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Abstract—Graphics Processing Unit (GPU) has become an 
attractive coprocessor for scientific computing due to its massive 
processing capability. The sparse matrix-vector multiplication 
(SpMV) is a critical operation in a wide variety of scientific and 
engineering applications, such as sparse linear algebra and image 
processing. This paper presents an auto-tuning framework that 
can automatically compute and select CUDA parameters for 
SpMV to obtain the optimal performance on specific GPUs.  The 
framework is evaluated on two NVIDIA GPU platforms: 
GeForce 9500 GTX and GeForce GTX 295. 
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I.  INTRODUCTION  
The sparse matrix-vector multiplication (SpMV) is a 

critical operation in a wide variety of scientific and engineering 
applications. Optimizing SpMV computation has always been a 
challenge because SpMV computation is irregular and requires 
many indirect and irregular memory accesses [8]. In addition, 
the fine-grained parallelism is hard to explore [10]. Bell and 
Garland demonstrated that the SpMV computation can be 
successfully mapped to the fine-grained parallel architecture of 
GPUs [4]. 

Graphics Processing Unit (GPU) has become an attractive 
coprocessor for scientific computing due to its massive 
processing capability. GPU is especially well-suited to address 
problems that can be expressed as data-parallel computations 
[6]. GPU has been applied to SpMV and can significantly 
accelerate the performance by executing many dot products in 
parallel [9]. Launching a CUDA kernel will create a grid of 
threads. All threads in a grid execute the same kernel function. 
These threads are organized into a two-level hierarchy. A grid 
is organized as a two dimensional array of blocks at the top 
level and all blocks are organized into a three dimensional 
array of threads at the underline level [9]. A warp is a group of 
threads executed physically in parallel. Typically, 16 threads 
(half warp) are executed simultaneously. 

This paper makes the following contributions: (1) We 
investigate how CUDA parameters (Num_Threads, Block_Size 
and Warp_Size) affect the performance of SpMV kernels. (2) 
We design and implement an auto-tuning framework that can 
automatically adjust and choose CUDA parameters for SpMV 
to obtain the optimal performance on specific GPUs. 

II.  RELATED WORKS 

Bolz et al. first apply GPU computing to SpMV [7]. Bell 
and Garland implement SpMV kernels in CUDA for several 
sparse matrix formats, including DIA, ELL, COO, CSR, and 
Hybrid (ELL/COO) [5]. Our SpMV kernel is based on their 
implementation. 

Baskaran and Bordawekar propose a framework for 
optimizing SpMV on GPUs [11]. Their framework consists of 
three components: two modules and one runtime inspector. 
One module performs compile-time optimization. The runtime 
inspector analyzes the sparse matrix structure. And the other 
module executes the optimized kernel on GPU device. 

Nukada and Matsuoka present an auto-tuning framework 
that chooses the optimal number of threads for the CUDA-
based 3-D FFT library automatically [2]. Demmel and 
Dongarra have explored AEOS approach to automate the 
kernel optimization [1]. They present two software systems, 
ATLAS and BeBOP, for dense and sparse linear algebra 
kernels, respectively. Their optimized kernels achieve a 
considerable speedup. 

The rest of this paper is organized as follows: Section III 
reviews a widely-used sparse matrix format. Section IV 
presents our auto-tuning framework. Section V presents the 
performance evaluations. Section VI summaries the 
conclusions and the future work. 

III. SPARSE MATRIX FORMAT 
Sparse matrix is usually stored in a compact format, i.e., 

only non-zero elements are preserved. Fig. 1 shows an example 
for a widely-used sparse matrix format called CSR 
(Compressed Sparse Row) or CRS (Compressed Row Storage). 
CSR format contains three arrays, i.e., ptr, indices, and data, 
which store row pointers to the offset of each row, the column 
indices, and the values of non-zero entries, respectively. 

    
                        Figure 1.   CSR sparse matrix format. 
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IV. SPMV AUTO-TUNING FRAMEWORK 
 What CUDA parameters do we need to auto-tune for 

SpMV computation on GPUs? Before designing our auto-
tuning framework, we need to address this question first. 
Studying the real code of CSR vector kernel for SpMV, we get 
two important equations (1) and (2) as follows: 

 

     NUM_BLOCKS = NUM_THREADS / BLOCK_SIZE              (1)   

     NUM_WARPS=(BLOCK_SIZE / WARP_SIZE) * gridDim.x   (2)
  

    Where NUM_BLOCKS is the first special parameter which 
specifies the number of blocks in the grid and NUM_WARPS 
is the total number of active warps. More specifically, from 
equations (1) and (2), we know that three CUDA parameters 
(NUM_THREADS, BLOCK_SIZE and WARP_SIZE) affect 
the performance of SpMV kernels on GPUs remarkably. 
Tuning these parameters can significantly affect the 
performance of SpMV computation.  

