
Auto-Tuning CUDA Parameters for Sparse Matrix-
Vector Multiplication on GPUs

Ping Guo
Department of Computer Science

University of Wyoming, USA
pguo@uwyo.edu

Liqiang Wang
Department of Computer Science

University of Wyoming, USA
lwang7@uwyo.edu

Abstract—Graphics Processing Unit (GPU) has become an
attractive coprocessor for scientific computing due to its massive
processing capability. The sparse matrix-vector multiplication
(SpMV) is a critical operation in a wide variety of scientific and
engineering applications, such as sparse linear algebra and image
processing. This paper presents an auto-tuning framework that
can automatically compute and select CUDA parameters for
SpMV to obtain the optimal performance on specific GPUs. The
framework is evaluated on two NVIDIA GPU platforms:
GeForce 9500 GTX and GeForce GTX 295.

 Keywords- GPU; CUDA; sparse matrix-vector multiplication;
performance

I. INTRODUCTION
The sparse matrix-vector multiplication (SpMV) is a

critical operation in a wide variety of scientific and engineering
applications. Optimizing SpMV computation has always been a
challenge because SpMV computation is irregular and requires
many indirect and irregular memory accesses [8]. In addition,
the fine-grained parallelism is hard to explore [10]. Bell and
Garland demonstrated that the SpMV computation can be
successfully mapped to the fine-grained parallel architecture of
GPUs [4].

Graphics Processing Unit (GPU) has become an attractive
coprocessor for scientific computing due to its massive
processing capability. GPU is especially well-suited to address
problems that can be expressed as data-parallel computations
[6]. GPU has been applied to SpMV and can significantly
accelerate the performance by executing many dot products in
parallel [9]. Launching a CUDA kernel will create a grid of
threads. All threads in a grid execute the same kernel function.
These threads are organized into a two-level hierarchy. A grid
is organized as a two dimensional array of blocks at the top
level and all blocks are organized into a three dimensional
array of threads at the underline level [9]. A warp is a group of
threads executed physically in parallel. Typically, 16 threads
(half warp) are executed simultaneously.

This paper makes the following contributions: (1) We
investigate how CUDA parameters (Num_Threads, Block_Size
and Warp_Size) affect the performance of SpMV kernels. (2)
We design and implement an auto-tuning framework that can
automatically adjust and choose CUDA parameters for SpMV
to obtain the optimal performance on specific GPUs.

II. RELATED WORKS

Bolz et al. first apply GPU computing to SpMV [7]. Bell
and Garland implement SpMV kernels in CUDA for several
sparse matrix formats, including DIA, ELL, COO, CSR, and
Hybrid (ELL/COO) [5]. Our SpMV kernel is based on their
implementation.

Baskaran and Bordawekar propose a framework for
optimizing SpMV on GPUs [11]. Their framework consists of
three components: two modules and one runtime inspector.
One module performs compile-time optimization. The runtime
inspector analyzes the sparse matrix structure. And the other
module executes the optimized kernel on GPU device.

Nukada and Matsuoka present an auto-tuning framework
that chooses the optimal number of threads for the CUDA-
based 3-D FFT library automatically [2]. Demmel and
Dongarra have explored AEOS approach to automate the
kernel optimization [1]. They present two software systems,
ATLAS and BeBOP, for dense and sparse linear algebra
kernels, respectively. Their optimized kernels achieve a
considerable speedup.

The rest of this paper is organized as follows: Section III
reviews a widely-used sparse matrix format. Section IV
presents our auto-tuning framework. Section V presents the
performance evaluations. Section VI summaries the
conclusions and the future work.

III. SPARSE MATRIX FORMAT
Sparse matrix is usually stored in a compact format, i.e.,

only non-zero elements are preserved. Fig. 1 shows an example
for a widely-used sparse matrix format called CSR
(Compressed Sparse Row) or CRS (Compressed Row Storage).
CSR format contains three arrays, i.e., ptr, indices, and data,
which store row pointers to the offset of each row, the column
indices, and the values of non-zero entries, respectively.

