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Abstract—This paper deals with distributed demodulation of
space-time transmissions of a common message from a multi-
antenna access point (AP) to a wireless sensor network. Based
on local message exchanges with single-hop neighboring sensors,
two algorithms are developed for distributed demodulation. In
the first algorithm, sensors consent on the estimated symbols.
By relaxing the finite-alphabet constraints on the symbols,
the demodulation task is formulated as a distributed convex
optimization problem that is solved iteratively using the method
of multipliers. Distributed versions of the centralized zero-forcing
(ZF) and minimum mean-square error (MMSE) demodulators
follow as special cases. In the second algorithm, sensors iteratively
reach consensus on the average (cross-) covariances of locally
available per-sensor data vectors with the corresponding AP-to-
sensor channel matrices, which constitute sufficient statistics for
maximum likelihood demodulation. Distributed versions of the
sphere decoding algorithm and the ZF/MMSE demodulators are
also developed. These algorithms offer distinct merits in terms of
error performance and resilience to non-ideal inter-sensor links.
In both cases, the per-iteration error performance is analyzed,
and the approximate number of iterations needed to attain a
prescribed error rate are quantified. Simulated tests verify the
analytical claims. Interestingly, only a few consensus iterations
(roughly as many as the number of sensors), suffice for the
distributed demodulators to approach the performance of their
centralized counterparts.

Index Terms—Detection and estimation, sensor networks, co-
operative diversity.

I. INTRODUCTION

OVER the last years, there has been an increasing interest
in wireless cooperative communications [2], [3]. In the

cooperative broadcast scenario, all users are interested in the
common message sent, but may not have sufficient signal
quality to individually determine the message - a case mo-
tivating well the need for cooperation. This scenario emerges
naturally in applications involving wireless sensor networks
(WSNs). Consider a group of resource-constrained sensors
wishing to demodulate a common message broadcast from
an access point (AP). For efficiency reasons, the AP transmits
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only limited redundant information and/or the sensors cannot
request retransmissions when errors are detected. For instance,
the AP might be an unmanned aerial vehicle (UAV) flying over
a WSN deployed on the ground, and broadcasting lasts for
only a short period of time. Moreover, due to limited resources,
sensors may only afford linear demodulation modules. In
such cases, collaboration among sensors is imperative to im-
prove the quality of locally received information. Furthermore,
due to communication and energy constraints, inter-sensor
communications may be restricted to one-hop transmissions.
In this context, the objective of this paper is to develop
distributed algorithms to demodulate a common space-time
matrix transmitted from a multi-antenna AP.

From an information-theoretic perspective, the problem of
interactive decoding of a common message over a broadcast
channel was studied in [3], [2], [10] and references therein.
Limited to a pair of users, these works seek the optimal
number of conversation rounds [3] or the achievable capacity
region [2], [10]. Hierarchical modulations were explored for
broadcasting to a set of uneven quality destinations, followed
by successive broadcasts by some of the destinations [17].
From a signal processing viewpoint, various distributed al-
gorithms have been developed to exploit collaboration among
neighboring sensors for detection-estimation problems, mostly
through iterative exchanges of information-bearing messages.
The specific problem of distributed consensus averaging (CA)
of data collected across sensors has been considered in many
works; see e.g., [7], [13], [18] and references thereof. A
general algorithm for distributed parameter estimation [15]
is also available using the method of multipliers (MoM) [1,
Sec.3.4.4]. Distributed hypotheses testing (DHT) approaches,
whereby sensors agree on the optimal hypothesis using either
CA or belief propagation can be found in [8], [11] and [14].

