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With the constant proliferation of computational power, our ability to develop hybrid classifiers has
improved. Hybrid classifiers integrate results from multiple algorithms and often improve classification
accuracy. In this paper, a hybrid classification framework was used to evaluate two research hypotheses: i)
can manipulated results from prior classifiers (“intermediate inputs” (IIs)) improve classification accuracy in
subsequent classification steps. and ii) is there an optimal dataset proportion for creation and usage of
intermediate inputs. These additional intermediate inputs were based on spatial and texture statistics
calculated on a partially classified image. The implementation of intermediate inputs on an impervious
surface classification task using a 2001 Landsat ETM+ image from central New York was demonstrated. The
results suggested that there was an average accuracy improvement of 3.6% (maximum 6.6%) by using
intermediate inputs. These improvements were proved statistically significant by a Z-test and tended to
increase as classification difficulty increased. The experiments in this paper also showed that there was an
optimal point that balanced the number of pixels and pixel classification accuracy from prior steps used to
produce intermediate inputs. Additionally, some traditional problems such as separation of impervious
surfaces and soil were successfully tackled through intermediate inputs. The concept of the intermediate
inputs may easily apply to other sensors and/or ground features.
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1. Introduction

Impervious surfaces, defined aswater impenetrable surfaces such as
rooftops, roads, parking lots, sidewalks, and other man-made surfaces,
have become a key indicator in urban environmental studies (Arnold &
Gibbons, 1996; Schueler, 1994). Accurate estimation of imperviousness
is of high significance for hydrology, land use planning, resource
management and ecosystem studies. Remote sensing imagery provides
a cost-efficient alternative to ground-basedmapping and thus has been
increasingly employed for impervious surface estimation.

Previous research explored classification approaches in order to
estimate imperviousness based on their spectral and/or spatial char-
acteristics. Typical classification methods include multivariate regres-
sion models, spectral mixture models, machine learning models and
integration with geographical information systems. Early in 1980,
Forster (1980) applied multiple regression analysis to derive linear
equations relating each Landsat bandwith percentage of land use in the
Sydney metropolitan area. Later, spectral mixture analysis was devel-
oped tomap the imperviousness (Lee& Lathrop, 2005; Lu&Weng, 2006;
Phinn et al., 2002; Powell et al., 2007; Wu & Murray, 2003). In these
studies, imperviousness can be estimated using a linear summation of
endmembers (spectral signatures of ‘pure’materials). Bauer et al. (2005)
developed a second-order polynomial regression model to estimate the
relationship between the imperviousness and “tasseled cap” greenness
by using Landsat TM imagery. Yang et al. (2003) presented a practical
step-wise multivariate regression model for landscape impervious
estimation through the synergistic use of ETM+ and high-resolution
imagery. Machine learning models such as decision tree classifiers
(Crane et al., 2005; Dougherty et al., 2004; Herold, 2003; Yang et al.,
2003) and neural networks (Hu &Weng, 2009; Iyer &Mohan, 2002; Lee
& Lathrop, 2006), have been widely applied to estimate pixel-based or
subpixel imperviousness. Weng (2007) provided an excellent overview
of impervious surface estimation using remote sensing techniques.

The majority of current approaches towards impervious surface
detection employ a single classifier. Some studies have demonstrated
that combining multiple classifiers can produce more accurate results
than a single classifier approach (Breiman, 1996; Hansen & Salamon,
1990; Krogh & Vedelsby, 1995). However, only a few studies have
focused on hybrid classifiers for estimating imperviousness. Steele
(2000) constructed combinations from the spatial, k-nearest neighbor,
and linear classifiers for land cover mapping of two Landsat TM scenes.
The results showed that the combination of multiple classifiers
produced substantial increased accuracies compared to a single
classifier approach. Liu et al. (2004) presented a hybrid classifier
method using a two classifier combination consisting of a decision tree
and a fuzzy ARTMAP neural network. This approach combined results
from partially classified images within a hybrid
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from these two classifiers using a hybrid scheme and derived a
confidence map providing users with additional information on
classification accuracy. Coe et al. (2005) adopted a hybrid approach
which combined an object-oriented and a pixel-based classification
approach to detect impervious surfaces through integration of various
sources. Franke et al. (2009) applied a hierarchical multiple end-
member spectral mixture analysis (MESMA) approach to map urban
land cover. This approach was consisted of four levels of complexity
ranging from the simplest level consisting of only two classes,
impervious and pervious, to 20 classes that differentiated material
composition and plant species. Mountrakis et al. (2009) developed an
expert-based multi-process system to estimate the distribution of
impervious surfaces. This method was composed of a series of
processing steps and involved multiple classifiers. In each step, a
different algorithm was applied to classify part of the dataset.
Mathematically simple and computationally efficient classifiers were
adopted during the prior steps. As the number of unclassified pixels
decreased and the classification difficulty increased, complex and
computationally intensive classifiers were progressively introduced.