 Figure 1. CSR sparse matrix format.

This work was supported in part by TeraGrid Pathways Fellowship, NSF
under Grant 0930040 and 0941735, and the Graduate Assistantship of the
School of Energy Resources at the University of Wyoming.

IV. SPMV AUTO-TUNING FRAMEWORK
 What CUDA parameters do we need to auto-tune for

SpMV computation on GPUs? Before designing our auto-
tuning framework, we need to address this question first.
Studying the real code of CSR vector kernel for SpMV, we get
two important equations (1) and (2) as follows:

 NUM_BLOCKS = NUM_THREADS / BLOCK_SIZE (1)

 NUM_WARPS=(BLOCK_SIZE / WARP_SIZE) * gridDim.x (2)

 Where NUM_BLOCKS is the first special parameter which
specifies the number of blocks in the grid and NUM_WARPS
is the total number of active warps. More specifically, from
equations (1) and (2), we know that three CUDA parameters
(NUM_THREADS, BLOCK_SIZE and WARP_SIZE) affect
the performance of SpMV kernels on GPUs remarkably.
Tuning these parameters can significantly affect the
performance of SpMV computation.

The workflow of our auto-tuning framework is shown in
Fig. 2. During the execution, our auto-tuning framework reads
the properties of the specific GPU device first, then
enumerates the feasible values for NUM_THREADS and
BLOCK_SIZE according to the properties of the specific GPU
device and selects the value of WARP_SIZE (16 or 32)
according to the specific matrix, then combines the different
parameters to invoke the corresponding CSR vector kernel for
SpMV computation. Since scientific computations usually
contain many iterations of SpMV for the same matrix, after
the first iteration, our auto-tuning framework can
automatically choose a combination of NUM_THREADS,
BLOCK_SIZE, and WARP_SIZE with the optimal
performance. The rest iterations will utilize such a
combination of parameters to obtain the optimal performance.

A. Selecting NUM_THREADS
The value of MAX_THREADS, which is the maximum

number of threads, is a pre-determined value depending on the
specific GPUs. It is determined by the following formula:

 MAX_THREADS = N * TSM

 Where N is the number of Streming Multiprocesssors (SMs)
in a specific GPU. TSM is the maximum number of threads that
can be assigned to each SM. The specific GPUs with different
compute capability have different values of N and TSM. For
GeForce 9500 GTX, the value of N is 4 and the value of TSM is
768. For GeForce GTX 295, the value of N is 30 and the value
of TSM is 1024. The range of NUM_THREADS for our auto-
tuning framework is [MAX_THREADS /2, MAX_THREADS]
since the peak performance usually appears between the half
load and the full load of MAX_THREADS (See Figure 3 and
Figure 4). In addition, we set TSM as the step length for tuning
NUM_THREADS.

B. Selecting BLOCK_SIZE

 The value of BLOCK_SIZE depends on the specific GPUs.
For a specific GPU, since TSM is constant, the value of
BLOCK_SIZE is inversely proportional to the number of
blocks which can co-exist on the same SM. In addition, the
BLOCK_SIZE values that fail to satisfy the following two
criterions will be excluded:

• The value of BLOCK_SIZE can not exceed 512 .

• The value of BLOCK_SIZE must be the integral
 multiple of the value of WARP_SIZE.

C. Selecting WARP_SIZE
 The CSR kernel contains two implementations: vector-
based and scalar-based. In CSR vector kernel, each matrix row
is processed by a whole warp (32 GPU threads), while the
CSR scalar kernel processes each row by one thread. The CSR
vector kernel accesses indices and data contiguously, therefore
outperforms the CSR scalar kernel [4]. The performance of the
vector kernel is sensitive to the number of non-zero elements
in matrix rows. If the number of non-zero elements in most
matrix rows is greater than the warp size, the CSR vector
kernel can usually obtain high performance. In Nvidia’s
implementation [4], they define the warp size as 32. However,
one important point neglected by Nvidia’s implementation is:
if most rows of the sparse matrix have a small number of non-
zero elements (e.g. less than 32), then many threads in the
warp are idle. In this situation, the performance of the vector
kernel will drop down significantly. By tuning the warp size
(32 threads) to half warp size (16 threads) to utilize the
resource effectively, our approach can get significant
performance improvement in contrast to Nvidia’s
implementation (See Figure 6).