Pursuing the implications these CA-MoM ideas have for
wireless communications, the present paper develops two algo-
rithms for solving distributed demodulation and equalization
problems, using: (a) distributed consensus on demodulated
symbol (DC-DS) estimates; and (b) distributed consensus
on sufficient statistics (DC-SS). In the DC-DS approach,
the centralized zero-forcing (ZF) and minimum mean-square
error (MMSE) demodulators are reformulated as a convex
optimization problem that is solved iteratively in a distributed
fashion using the MoM. An analytical approximation to the
symbol error rate (SER) per iteration of the algorithm is also
derived. In the DC-SS algorithm, on the other hand, sensors
iteratively reach network-wide consensus on the average of
sample (cross-) covariances of locally available per-sensor
data vectors with the AP-to-sensor channel matrix, which
constitute sufficient statistics for maximum likelihood (ML)
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Fig. 1. System model.

demodulation. Upon obtaining sufficient statistics per sensor
it becomes possible to perform general (possibly non-linear)
demodulation, including distributed sphere decoding (SD) and
ZF/MMSE demodulation. Per-iteration pairwise error prob-
ability (PEP) bounds of the ML demodulator are included,
establishing that full diversity is achieved in a finite number
of iterations. An analytical approximation to the SER per
iteration for linear demodulators is also provided. Compared
to related DHT algorithms [8], [11], [14], both DC-DS and
DC-SS can afford reduced overhead in inter-sensor commu-
nications, irrespective of the number of hypotheses, which is
exponential in the dimensionality of the space-time matrix,
and the number of bits per constellation symbol. Compared to
[19], which deals with consensus-based hard and soft channel
decoding, the present work offers linear demodulators (with
corresponding error analysis), and diversity analysis for ML
demodulators. Simulated tests demonstrate faster convergence
for the DC-SS under ideal inter-sensor links, while the DC-DS
offers robustness to non-ideal links.

The rest of the paper is organized as follows. In Section II,
the system model is introduced and the distributed ML de-
modulation problem is formulated. The DC-DS algorithm is
developed in Section III along with expressions for the SER
per iteration. The DC-SS algorithm and its SER analysis
per iteration are the subjects of Section IV. Simulations
corroborating the analytical findings are provided in Section V.

Notation: Upper (lower) bold face letters are used for matrices
(column vectors); vec(X) is a vector formed by concatenating
the columns of X; ⊗ stands for the Kronecker product; (⋅)𝑇
denotes transposition; I𝑁 the 𝑁 ×𝑁 identity matrix; 1𝑁 the
𝑁 × 1 vector of all-ones; 0𝑁 the 𝑁 × 1 all-zero vector; ∥ ⋅ ∥
the Frobenius norm; ∣ ⋅ ∣ the cardinality of a set; and 𝒩 (𝜇, 𝜎2)
the Gaussian distribution with mean 𝜇 and variance 𝜎2.

II. MODELING AND PROBLEM STATEMENT

Consider a (possibly mobile) access point (AP) equipped
with 𝑀 antennas as depicted in Fig. 1. Constellation symbols
at the AP are mapped to an 𝑀 × 𝑁 space-time matrix S
belonging to a finite alphabet 𝒜, where 𝑁 is the number
of time slots. The AP broadcasts S to a connected ad hoc
WSN with 𝐽 single-antenna sensors. The WSN is modeled as

a graph 𝒢 := {ℰ ,𝒥 }, where 𝒥 := {1, . . . , 𝐽} denotes the set
of sensors, and ℰ ⊂ 𝒥 ×𝒥 the set of available communication
links (graph edges). The set of neighbors of sensor 𝑗 is denoted
by 𝒩𝑗 ⊆ 𝒥 . The following is assumed regarding connectivity
of sensors.

(as1) The WSN is connected; i.e., there is a (possibly multi-
hop) path connecting any two nodes; in addition, all
inter-sensor links are ideal, and time-invariant per-block.

Note that 𝒢 can contain cycles. Ideal (virtually error-free)
inter-sensor communications are possible with sufficiently
fine quantization and powerful error control codes. However,
the subsequent analysis can be modified to accommodate
imperfect sensor links corrupted by additive zero-mean noise
and/or random link failures as in [19]; see also simulated tests
in Section V.