In this paper, we tackle the problem of binary impervious surface
classification. If any portion of a pixel occupies a constructed
impervious surface on the ground, that pixel is assigned to the
impervious class. A progressive classification methodology was used
to assess two research questions:

i) Can we process results from prior classifiers (creating “interme-
diate inputs” (IIs)) to assist classification in subsequent steps and
thus improving overall classification accuracy?

ii) Is there an optimal dataset proportion for creation and usage of
intermediate inputs?

2. Study area and datasets

The study area is the region covered by a Landsat Enhanced
Thematic Mapper Plus (ETM+) scene (path 15, row 30) acquired on
April 8th, 2001. It is located in central New York covering an area of
approximately 173 km×177 km. The Landsat ETM+ imagery with
30 m spatial resolution and 6 bands (blue, green, red, near IR and two
mid IR bands) is used as the data source in this research.

Reference data was collected from 19 sites throughout the entire
scene. Samples within the 19 sites are representatives of land cover
classes in the study area and were produced from high-resolution
aerial Emerge imagery (1999) or digital orthophoto quarter quads
(DOQQ) (2001). Using on-screen interpretation and digitization
techniques on the DOQQ images, 18 sites containing land cover classes
of bare soil, crop, snowandwetlandswere selected. Site 19 covered the
entire city of Syracuse, NY with land cover classes of bare soil, forest,
grass, water and impervious surface. Reference data within this site
were produced from Emerge imagery with 3 bands (near infrared, red
and green) and 0.61 m spatial resolution. Although there is a 2 year
gap in the acquired dates between Emerge imagery and Landsat image,
the land cover distribution remained steadily across the city of
Syracuse due to minimal socioeconomic changes. As a result, the
Emerge image acquired in 1999 is a reliable reference source for the
classification of 2001 Landsat ETM+ image in this research. A land
cover map with five land cover classes (tree, grass, bare soil,
impervious surface and water) was created by Myeong et al. (2001)
from the Emerge image of site 19 by using a “hybrid” or “guided
clustering”method (Bauer et al., 1994) andwas directly used to derive
the impervious reference. Landsat pixels overlapping any impervious
pixels on the derived land cover map were assigned in the
imperviousness class; all others were assigned as non-impervious.
Although the overall classification accuracy of the derived land cover
map is about 84.8%, the difference in spatial resolution (a single
Landsat pixel contains app. 2500 Emerge pixels) justified the reference
data in Site 19 as accurate enough for model training. The reference
Please cite this article as: Luo, L., & Mountrakis, G., Integrating inte
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data from all the 19 sites contains 101,919 pixels in impervious class
and 280,334 pixels in non-impervious class. These pixels were then
randomlydivided into calibrationdataset and validationdatasetwith a
ratio of 3:7.

3. Methodology

3.1. General approach of IIs incorporation

As illustrated in Fig. 1, the general procedure of incorporating IIs is
based on spatial analysis of partial classification results derived from a
priori classifier. The a priori classifier can be either a single classifier or a
collection of classifiers. Furthermore, it is not restricted to a specific
classification method as long as partial results are supported. An
accuracy threshold is set up to determine the proportion of the obtained
partial classification results from theentire dataset. Then IIs— additional
inputs created on the partially classified image — complement tradi-
tional imagery information and assist the classification of the remaining
data through a posterior classifier.

3.2. A case of implementation

In this paper, we tackle the problem of binary impervious surface
classification. If any portion of a pixel occupies the constructed
impervious class, that pixel is assigned to the impervious class. The
motivation for a binary classification results from the imperviousness
overestimation of large scale subpixel classifiers in rural areas (Homer
et al., 2004; Yang et al., 2003), assigning imperviousness where no
imperviousness exists. This proves to be quite significant for
environmental and ecological applications where minor impervious-
ness changes in the low imperviousness range have considerable
impacts (Forman & Alexander, 1998; Klein, 1979; Paul & Meyer,
2001). Therefore, ourmethod does not directly competewith subpixel
algorithms; instead, it complements them as someone could selec-
tively perform subpixel analysis using our results as a preprocessing
binary filter.