In our auto-tuning tool, CSR kernels may be invoked with
different values of NUM_THREADS, BLOCK_SIZE, and
WARP_SIZE. In Nvidia’s implementation [4], these
parameters are defined as constant. In our implementation, we
predefine several variants of CSR kernels according to
different combinations of these parameters since changing the
values of parameters dynamically cannot be supported by the
system.

Figure 2. The workflow of our auto-tuning framework.

V. PERFORMANCE EVALUATION
Our experiments are evaluated on 14 unstructured sparse

matrices [3], as shown in Table 1, by using two NVIDIA
GPUs: GeForce 9500 GTX and GeForce GTX 295, where the
compute capability for 9500 GTX is v1.1 and the compute
capability for GTX 295 is v1.3. For each sparse matrix, we
randomly generate an input vector for SpMV whose values do
not affect the performance. To measure the performance of
SpMV for each matrix, we execute the SpMV kernel for 500
times, and take the averaged performance. Note that, in our
experiment, the GPU’s warm up time is excluded.

A. Test NUM_THREADS
Fig. 3 and Fig. 4 show how the performance varies with

NUM_THREADS by assuming BLOCK_SIZE and
WARP_SIZE are constant. Let BLOCK_SIZE=128 and
WARP_SIZE=16. The performance increases sharply before
the half load of allowed MAX_THREADS. While, after the
half load of allowed MAX_THREADS, the performance
change slightly. For GeForce GTX 295, the peak performance
appears at point “15360”. For GeForce 9500 GTX, the peak
performance appears at point “2304”.

B. Test BLOCK_SIZE
For GeForce GTX 295, 128, 256, 512 are the only three

feasible BLOCK_SIZE values. Assuming that
NUM_THREADS and WARP_SIZE are constant, Fig. 5
shows how the performance varies with them. Let
NUM_THREADS=16384 and WARP_SIZE=32. From Fig. 5,
we found that BLOCK_SIZE=128 has the best performance
compared to the others. However, for GeForce GTX 9500, the
best performance comes from BLOCK_SIZE=192 instead of
BLOCK_SIZE=128. The reason is: since the resource of
GeForce GTX 9500 is insufficient to satisfy the needs of the
simultaneous execution of 8 blocks, the CUDA runtime has to
reduce NUM_BLOCKS per SM automatically to satisfy that
the resource usage is under the limit. Thus, the value of
BLOCK_SIZE has to increase correspondingly since we have
assumed that NUM_THREADS is constant.

C. Test WARP_SIZE
For GeForce GTX 295, Fig. 6 shows how the performance

varies with WARP_SIZE=16 and WARP_SIZE=32,
respectively by assuming that NUM_THREADS and
BLOCK_SIZE are constant. Let NUM _THREADS=15360
and BLOCK_SIZE=128. By comparing the performance, we
group these 14 matrices into two groups. Dense, Protein,

Figure 3. Test NUM_THREADS on GTX 295.

Table 1. Unstructured matrices used for our evaluations.

FEM/Spheres, FEM/Cantilever, Wind Tunnel, FEM/Harbor,
FEM/Ship and LP are in group 1. QCD, Economics,
Epidemiology, FEM/Accelerator, Circuit and Webbase are in
group 2. For all group 1 members, the performance of
WARP_SIZE=32 outperforms the performance of
WARP_SIZE=16 since the number of non-zero elements in
most matrix rows is greater than the warp size. While, for all
group 2 members, the performance of WARP_SIZE=16
outperforms the performance of WARP_SIZE=32 since the
number of non-zero elements in most matrix rows is small (e.g.
less than 45).