With reference to Fig. 1, the 𝑁 × 1 received block y𝑗 at
the 𝑗-th sensor is given by the following input/output (I/O)
relationship

y𝑗 = S𝑇h𝑗 + 𝝐𝑗 (1)

where h𝑗 denotes the 𝑀 × 1 AP-to-sensor 𝑗 fading channel,
and 𝝐𝑗 ∼ 𝒩 (0𝑁 , I𝑁 ) stands for additive white Gaussian
noise (AWGN) that is assumed uncorrelated across sensors. By
properly scaling y𝑗 , the noise 𝝐𝑗 can be assumed without loss
of generality (wlog) to have zero mean and unit variance. The
following is assumed regarding the AP-to-sensor channels.

(as2) The fading coefficients h𝑗 between the AP and sensor 𝑗
remain static over the AP-to-sensor transmission time,
but are allowed to change from transmission to trans-
mission. Each sensor 𝑗 acquires h𝑗 through training.

With the definitions H𝑗 := I𝑁 ⊗ h𝑇
𝑗 and s := vec(S), the

I/O relationship in (1) can be rewritten as y𝑗 = H𝑗s+𝝐𝑗 . And
with y := [y𝑇

1 , . . . ,y
𝑇
𝐽 ]

𝑇 collecting the received blocks across
sensors, the 𝑁𝐽 × 1 vector y can be compactly expressed as

y = Hs+ 𝝐 (2)

where H := [H𝑇
1 , . . . ,H

𝑇
𝐽 ]

𝑇 , and 𝝐 := [𝝐𝑇1 , . . . , 𝝐
𝑇
𝐽 ]

𝑇 . For
notational brevity, but also wlog, focus will be placed on
real baseband equivalent models instead of complex ones. The
complex case can be accommodated either by working directly
with a complex model, or, through a real-equivalent model
having twice the dimension of the complex one; see e.g [4,
Sec 5.1].

(as3) Symbols in s are independently and uniformly drawn
from alphabet 𝒜, that is known to all sensors.

Note that (as3) allows even for space-time coded transmis-
sions. In this case, H denotes an equivalent channel matrix
combining the physical channel with the underlying linear
constellation precoding or an orthogonal space-time block
code matrix [4, Ch. 3.3, 3.5].

Given (as2) and (as3), and since the noise 𝝐 has uncorrelated
entries of equal variance, the centralized ML demodulator for
(2) amounts to finding

ŝ𝑀𝐿 = arg max
s∈𝒜𝑁𝑀

−∥y−Hs∥2

= arg max
s∈𝒜𝑁𝑀

−
𝐽∑

𝑗=1

∥y𝑗 −H𝑗s∥2. (3)
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Clearly, if {y𝑗 ,H𝑗}𝐽𝑗=1 were available at a central location
(or at all sensors), then ŝ𝑀𝐿 in (3) could be centrally (locally)
found. However, {y𝑗 ,H𝑗}𝐽𝑗=1 are distributed across the net-
work. The objective of this paper is to find suitable single-hop
inter-sensor exchanges such that each sensor is able to solve
the centralized demodulation problem (or a relaxed version
thereof) in a distributed fashion.

Remark 1. (Comparison with DHT problems) The centralized
ML demodulation problem in (3) can be viewed as a multiple
hypotheses testing problem, where each hypothesis is a block
S with entries drawn from 𝒜. Therefore, this problem can
in principle be solved by the DHT algorithms developed for
sensor networks in e.g., [8], [11], and [14]. However, these
schemes - designed primarily for detection problems entailing
a few hypotheses - require implementation of a distributed
algorithm for each hypothesis. When it comes to demodulating
wireless transmissions, their complexity grows exponentially
with the number of bits per constellation symbol and, for the
present space-time broadcast setup, with the product 𝑁𝑀 .
Using knowledge of the alphabet and the modulation scheme,
the distinct contribution of this paper is twofold: a) reduce the
complexity of the DHT algorithms in [8], [11], [14]; and b)
provide thorough error analysis for distributed demodulation
and equalization. These tasks were not addressed in our
companion paper [19], which dealt with consensus-based hard
and soft channel decoding (as opposed to demodulation).