The workflow of our auto-tuning framework is shown in 
Fig. 2. During the execution, our auto-tuning framework reads 
the properties of the specific GPU device first, then 
enumerates the feasible values for NUM_THREADS and 
BLOCK_SIZE according to the properties of the specific GPU 
device and selects the value of  WARP_SIZE (16 or 32) 
according to the specific matrix, then combines the different 
parameters to invoke the corresponding CSR vector kernel for 
SpMV computation. Since scientific computations usually 
contain many iterations of SpMV for the same matrix, after 
the first iteration, our auto-tuning framework can 
automatically choose a combination of NUM_THREADS,  
BLOCK_SIZE, and WARP_SIZE with the optimal 
performance. The rest iterations will utilize such a 
combination of parameters to obtain the optimal performance. 

A. Selecting NUM_THREADS 
The value of MAX_THREADS, which is the maximum 

number of threads,  is a pre-determined value depending on the 
specific GPUs. It is determined by the following formula: 

                     MAX_THREADS = N * TSM 
    
     Where N is the number of Streming Multiprocesssors (SMs) 
in a specific GPU.  TSM is the maximum number of threads that 
can be assigned to each SM. The specific GPUs with different 
compute capability have different values of N and TSM. For 
GeForce 9500 GTX, the value of N is 4 and the value of TSM is 
768. For GeForce GTX 295, the value of N is 30 and the value 
of TSM is 1024. The range of NUM_THREADS for our auto-
tuning framework is [MAX_THREADS /2,  MAX_THREADS] 
since the peak performance usually appears between the half 
load and the full load of  MAX_THREADS (See Figure 3 and 
Figure 4). In addition, we set TSM as the step length for tuning 
NUM_THREADS. 

B. Selecting BLOCK_SIZE 
 

 

     The value of BLOCK_SIZE depends on the specific GPUs. 
For a specific GPU, since TSM is constant, the value of 
BLOCK_SIZE is inversely proportional to the number of 
blocks which can co-exist on the same SM. In addition, the 
BLOCK_SIZE values that fail to satisfy the following two 
criterions will be excluded:  

• The  value of BLOCK_SIZE can not exceed 512 . 
   

• The value of BLOCK_SIZE must be the integral 
     multiple of the value of WARP_SIZE. 

 

C. Selecting WARP_SIZE 
    The CSR kernel contains two implementations: vector-
based and scalar-based. In CSR vector kernel, each matrix row 
is processed by a whole warp (32 GPU threads), while the 
CSR scalar kernel processes each row by one thread. The CSR 
vector kernel accesses indices and data contiguously, therefore 
outperforms the CSR scalar kernel [4]. The performance of the 
vector kernel is sensitive to the number of non-zero elements 
in matrix rows. If the number of non-zero elements in most 
matrix rows is greater than the warp size, the CSR vector 
kernel can usually obtain high performance. In Nvidia’s 
implementation [4], they define the warp size as 32. However, 
one important point neglected by Nvidia’s implementation is: 
if most rows of the sparse matrix have a small number of non-
zero elements (e.g. less than 32), then many threads in the 
warp are idle. In this situation, the performance of the vector 
kernel will drop down significantly. By tuning the warp size 
(32 threads) to half warp size (16 threads) to utilize the 
resource effectively, our approach can get significant 
performance improvement in contrast to Nvidia’s 
implementation (See Figure 6).   

In  our auto-tuning tool, CSR kernels may be invoked with 
different values of NUM_THREADS, BLOCK_SIZE, and 
WARP_SIZE. In Nvidia’s implementation [4], these 
parameters are defined as constant. In our implementation, we 
predefine several variants of CSR kernels according to 
different combinations of these parameters since changing the 
values of parameters dynamically cannot be supported by the 
system. 

 
Figure 2.   The workflow of our auto-tuning framework. 

 



V. PERFORMANCE EVALUATION  
Our experiments are evaluated on 14 unstructured sparse 

matrices [3], as shown in Table 1, by using two NVIDIA 
GPUs: GeForce 9500 GTX and GeForce GTX 295, where the 
compute capability for 9500 GTX is v1.1 and the compute 
capability for GTX 295 is v1.3. For each sparse matrix, we 
randomly generate an input vector for SpMV whose values do 
not affect the performance. To measure the performance of 
SpMV for each matrix, we execute the SpMV kernel for 500 
times, and take the averaged performance. Note that, in our 
experiment, the GPU’s warm up time is excluded. 