D. Overall Performance Evaluations
Sections A, B and C have shown how the performance

varies with NUM_THREADS, BLOCK_SIZE and
WARP_SIZE, respectively, by assuming that the other two
parameters are constant. Fig. 7 and Fig. 8 illustrate how the
performance varies if when tuning all three parameters. For
GeForce 9500 GTX, compared to Nvidia’s implementation,
our auto-tuning framework has 237% performance
improvement on the average, and the median improvement is
278%. For GeForce GTX 295, compared to Nvidia’s
implementation, our auto-tuning framework has 33%
performance improvement on the average, and the median
improvement is 25.6%. The performance of Nvidia’s
implementation in Fig. 8 is much lower than our auto-tuned
performance since GeForce 9500 GTX cannot launch as many
as 30*1024 threads requested by Nvidia’s implementation.
BLOCK_SIZE=128, as defined in Nvidia’s implementation,
cannot always guarantee to obtain the best performance
compared to other values of BLOCK_SIZE because of the
resource usage in specific GPU device (e.g. 9500 GTX).

 Figure 4. Test NUM_THREADS on 9500 GTX.

 Figure 5. Test BLOCK_SIZE on GTX 295.

 Figure 7. Overall performance evaluation on GTX 295.

VI. CONCLUSION AND FUTUREWORK
We design an auto-tuning framework that can automatically

compute and select CUDA parameters to obtain the optimal
performance on specific GPUs. Our performance evaluations
are conducted on two NVIDIA GPU platforms: GeForce 9500
GTX and GeForce GTX 295. Compared to Nvidia’s original
implementation, the experimental results show that our auto-
tuning framework significantly improves the performance of
SpMV computation. In the future work, we will explore more
optimization methods, such as overlapping the executions of
CPU and GPU, to obtain better performance for SpMV on
GPUs. We will also extend our auto-tuning framework to
handle other CUDA kernels.

REFERENCES
[1] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc, R.

C. Whaley, and K. Yelick. Self-adapting linear algebra algorithms and
software. Proceeding of IEEE, 93(2):293–312, 2005.

[2] A. Nukada and S. Matsuoka. Auto-tuning 3-d fft library for cuda gpus.
In SC’09: Proceedings of the conference on High Performance
Computing Networking, Storage and Analysis, pages 1-10, New York,
NY, USA, 2009.

[3] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel.
Optimization of sparse matrix-vector multiplication on emerging
multicore platforms. In Proc. 2007 ACM/IEEE Conference on
Supercomputing, 2007.

 Figure 6. Test WARP_SIZE on GTX 295.

 Figure 8. Overall performance evaluation on 9500 GTX.

[4] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on
CUDA. Technical report, NVIDIA Technical Report NVR-2008-004,
2008.

[5] N. Bell and M. Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In SC’09: Proceedings
of the Conference on High Performance Computing Networking,
Storage and Analysis, pages 1-11, New York, NY, USA, 2009.

[6] NVIDIA CUDA (Compute Unified Device Architecture): Programming
Guide, Version 2.0, and June 2008.

[7] J. Bolz, I. Farmer, E. Grinspun, and P. Schroder. Sparse matrix solvers
on the GPU: conjugate gradients and multigrid. ACM Trans. Graph.,
22(3):917–924, 2003.

[8] J. W. Choi, A. Singh, and R. W. Vuduc. Model-driven autotuning of
sparse matrix-vector multiply on GPUs. In PPoPP ’10: Proceedings of
the 15th ACM SIGPLAN symposium on Principles and practice of
parallel programming, pages 115–126, New York, NY,USA, 2010.

[9] David B. Kirk and Wen mei W. Hwu. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann, Burlington, MA,
USA, 2010.

[10] J. Kurzak, W. Alvaro, and J. Dongarra. Optimizing matrix multiplication
for a short-vector simd architecture-cell processor. Parallel Comput.
35(3):138–150, 2009.

[11] M. M. Baskaran and R. Bordawekar. Optimizing sparse matrix-vector
multiplication on GPUs using compile-time and run-time strategies.
Technical report, Research Report RC24704, IBM TJ Watson Research
Center, 2008.