III. DISTRIBUTED LINEAR DEMODULATORS

This section introduces a linear distributed demodulation
algorithm for solving (3). To this end, the centralized linear
demodulation task is formulated as a convex optimization
problem that can be distributed across sensors. Two popular
linear demodulators will be considered jointly: the zero-
forcing (ZF) and the minimum mean-square error (MMSE)
demodulators [12, Ch. 10.2]. The ZF one inverts the channel
effects by multiplying the received signal vector in (2) by the
pseudo-inverse of the channel matrix [4, Eq. (5.3)]. It can be
seen as the solution of an unconstrained least-squares problem
[cf. (3)]

ŝ𝑍𝐹 = argmin
s

1

2

𝐽∑
𝑗=1

∥y𝑗 −H𝑗s∥2 = (H𝑇H)−1H𝑇y. (4)

Different from (3), where s is drawn from the finite-
alphabet (constellation) 𝒜𝑁𝑀 , the minimization in (4) does
not constrain s. The centralized MMSE demodulator, namely
ŝ𝑀𝑀𝑆𝐸 = 𝐸{sy𝑇 }𝐸−1{yy𝑇 }y, can also be expressed in
closed form as

ŝ𝑀𝑀𝑆𝐸 = 𝜎2𝑠H
𝑇 (𝜎2𝑠HH𝑇 + I𝑁𝐽 )

−1y

= (H𝑇H+ 𝜎−2
𝑠 I𝑁𝑀 )−1H𝑇y (5)

where 𝜎2𝑠 := 𝐸{𝑠2ℓ}, ℓ = 1, . . . , 𝑁𝑀 denotes the average
symbol energy; and the second equality comes from the matrix
inversion lemma. Similar to the ZF demodulator, (5) can be
viewed as the solution of an unconstrained LS problem as

follows

ŝ𝑀𝑀𝑆𝐸 =

⎛
⎝ 𝐽∑

𝑗=1

H𝑇
𝑗 H𝑗 + 𝜎

−2
𝑠 I𝑁𝑀

⎞
⎠

−1⎛
⎝ 𝐽∑

𝑗=1

H𝑇
𝑗 y𝑗

⎞
⎠

= argmin
s

1

2

𝐽∑
𝑗=1

∥y′
𝑗 −H′

𝑗s∥2 (6)

where H′
𝑗 := [H𝑇

𝑗 , (𝜎𝑠
√
𝐽)−1I𝑁𝑀 ]𝑇 , and y′

𝑗 := [y𝑇
𝑗 ,0

𝑇
𝑁𝑀 ]𝑇 .

Equation (6) shows that the centralized MMSE demodulator
is obtained from an LS minimization problem similar to
the one in (4). Hence, all the ensuing results developed for
distributed ZF demodulators carry over to the MMSE ones,
by simply substituting H′

𝑗 for H𝑗 , and y′
𝑗 for y𝑗 .

A. Distributed Consensus on Demodulated Symbols

The objective of this section is to solve to (4) in a dis-
tributed fashion through message exchanges among single-
hop neighboring sensors. This task will be accomplished using
the method of multipliers (MoM) [1, Sec. 3.4.4]. The MoM
can afford distributed implementation through local auxiliary
variables s𝑗 , which represent the wanted ZF solution per
sensor 𝑗. Let 𝒔 := {s𝑗}𝐽𝑗=1 be a set of all these 𝐽 auxiliary
variables, one per sensor. (Notice that the set 𝒔 is different
from the transmitted vector s in (2).) The set 𝒔 can be obtained
by minimizing the following consensus-constrained quadratic
cost function

min
𝒔

1

2

𝐽∑
𝑗=1

∥y𝑗 −H𝑗s𝑗∥2

s.t. s𝑗 − s𝑖 = 0𝑁𝑀 , 𝑗 ∈ 𝒥 , 𝑖 ∈ 𝒩𝑗 . (7)

Thanks to s𝑗 , the sum-cost can be decoupled, and each
summand can be minimized separately per sensor 𝑗. On the
other hand, the neighborhood consensus constraint in (7)
ensures that consensus is achieved over the entire network,
which was assumed connected. Network connectivity provides
a sufficient condition to guarantee that the optimum of (7) per
sensor 𝑗 satisfies s1 = s2 = . . . = s𝐽 = ŝ𝑍𝐹 , where ŝ𝑍𝐹 is
the solution of (4).