A hybrid multi-process classifier was used to implement the
concept of intermediate inputs. The tested multi-process classifier
includes a series of classifiers (five) acting collectively as the a priori
classifier (see Fig. 1). Partial classification results were produced from
the a priori classifier leading to specific IIs creation. An experiment
was set up to incorporate and evaluate these IIs by testing an a
posteriori classifier with and without IIs.

3.2.1. Hybrid multi-process classifier
The potential benefits of building an integration framework for

collaborative operation of multiple algorithms in remote sensing
applications have been recently presented (Mountrakis, 2008). In this
paper, an expert-based system developed to support integration of
multiple classifiers was applied for impervious surface detection
(Mountrakis et al., 2009). The classification process is comprised of 5
classification steps (Fig. 2). In each step, parts of the dataset were
classified while the rest were forwarded to subsequent steps. Using
the 6 bands and their spatial distribution, numerous bands combina-
tions, normalizations, and spatial filtering masks were produced as
candidate inputs. For example, NDVI is one input which was
calculated from the normalized difference between band 3 and band
4. For the first four classification steps, simple classifiers utilizing only
two dimensions of the dataset were applied in each step targeting at
the extraction of either impervious or non-impervious pixels. Each
classifier selected two inputs with the best impervious/non-impervi-
ous separation from the candidates.

As low input dimensionality classifiers were successively added
after the first four steps it became progressively more difficult to
classify leftover pixels using only two inputs. To address the high
complexity, a neural network structure was selected as the fifth and
rmediate inputs from partially classified images within a hybrid
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final step of the process. 4800 multilayer perceptron neural networks
were trained using the backpropagation algorithm with 10 randomly
selected inputs from more than 200 combinations of normalized
differences and texture statistics between the 6 ETM+ bands. The
node number for each hidden layer was randomly selected: between
8 and 16 for the first hidden layer, and from 0 to 6 for the second
hidden layer. A higher range of node numbers in the input layer and
hidden layers was not tested in order to avoid overfitting. The
network output layer contained two nodes, each comprised of a
logistic function, with one representing the impervious and the other
the non-impervious class. The range of the two nodes was continuous
between 0 and 1. Pixels were assigned to the corresponding class of
larger valued node. Among the 4800 candidate architectures and
inputs, the neural network with the best overall accuracy was
selected. The random search employed was an efficient method to
assess the values of intermediate inputs. The large number of
candidate networks was used to ensure the validity of our statistical
comparisons. In a typical implementation of ourmethodology, a lower
number of simulations and inputs would be sufficient. Furthermore,
processing time can be improved using advanced input selection
methods, such as genetic algorithms. Since the purpose of this paper
Fig. 2. The multi-process hybrid

Please cite this article as: Luo, L., & Mountrakis, G., Integrating inte
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was to demonstrate the novelty and value of intermediate inputs
rather than produce a full-scale implementation, processing time
optimization is reserved for future work.

In the first four steps, all pixels extracted in each stepwere classified
as either impervious or non-impervious class. Steps 1 to 3 identified
pixels as non-impervious class and pixels extracted in step 4 were
identified as impervious class. However, step 5 is the last step of the
multi-process method in which all leftover pixels were classified.
Therefore, step 5 identified both impervious and non-impervious
pixels. For more details of the classifiers' structure in this hybrid multi-
process model, please refer to Mountrakis et al. (2009). Table 1 shows
the progressive classification of the validation dataset expressed as
proportion of classified data in this step for the impervious (ISA) class
and the non-impervious (NonISA) class.

3.2.2. Intermediate inputs
In the aforementionedhybrid classifier,we identified aprocesswhere

partial results were created with all pixels falling into three categories:
impervious, non-impervious, and unclassified, where unclassified repre-
sented leftover pixels thatwould be classified in subsequent step(s). That
process is explained in details in Section 3.2.3. Using all classified
classification framework.

rmediate inputs from partially classified images within a hybrid
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Table 1
The extraction of validation dataset during the first 5 steps.

Steps Absorption per class in reference data (%)

ISA NonISA Overall

Step1 0.17 7.52 3.23
Step2 1.41 14.14 6.72
Step3 2.12 23.58 11.07
Step4 50.71 0.58 29.82
Step5 45.59 54.18 49.16
Total 100 100 100
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impervious and non-impervious pixels up to that step, statistics on the
unclassified pixels were produced, creating “intermediate inputs” (IIs).
The driving hypothesis is that these IIs can be involved in the
classification of a subsequent step and potentially improve classification
accuracy. 48 different IIs of three types were produced, namely texture-
based (25), distance-based (11), and road-targeted (12) IIs.