A. Test  NUM_THREADS 
Fig. 3 and Fig. 4 show how the performance varies with                     

NUM_THREADS by assuming BLOCK_SIZE and 
WARP_SIZE are constant. Let BLOCK_SIZE=128 and 
WARP_SIZE=16. The performance increases sharply before 
the half load of allowed MAX_THREADS. While, after the 
half load of allowed MAX_THREADS, the performance 
change slightly. For GeForce GTX 295, the peak performance 
appears at point “15360”.  For GeForce 9500 GTX, the peak 
performance appears at point “2304”.   

B. Test  BLOCK_SIZE 
For GeForce GTX 295, 128, 256, 512 are the only three 

feasible BLOCK_SIZE values. Assuming that 
NUM_THREADS and WARP_SIZE are constant, Fig. 5 
shows how the performance varies with them. Let 
NUM_THREADS=16384 and WARP_SIZE=32. From Fig. 5, 
we found that BLOCK_SIZE=128 has the best performance 
compared to the others. However, for GeForce GTX 9500, the 
best performance comes from BLOCK_SIZE=192 instead of 
BLOCK_SIZE=128. The reason is:  since the resource of 
GeForce GTX 9500 is insufficient to satisfy the needs of the 
simultaneous execution of 8 blocks, the CUDA runtime has to 
reduce NUM_BLOCKS per SM automatically to satisfy that 
the  resource usage is under the limit. Thus, the value of 
BLOCK_SIZE has to increase correspondingly since we have 
assumed that NUM_THREADS is constant. 

C. Test  WARP_SIZE 
For GeForce GTX 295, Fig. 6 shows how the performance 

varies with WARP_SIZE=16 and WARP_SIZE=32, 
respectively by assuming that NUM_THREADS and 
BLOCK_SIZE are constant. Let NUM _THREADS=15360 
and BLOCK_SIZE=128. By comparing the performance, we 
group these 14 matrices into two groups. Dense, Protein,  

 
Figure 3.   Test NUM_THREADS on GTX 295.                                                                 

 

Table 1.   Unstructured matrices used for our evaluations. 

 
FEM/Spheres, FEM/Cantilever, Wind Tunnel, FEM/Harbor, 
FEM/Ship and LP are in group 1. QCD, Economics, 
Epidemiology, FEM/Accelerator, Circuit and Webbase are in 
group 2. For all group 1 members, the performance of 
WARP_SIZE=32 outperforms the performance of   
WARP_SIZE=16 since the number of non-zero elements in 
most matrix rows is greater than the warp size. While, for all 
group 2 members, the performance of WARP_SIZE=16 
outperforms the performance of WARP_SIZE=32 since the 
number of non-zero elements in most matrix rows is small (e.g. 
less than 45). 

D. Overall Performance Evaluations 
Sections A, B and C have shown how the performance 

varies with NUM_THREADS, BLOCK_SIZE and 
WARP_SIZE, respectively,  by assuming that the other two 
parameters are constant. Fig. 7 and Fig. 8 illustrate how the 
performance varies if when tuning all three parameters. For 
GeForce 9500 GTX, compared to Nvidia’s implementation, 
our auto-tuning framework has 237% performance 
improvement on the average, and the median improvement is 
278%. For GeForce GTX 295, compared to Nvidia’s 
implementation, our auto-tuning framework has 33% 
performance improvement on the average, and the median 
improvement is 25.6%. The performance of Nvidia’s 
implementation in Fig. 8 is much lower than our auto-tuned 
performance since GeForce 9500 GTX cannot launch as many 
as 30*1024 threads requested by Nvidia’s implementation.  
BLOCK_SIZE=128, as defined in Nvidia’s implementation, 
cannot always guarantee to obtain the best performance 
compared to other values of BLOCK_SIZE because of the 
resource usage in specific GPU device (e.g. 9500 GTX). 

 
           Figure 4.   Test NUM_THREADS on 9500 GTX. 

 



      
   Figure 5.   Test BLOCK_SIZE on GTX 295.  

 

      
    Figure 7.   Overall performance evaluation on GTX 295. 

VI. CONCLUSION AND FUTUREWORK  
We design an auto-tuning framework that can automatically 

compute and select CUDA parameters to obtain the optimal 
performance on specific GPUs. Our performance evaluations 
are conducted on two NVIDIA GPU platforms: GeForce 9500 
GTX and GeForce GTX 295. Compared to Nvidia’s original 
implementation, the experimental results show that our auto-
tuning framework significantly improves the performance of 
SpMV computation. In the future work, we will explore more 
optimization methods, such as overlapping the executions of 
CPU and GPU, to obtain better performance for SpMV on 
GPUs. We will also extend our auto-tuning framework to 
handle other CUDA kernels. 
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