After introducing an additional set of variables 𝒛 :={{z𝑗𝑖, z′𝑗𝑖}𝑖∈𝒩𝑗

}
𝑗∈𝒥 , the problem (7) can be equivalently

written as

min
𝒔,𝒛

1

2

𝐽∑
𝑗=1

∥y𝑗 −H𝑗s𝑗∥2

s.t. s𝑗 − z𝑗𝑖 = 0𝑁𝑀 , s𝑖 + z′𝑗𝑖 = 0𝑁𝑀 ,

z𝑗𝑖 + z′𝑗𝑖 = 0𝑁𝑀 𝑗 ∈ 𝒥 , 𝑖 ∈ 𝒩𝑗 (8)

Let v𝑗𝑖 and v′
𝑗𝑖 denote the Lagrange multipliers associated

with the constraints s𝑗 − z𝑗𝑖 = 0𝑁𝑀 and s𝑖 + z′𝑗𝑖 = 0𝑁𝑀 ,
respectively. Likewise, define the set 𝒞𝑧 := {𝒛 : z𝑗𝑖 + z′𝑗𝑖 =
0𝑁𝑀 , ∀𝑗 ∈ 𝒥 , 𝑖 ∈ 𝒩𝑗} that represents the constraints on
the entries of 𝒛. With 𝛼 > 0 denoting a penalty coefficient,
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consider the augmented Lagrangian function of (8), namely

ℒ𝑎(𝒔, 𝒛,𝒗,𝒗
′)=

1

2

𝐽∑
𝑗=1

∥y𝑗 −H𝑗s𝑗∥2

+

𝐽∑
𝑗=1

∑
𝑖∈𝒩𝑗

{
v𝑇
𝑗𝑖(s𝑗 − z𝑗𝑖)+(v′

𝑗𝑖)
𝑇 (−s𝑖 − z′𝑗𝑖)

}

+
𝛼

2

𝐽∑
𝑗=1

∑
𝑖∈𝒩𝑗

{∥s𝑗 − z𝑗𝑖∥2 + ∥ − s𝑖 − z′𝑗𝑖∥2
}
(9)

where the set 𝒗 :=
{{v𝑗𝑖}𝑖∈𝒩𝑗

}
𝑗∈𝒥 , and likewise for 𝒗′.

The alternating-direction MoM operates by minimizing ℒ𝑎

in (9) cyclically with respect to (w.r.t.) one set of variables
given the other variables, considering the constraint set 𝒞𝑧 .
Appendix A shows that under proper initialization, the vari-
ables 𝒗′ and

{{z′𝑗𝑖}𝑖∈𝒩𝑗

}
𝑗∈𝒥 can be eliminated, and the 𝑘-th

iteration of the MoM solver becomes

v𝑗𝑖(𝑘)=v𝑗𝑖(𝑘 − 1) +
𝛼

2
(s𝑗(𝑘)− s𝑖(𝑘)),

𝑗 ∈ 𝒥 , 𝑖 ∈ 𝒩𝑗 (10a)

s𝑗(𝑘 + 1)=(H𝑇
𝑗 H𝑗 + 2𝛼∣𝒩𝑗 ∣I𝑁𝑀 )−1

{
H𝑇

𝑗 y𝑗 −
∑
𝑖∈𝒩𝑗

[v𝑗𝑖(𝑘)

−v𝑖𝑗(𝑘)−𝛼(s𝑗(𝑘)+s𝑖(𝑘))]
}
, 𝑗 ∈ 𝒥 .