3.2.2.1. Texture-based statistics. IIs were calculated by utilizing texture-
based statistics. Mean and variance of classified pixels within a
rectangle neighborhood centered on each unclassified pixel were
obtained for five different spatial neighborhood sizes (3×3, 5×5,
7×7, 9×9, and 11×11 pixels) leading to 10 IIs. Additional texture
statistics such as contrast, energy, and homogeneity, which were
obtained from co-occurrence matrices of the classified pixels were
also produced using the following equations (Chen et al., 1998):

Contrast = ∑
i
∑
j

i−jð Þ2Pd i; jð Þ ð1Þ

Energy = ∑
i
∑
j
P2
d i; jð Þ ð2Þ

P i; jð Þ
Fig. 3. Network output thresholds for variable accuracy thresholds in step 5.
Homogeneity = ∑
i
∑
j

d

1 + ji−jj ð3Þ

where Pd is the co-occurrence matrix in a rectangle neighborhood
(3×3, 5×5, 7×7, 9×9, and 11×11) of the classified map, i is the row
number and j is the column number in Pd. As a result, there were 15
additional IIs: 5 inputs for contrast, energy and homogeneity,
respectively. All texture-based statistics were normalized and
calculated using only classified pixels.

3.2.2.2. Distance-based statistics. Distances from each pixel to the
nearest impervious pixel and the nearest non-impervious pixel were
calculated. The ratio between the distance to the closest impervious
pixel and the distance to the closest non-impervious pixel for each
unclassified pixel was used as one intermediate input. Distances to
impervious and to non-impervious of all pixels within a certain
neighborhood size (3×3, 5×5, 7×7, 9×9, and 11×11) were also
averaged to produce 10 additional IIs. In all distance calculations, the
unclassifiedpixelswere treated aspixels belonging to the opposite class.

3.2.2.3. Road-targeted statistics. In our early visual investigations, the
algorithms missed isolated road pixels. To compensate for that, 12 IIs
designed to detect roads are added. Based on road structure as
elongated, line-shaped features, these inputs implemented rectangle
line detection masks which are centered on each unclassified pixel of
variable size (5×5, 7×7, and 9×9) in the horizontal, vertical and two
diagonal directions. The unclassified pixels within each rectangle
mask are not included during the filtering.

3.2.3. Strategy for incorporation of IIs
The primary objective of the research in this paper is to investigate

whether the concept of IIs is beneficial. In addition, we are interested
Please cite this article as: Luo, L., & Mountrakis, G., Integrating inte
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in identifying the portion of the partially classified image that
optimizes their potential benefits. It is a balancing act of two opposing
forces: as the portion of the classified image used for IIs production
was increased, the classification accuracy of the already classified
image portion decreases.

To study this balance, a gradually increasing contribution was used
for the neural network developed in step 5 of the hybridmulti-process
classification method introduced in Section 3.2.1, while an additional
step (step 6)was added to assess IIs. As a result, classifiers in steps 1 to
5 were used as the a priori classifiers to produce partial classification
results. Based on these partial classification results, IIs were derived
and utilized to assist classification in the a posteriori classifier in step 6.
Accuracy thresholds were applied on step 5, starting from 89% to 99%
with an increment of 1%. Using the calibration dataset, these accuracy
thresholds were translated into node thresholds for the outputs of the
neural network comprising step 5. These thresholds were slightly
different for each of the two classes (Fig. 3). The “winner takes all” rule
was applied in cases when a pixel satisfied both thresholds; the pixel
was assigned to the node with the strongest response. For example, in
the case of a 94% accuracy threshold, all pixels with impervious
node response larger than 0.76 were selected and assigned to the
imperviousness class (Fig. 3). Pixels with response higher than 0.74 at
the non-imperviousness node were also extracted and classified as
non-impervious. Pixels satisfying both thresholdswere assigned to the
onewith the strongest response. Fig. 3 shows the relationship between
different accuracy thresholds for step 5 and the corresponding
thresholds for the neural network outputs (logistic nodes) of step 5.

The use of variable accuracy thresholds for step 5 resulted in variable
proportions of classified data, where higher accuracies led to lower
proportions of classified data for the current step and therefore a larger
leftover dataset. As a result of the 11 accuracy thresholds (89% to 99%
with 1% interval), 11 datasets were created expressing the leftover
pixels after step 5. Fig. 4 shows the percentage of the remaining dataset
after step 5 that is carried over to step 6, depending on the accuracy
threshold of step 5. It is important to emphasize the tradeoff when the
accuracy threshold decreases. On one hand, when the accuracy
threshold in step 5 decreases, a higher number of pixels are classified
within that step, but on the other hand, step 6 becomes more
challenging, since step 6 will include pixels with lower discriminatory
power.

