15_, 02, whereo? is the variance in the-th coordinate
direction. Note that a nodé, has by definition a common intersection index vector and w
call it |4 for convenience.

Edges between adjacent nodes.We now connecadjacentpairs of nodes by edges. Two

nodes representing two compact partitiong, and ., are defined as adjacent when the
intersection of their index vectotg andlg are different only by one element. That is, we
define an edgg, g between two nodeé, andVp if

Haist(las18) = 1, 3)

whereHgis(+, -) stands for the Hamming distance of the two vectors. We aat@i€j 3 with
a weightw,g, which we define as

N(Aa) +N(Ip)

"o " ST ST ?

Algorithm 4 describes the process of generating the GSP.

2.3 Graph Clustering Using the Markov Cluster Algorithm

In order to cluster the GSP, we use the Markov Cluster (MChgpathm [20]. The main
idea of the algorithm is to simulate flow within the graph,reesing weights where it is
strong and decreasing weights when it is weak. After corergrg regions of constant flow
remain which are separated by edges with zero flow, definilgsdering of the nodes.

This idea is formulated as a random walk within the grapstHire graph is transformed
to a Markov graph, i.e. a graph where for all nodes the weightsutgoing edges sum
to one. Flow is simulated by computing powers of the Markowurimacorresponding to
flow expansion. An additionahflation operator is inserted to allow weighting of the flow.
The MCL process consists of alternately applying expanarahinflation steps to the same
stochastic matrix until convergence. The contraction aquhesion parameters of the MCL
process influence the resolution of the output. An impleiagon of the algorithm that
exploits the sparsity of the graph lends has shown to beldesta very large numbers of
nodes. Given certain sparseness conditions, th algorigsaltomplexity 0O(NK?), where
N is the number of nodes, akds the average of neighbours of nodes in the gr&th [

3 Experiments

This section illustrates the performance of the proposesteting algorithm. We also apply
the method to the task of automatic video segmentation.
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ADDALLEDGEY)

1 for treeldin Trees
for nodeClusterldn Graph
Intersections= alllntersectiorftreeld,nodeClusterldreeld))
for otherClusterldin intersections
if hammingDistanc@therClusterldnodeClusterld ==
addEdgénodeClusterldotherClusterld

OO~ WN

ALL INTERSECTIONtreeld, partitionld)

1 intersections= {}

2 for nodeClusterldn graph

3 if nodeClusterldtreeld == partitionld
4 intersectionsadd(nodeClusterld
5 return intersections

Figure 4:Algorithm for GSP Generation

3.1 Synthetic data

Figurel (a) shows the density of a 2D synthetic data set that invaie@sconvex manifolds
and varying sample densities. Figirehows that the proposed algorithm successfully iden-
tifies three clusters and assigns the cluster index to eadh oiothe GSP using appropriate
parameters. In the following we examine the effect of défarparameter settings on the
clustering result on the same data set.

In the stage of partitioning data by a random forest, thedeg®h determines the resolu-
tion of the quantisation. When the tree depth is small, ehsstannot be distinguished from
each other, see Figufe Currently the optimal tree depth is found on a validatioresel set
to a value of 8 in our experiments.

The most influential parameter of the MCL algorithm is thevheon (orinflation) term.

A high inflation parameter leads to smaller clusters. Thisypeeter allows a smooth control

between compact partitions and clustering, see Figui#fe consistently set the parameter
value to 1.1 in our experiments to capture the structure fitita. Note that a property of

MCL is that it converges more rapidly for larger values of ithiéation parameter.

We further investigate the effect of tipee-inflation parametert in MCL. It is the ex-
ponent applied to the edge weighiew = W, allowing modulation of the edge contrast: a
high pre-inflationparameter will lead to a larger variation among the edge ksjgesulting
in a higher resolution clustering, see FigiiteGood results have been obtained with values
in the range from 1 to 4.

The three parameters, tree deptiflation andpre-inflationall contribute to the resolu-
tion of the final clustering. They are currently found by itegtthem on a validation set for
each application.