In Fig. 5, the experiment setup for testing IIs was summarized. As
was mentioned, there were 11 datasets derived from 89% to 99%
variable accuracy threshold for step 5. For each of the 11 datasets the
two best neural networks were identified in terms of overall accuracy,
rmediate inputs from partially classified images within a hybrid
emote Sensing of Environment (2010), doi:10.1016/j.rse.2010.01.008
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one without and the other with IIs, creating a total of 22 neural
networks.

The evaluation of the IIs performance was done using step 6 as a
guide. First, 11 networks (mirroring 89% to 99% accuracy thresholds)
were trained with 10 randomly selected inputs, without inclusion of
IIs. After the 11 best networks were identified along with their
respective 10 inputs, 11 new neural networks were trained using the
same identified 10 inputs plus IIs. The idea was to isolate any
improvements by IIs. Because we could not determine a priori the
influence of the 48 possible intermediate input candidates, a random
search method was adopted in the networks to select 5 of them as
additional inputs. Therefore, each of these networks was trained with
15 inputs in total: the fixed 10 from its corresponding best network
without IIs, and the randomly selected 5 IIs.
Fig. 5. The framewor

Please cite this article as: Luo, L., & Mountrakis, G., Integrating inte
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After the IIs concept was implemented, the process using
exclusively step 6 was evaluated to assess direct improvements of
the IIs. Then results from steps 5 and 6 were combined in order to
study the cumulative effect of IIs and whether an optimal application
threshold did exist. The spatial footprint and classification results on
the central New York Landsat scene were also produced.

4. Results

4.1. IIs and neural network selection

11 different neural networks using IIs as possible candidates for
step 6 were identified. Table 2 presents the five IIs selected to build
each of the 11 optimal neural networks along with the number of
nodes in their hidden layers [layer 1, layer 2]. The accuracy thresholds
applied on step 5 are also listed. Looking further into the selected IIs,
the road statistics have a strong presence. Contrast and homogeneity
statistics along with distances to features also play an important role.
Of special interest is the dependency of IIs selection and pixel size
considering future implementations on imagery of different spatial
resolution.

As Table 2 indicates there were cases where the same II was
selected twice for the same accuracy threshold (e.g. accuracy
thresholds 92% and 97%). This duplication suggests that using four
IIs produced higher accuracy than five in our tests. The neural network
in that case would ignore the duplicate input, actively using only four
inputs. Furthermore, there is a reasonable expectation that the same
selected IIs would not appear in two adjacent accuracy thresholds
because various accuracy thresholds would result in significantly
different corresponding training datasets and the higher accuracy
dataset would contain a substantial higher number of training pixels
(see Fig. 4).

4.2. Direct assessment of IIs benefits using step 6

Results obtained exclusively from step 6 with and without IIs
were compared by calculating overall accuracies. The purpose of this
k for testing IIs.

rmediate inputs from partially classified images within a hybrid
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Table 2
IIs and network structure.

Step 5
accuracy
threshold

Selected IIs Hidden layer
number of
nodes

89 Contrast (9×9) [8, 5]
Contrast (5×5)
Road feature (diagonal direction, 9×9)
Average value of distance to impervious (5×5)
Average of classified points (7×7)

90 Average value of distance to impervious (5×5) [12, 0]
Variance of classified points (5×5)
Road feature (vertical direction, 9×9)
Average value of distance to non-impervious (9×9)
Average value of distance to non-impervious (7×7)

91 Homogeneity (9×9) [10, 0]
Homogeneity (5×5)
Road feature (diagonal direction, 9×9)
Road feature (horizontal direction, 7×7)
Average value of distance to impervious (5×5)

92 Average value of distance to impervious (3×3) [11, 0]
Road feature (diagonal direction, 9×9)
Average value of distance to impervious (3×3)
Energy (9×9)
Contrast(7×7)

93 Average value of distance to non-impervious (11×11) [9, 0]
Average of classified points (9×9)
Average value of distance to impervious (5×5)
Average value of distance to non-impervious (5×5)
Road feature (vertical direction, 7×7)

94 Average value of distance to impervious (5×5) [9, 0]
Average value of distance to non-impervious (5×5)
Average value of distance to non-impervious (9×9)
Road feature (diagonal direction, 5×5)
Road feature (horizontal direction, 5×5)

95 Variance of classified points (3×3) [12, 2]
Average value of distance to non-impervious (9×9)
Average of classified points (5×5)
Average value of distance to impervious (7×7)
Homogeneity (3×3)

96 Average value of distance to non-impervious (9×9) [13, 1]
Average value of distance to impervious (3×3)
Variance of classified points (9×9)
Road feature (vertical direction, 5×5)
Contrast (5×5)

97 Contrast (5×5 ) [11, 2]
Average value of distance to impervious (7×7)
Contrast (7×7)
Contrast (7×7)
Average of classified points (11×11)

98 Variance of classified points (5×5) [11, 0]
Average of classified points (5×5)
Road feature (horizontal direction, 5×5)
Average value of distance to impervious (11×11)
Average of classified points (11×11)

99 Road feature (vertical direction, 7×7) [11, 3]
Average value of distance to non-impervious (11×11)
Homogeneity (11×11)
Road feature (horizontal direction, 9×9)
Contrast (11×11)

Fig. 6. Performance of step 6 for various accuracy thresholds on step 5.
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comparison was to assess the benefits of IIs as classification difficulty
increased, by lowering the accuracy threshold. All tests were
performed by simulating step 5 on the remaining validation dataset
from steps 1 through 4 and using different accuracy thresholds on the
neural network outputs from step 5.

The results are shown in Fig. 6 and Table 3. Two observations are of
special interest:

i) Classification accuracies for both algorithmic setups with and
without IIs decrease, as accuracy thresholds for step 5 decrease,
since classification complexity increases.

ii) Algorithms with IIs provide a substantial and consistent benefit.
The most encouraging result is that this benefit increases as the
Please cite this article as: Luo, L., & Mountrakis, G., Integrating inte
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classification difficulty increases: we see an average improvement
of 3.6% in the overall accuracy metric.

To further assess the contribution of the IIs, a Z-test between Kappa
statistics with and without IIs was conducted. The null hypothesis is:
Kappa without IIs=Kappa with IIs. The Z-score between Kappas was
calculated as (Cohen, 1960):

Z�score = K1−K2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ASE K1ð Þð Þ2 + ASE K2ð Þð Þ2

q
ð4Þ

where K1, K2 represent Kappa values and ASE(K1), ASE(K2) represent
Asymptotic Standard Errors (ASEs) of the two models. A p-value was
calculated using the Z-score expressing the confidence level that these
twomodels can produce identical results. The confidence level was set
to the high value of 0.01. The results are shown in Table 4 and the null
hypothesis can be rejected for all accuracy thresholds except for 99%,
which is still at a very low level (0.0173).

4.3. Overall assessment of IIs benefits combining step 5 and step 6

The previous assessment evaluated the incorporation of IIs as
complexity increased. However, it did not take into account the
variability in total pixels contained in each of the 11 datasets. In order
to assess overall benefits, performance from steps 5 and 6 were
combined. The same first four steps were kept for all models and three
algorithmic approaches were compared:

i) Model 5: The optimal neural network for step 5 assuming there
was no step 6 to follow (i.e. all pixels should be classified by
step 5);

ii) Model 6R (Regular): 11 combinations of step 5 and 6, where
step 6 did not use IIs;

iii) Model 6II (with IIs): 11 combinations of step 5 and 6, where
step 6 incorporated IIs.

The overall accuracies for the three models were calculated (Fig. 7
and Table 5). These values are directly comparable to each other, since
they were produced by the use of the same validation dataset.
Accuracy of Model 5 is constant at 87.74%, since no accuracy threshold
was applied. Model 6R expresses potential benefits associated with
adding another neural network as a post-process while also
increasing the input dimensionality. Model 6II incorporates the
additional neural network and increased dimensionality but also
supports IIs. It should be noted that Model 6II contains the exact same
rmediate inputs from partially classified images within a hybrid
emote Sensing of Environment (2010), doi:10.1016/j.rse.2010.01.008
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Table 3
Overall accuracy at each accuracy threshold for step 6.

Accuracy threshold for step 5 89 90 91 92 93 94 95 96 97 98 99

Overall (%) Without II 52.18 57.12 57.23 59.10 63.21 64.21 66.17 70.07 73.21 77.78 82.52
With II 58.74 59.89 62.06 64.36 66.66 68.32 70.69 73.02 75.93 79.68 83.12
Improvement 6.56 2.77 4.83 5.26 3.45 4.11 4.52 2.95 2.72 1.90 0.60

Table 4
Z-test for step 6 between with and without II models.

Accuracy threshold for step 5 89 90 91 92 93 94 95 96 97 98 99

Z-score 3.386 2.457 5.133 6.716 5.000 6.719 8.299 6.293 6.424 5.612 2.112
p-value 0.0004 0.0070 b0.0001 b0.0001 b0.0001 b0.0001 b0.0001 b0.0001 b0.0001 b0.0001 0.0173
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inputs selected for each corresponding network in Model 6R plus 5
randomly selected IIs. We did not examine the case of randomly
selecting not only IIs but also regular inputs to allow direct model
comparisons, even though it could potentially increase further the II
benefits.