3.2 Comparisons

We compare our method agait&imeans §], Mean Shift clustering]?] and Spectral Clus-
tering [26] using publicly available code. None of these methods is tbtorrectly separate
the correct C-shaped clusters, see Figur&he timing results shows that oni§-means is
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(a) depth=4 (b) depth=6 (c) depth=8
Figure 5:Effect of tree depth.

(a) inflation=1.1  (b) inflation=1.2  (c) inflation=1.3  (d) inflation=1.7  (e) inflation=2.0
Figure 6:Effect of the MCL inflation term.

(a) exponent=1  (b) exponent=2  (c) exponent=4  (d) exponent=6
Figure 7:Effect of changing the power exponent for edge weights in MCL

S

Figure 8: Clustering Result. The original PDF is shown on the left. The result of the prabs
clustering method is a function which, for any new data pa#turns a cluster index or an ‘unknown’
state. This function is shown in the centre. On the right tmmes function is shown along with the
data points. As the GSP focuses on regions of high denséyutput becomes less precise when the
function is computed outside of these.

comparably efficient and only for a smaK£3) number of clusters, while Mean shift and
spectral clustering are significantly slower, see Tdble

3.3 Video Segmentation

As an example application, we apply the GSP algorithm to ttieossegmentation problem
on two public test sequences. The data space is six-dinraisémd includes the pixel
coordinates, time index and the colour values= [x,y,t,r,g,b]", each coordinate scaled
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femeans [k=3] Mean Shil, bandwidth: 0.32, number of clusters: 4 Spectral clustering, k 3, number of neighbours in lacal scaling: 15
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femeans [k=4] Mean SHit, bandwidth: 0.3, number of clusters: 5
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(a) K-Means (b) Mean Shift (c) Spectral Clustering
Figure 9: Comparison of Clustering Algorithms. Results on synthetic data set sampled from the
distribution in Figure 1(a). For K-means, Mean Shift and &pa Clustering results using two different
parameter settings are shown. None of the algorithms cepttite correct C-shaped clusters.

Method No. samples10® Time|[s] Time/16 samples [s]
K-meansk =3 1000 10 10
K-meansk =4 1000 29 29
Mean Shift,pandwidth= 0.30 200 127 635
Mean Shift,bandwidth= 0.32 200 191 955
Spectral Clustering 3 180 60000
GSP 5000 112 22

Table 1: Computation time comparison. This table shows the computation times (in seconds) of
various clustering methods applied to the synthetic 2D sltén Figure8. The last column shows the
computation time taken per millions of sample points. Thappsed method is comparable with an
efficientK-means implementation and significantly faster that Meaift 8hd Spectral Clustering.

to the rangd0, 1]. The clustering algorithm is run on the complete space-tioleme and
therefore insures that segmented regions are consistentime.

The algorithm is run with an increasing number of tree deptiere the clustering res-
olution increases with tree depth, see Figut®sand11l. The segmentation results show
plausible segmentations at multiple resolutions of regjioihsimilar colour. These may be
used to generate layered image representations or as orgutther processing.

The computation time for segmenting a sequence of 30 frafm&ze200x 130 at the
highest resolution setting was approximately 10 minutesroimtel Xeon 3.2 GHz machine.

4 Discussion

This paper introduced a novel clustering algorithm basea Gnaph of Superimposed Parti-
tions (GSP) generated with a random forest. The resultiaglgclustering problem is solved
using the Markov Clustering algorithm. The method is ableestmver non-convex structure
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Figure 10: Results on Flower Garden SequenceTop row shows input frames, rows below show
segmentation results with increasing cluster resolutiaremeter.

Figure 11:Results on Mother and Daughter SequenceTop row shows input frames, rows below
show segmentation results with increasing cluster regmiyparameter.

and can efficiently handle large data sets. This scalabditgquired in computationally
expensive applications such as video segmentation. Weihegstigated the influence of
some parameters and compared the performance with thretingx¢lustering algorithms
on synthetic data. The algorithm was also applied to videgonemtation of standard test
sequences.

Some compact partitions are not represented in the GSP duéatk of samples; ex-
tending the graph by including those extra node remain an gpestion. Since the GSP
performs a remapping of input-space distances, one direéir future research includes
the comparison to other graph-based methods for dimenrgioreduction such as Locally
Linear Embedding (LLE) and Isomap.
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