The results clearly showed an advantage for the IIs as expressed in
Model 6II. The overall accuracy has improved over 1.3% from Model 5
and 0.9% over Model 6R. These improvements may not seem
significantly in terms of absolute numbers, but keeping in mind the
classification complexity, we consider these to be substantial
improvements. These improvements are also image-dependent, for
instance, the presence of many bare soil areas, which typically cause
spectral confusion with impervious surfaces, can affect the results.

Most importantly, from our hypothesis perspective, it can also be
inferred that there is an optimal point where the benefits of Model 6II
are maximized. The shape of the overall accuracies suggests that this
optimal point exists and in these experiments it is the 96% accuracy
threshold. That threshold expresses the balance between including a
sufficient amount and accurate enough pixels to produce the IIs. The
96% threshold is image-dependent, but it can easily be identified in
other classification applications as this process is automated.

4.4. Final model selection and classification

Benefits of IIs were maximized at an accuracy threshold of 96%.
Detailed accuracy metrics of this threshold were further developed,
using accuracy assessments (Congalton, 1991; Story & Congalton,
Fig. 7. Combined performance of steps 5 and 6 for various accuracy thresholds on step 5.
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1986) for all three models combining the effects of steps 5 and 6. As
illustrated in Table 6, Model 6R and Model 6II produced higher
accuracies compared to Model 5. Therefore, introducing an additional
step improves accuracy metrics. By using IIs, the producer's accuracy
of NonISA and user's accuracy of ISA were almost identical while the
improvements were concentrated on producer's accuracy of ISA and
user's accuracy of NonISA. This translates into a reduction of ISA pixels
mistakenly classified as NonISA.

The classification results of the entire study area using Model 6II at
96% threshold are represented in Fig 8. The simulated region includes
the reference data used for training and validation of the algorithm. In
order to evaluate further, classification results for the three models
are visualized within a selected representative area (red rectangle in
Fig. 8) and graphically shown in Fig. 9. Fig. 9a denotes the
classification results using step 5 as the final step (Model 5). Fig. 9b
and Fig. 9c illustrate the classification results by using an additional
step 6 without IIs (Model 6R) and with IIs (Model 6II), respectively.
Fig. 9d is also included to demonstrate the spatial footprint of the
steps under consideration. In the case of Model 5, both blue and red
pixels in Fig. 9d are classified using step 5.

Focusing on the circles in Fig. 9 revealed that numerous soil pixels
were misclassified as impervious surfaces by using Model 5 (Fig. 9a)
and Model 6R (Fig. 9b). Model 6II with IIs was successful at limiting
such misclassifications (Fig. 9c), especially the soil pixels close to
roads. This is a significant contribution of the method, since current
algorithms have a difficulty differentiating soil and impervious classes
due to their lack of spectral separability. It shows the ability of IIs to
add spatial context in the classification process. While there is a
significant improvement on successful soil identification, a limited
number of impervious pixels, namely road pixels were missed. This
was mostly driven by: i) the limited amount of ISA pixels
corresponding to roads; roads spatial footprint was small compared
to other ISA features (e.g. houses and parking lots), and ii) the
algorithmic performance metric used to select the winning neural
network was the overall classification accuracy. It is a tradeoff that we
are willing to accept, considering the overall classification improve-
ment. Furthermore, missing road pixels could be identified with a
post-process using morphological operators or using external data-
sets, but it is beyond the scope of this paper.

5. Discussion and conclusions

The concept of intermediate inputs could be seen as a context
classification; classification methods that take into account the
labeling of neighbors when seeking to determine the most appropri-
ate class for a pixel (Richards & Jia, 1999) with several successful
implementations (for example Benediktsson et al., 2005; Binaghi et
al., 2003; Melgani & Serpico, 2003; Tilton et al., 1982). Similar to
context classification, introducing intermediate inputs in the remote
sensing image classification process takes advantage of spectral/
rmediate inputs from partially classified images within a hybrid
emote Sensing of Environment (2010), doi:10.1016/j.rse.2010.01.008
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Table 5
Combined overall accuracy at each specified accuracy level for steps 5 and 6.

Accuracy threshold for step 5 89 90 91 92 93 94 95 96 97 98 99

Overall (%) Model 5 87.74 (threshold independent)
Model 6R 87.69 87.90 87.86 87.83 88.18 88.06 87.97 88.21 87.97 88.08 88.25
Model 6II 87.85 88.06 88.29 88.47 88.73 88.86 89.05 89.09 89.00 89.02 88.63
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spatial context information from neighboring pixels. It exploits the
relationship between adjacent pixels. However, there is a significant
difference from typical context classifiers. The intermediate inputs
concept uses algorithms to classify a scene to a predetermined
accuracy level, which acts as the basis to explore spatial relationships.
In other words, it is a posteriori process, since we already have an
accurate and partially classified scene. In contrast, typical context
classifiers, through either preprocessing or postprocessing proce-
dures, act on the entire image without incorporating detailed partial
classification results.

The statistical evaluation suggested that using intermediate inputs
improved the classification compared to traditional classification
models. The overall accuracy showed an average improvement of 3.6%
(maximum 6.6%). Furthermore, the Z-test between Kappa statistics
with and without intermediate inputs illustrated that the improve-
ments were statistically significant. These improvements tended to
increase as classification difficulty increased, a significant advantage
of the proposed method. It should be noted that the aforementioned
statistical improvements are site dependent. Our methodology takes
over where spectral separability between classes is limited, for
example, between types of soil and impervious surfaces. Intermediate
input improvements are highly dependent on the proportion of these
inseparable types in the overall image. Considering that this is typical
challenge among numerous existing classifiers, intermediate inputs
have the potential for significant advances. Furthermore, the use of
intermediate inputs was not explored to its full potential. Our
statistical comparisons constrained all intermediate input-based
models to the usage of the exact same non-intermediate inputs in
order to attribute any improvements specifically to intermediate
inputs. If numerous non-intermediate inputs are also examined along
with candidate intermediate inputs accuracy could improve further.

The incorporation of intermediate inputs requires a two-step
classification process: the a priori classifier to provide a partially
classified image; and the a posteriori classifier to integrate image-
based inputs with intermediate inputs. In this paper the a priori
classifier was composed of five steps in order to achieve even higher
accuracy. Scientists implementing the intermediate inputs concept
could avoid such complexity by selecting a simple and efficient a
priori classifier depending on their accuracy requirements. Instead the
optimization process could include an assessment of the obtained
results and misclassifications in order to create targeted intermediate
inputs: for example in our experiment, spatial masks were created as
intermediate inputs in an attempt to connect broken road pixels.

From the computational load perspective, the incorporation of
intermediate inputs brings in additional computing circles. We
demonstrated that an optimal threshold did exist in a conclusive
statistical manner using an extensive number of neural network
Table 6
Detailed accuracy comparison of the three models for step 5 and 6.

Model 5 Model 6R Model 6II

Producer's ISA 89.94 90.42 92.41
NonISA 85.16 85.61 85.19

User's ISA 87.70 88.09 88.01
NonISA 87.80 88.36 90.51

Overall 87.74 88.21 89.09

Please cite this article as: Luo, L., & Mountrakis, G., Integrating inte
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combinations. In future implementations, lower number of neural
network combinations need to be tested now that the proof of
concept exists, while adaptive methodologies such as genetic
algorithms can be implemented to test even fewer combinations.
Since the classification process for each accuracy threshold was
independent of each other, parallel computing techniques could
improve simulation times.

Another advantage of the intermediate inputs concept is its
independence of algorithmic methodology. In the experiments in
this paper, neural networks were used as the underlying methodol-
ogy, however a wide range of methods is supported. The only
constraint applies to the a priori classifier; it should have the ability to
create partial results for a given accuracy threshold. There are no
constraints for the a posteriori classifier. This flexibility allows
incorporation of technique in numerous applications. It could
potentially be generalized to other ground feature classifications
such as forest, rivers, etc and even applications outside the remote
sensing domain.

In this paper, intermediate inputs were applied on coarse
resolution imagery (∼30 m Landsat ETM+ imagery). The concept of
intermediate inputs can also be implemented to higher resolution
imagery, where shape and texture intermediate inputs are expected
to become more prominent in the classification process, since spatial
dependencies are more pronounced in higher resolution imagery.
This work proved the concept for intermediate inputs through an
impervious classification illustration. Future implementations will be
Fig. 8. Classification map using 6II model at 96% threshold; Red rectangle denotes a
selected representative area analyzed further in Fig. 9. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)

rmediate inputs from partially classified images within a hybrid
emote Sensing of Environment (2010), doi:10.1016/j.rse.2010.01.008
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Fig. 9. Visual comparison of different classification models on a 39×31 km subarea.
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extended to numerous spatial resolutions, classification tasks and
classification methodologies.
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