(10b)

Iterations (10a) and (10b) constitute the DC-DS algorithm.
Sensor 𝑗 ∈ 𝒥 maintains the local estimate of the ZF solution
s𝑗(𝑘) and all the multipliers {v𝑗𝑖(𝑘)}𝑖∈𝒩𝑗 . During the 𝑘-th
iteration, sensor 𝑗 receives the broadcasted estimates s𝑖(𝑘)
from all its neighboring sensors 𝑖 ∈ 𝒩𝑗 , and updates the
corresponding multipliers via (10a). It then transmits back the
updated multiplier v𝑗𝑖(𝑘) to each of its neighboring sensors
𝑖 ∈ 𝒩𝑗 , based on which each sensor 𝑗 is able to determine
s𝑗(𝑘+1) via (10b). Subsequently, all sensors 𝑗 ∈ 𝒥 broadcast
their updated estimates s𝑗(𝑘 + 1) to their neighbors, thus
completing the 𝑘-th iteration and initializing the next one.

Notice that the overall number of scalars required to consent
on is 𝑁𝑀 , regardless of the number of hypotheses ∣𝒜∣𝑁𝑀 .
This presents considerable communication savings compared
to the DHT solvers of (3) in [11] and [14]. Equally important,
the iterates in (10a)-(10b) are provably convergent, as asserted
in the following proposition.

Proposition 1. (DC-DS with ideal inter-sensor links) The
iterations (10a) and (10b) with arbitrary initialization of s𝑗(1)
and v𝑗𝑖(0), ∀(𝑗, 𝑖) ∈ ℰ and 𝛼 > 0, reach consensus to the
centralized ZF demodulation ŝ𝑍𝐹 in (4) as 𝑘 → ∞; i.e.,

lim
𝑘→∞

s𝑗(𝑘) = ŝ𝑍𝐹 , ∀𝑗 ∈ 𝒥 . (11)

Proof: Appendix A shows that iterations (10a)-(10b) are
equivalent to the MoM approach in [1, pg. 255]. As the cost
function in (8) is convex and the problem constraints comply
with [1, Assumption 4.1, pg. 255], the iterates converge to
the optimal solution to (8) as established by [1, Prop. 4.2, pg.
256].

Remark 2. (Imperfect inter-sensor links) Supposing that suf-
ficiently powerful error control codes are employed, the inter-
sensor messages involved in the DC-DS iterations have been
so far assumed ideal; i.e., local exchanges are received error
free. However, (10a) and (10b) can be modified to also accom-
modate inter-sensor links that fail randomly and/or have noise
added at the receiving end [19]. Random link failures model
severe fading or receiver noise for which the cyclic redundancy
check (CRC) code detects and discards packets as erroneous.
Whether analog or digital modulation is used, the additive
noise present in the inter-sensor links can model Gaussian ther-
mal noise at the receiver and/or (e.g., uniformly distributed)
quantization noise. Mimicking [19], it can be shown that if the
inter-sensor links are corrupted with additive noise, the DC-DS
will converge in the mean, i.e., lim𝑘→∞ 𝐸{s𝑗(𝑘) − ŝ𝑍𝐹 } =
0𝑁𝑀 , with a bounded variance. Finally, if the inter-sensor
links fail randomly and the failures follow a Bernoulli process,
then DC-DS will converge in the mean-square sense (m.s.s.);
i.e., lim𝑘→∞ 𝐸

{∥s𝑗(𝑘)− ŝ𝑍𝐹 ∥2
}
= 0.

Remark 3. (Comparison with [15]) The DC-DS algorithm
of this section is related to the consensus-based distributed
best linear unbiased estimators in [15]. Compared to [15],
the algorithm here offers three distinct novelties: (i) it does
not require a bridge sensor set with which sensors need to
communicate, thus offering a fully distributed approach; (ii)
it is provably convergent in the presence of inter-sensor link
failures; and (iii) it is possible to analyze the error performance
per iteration, which is the topic of the next subsection.

B. Performance Analysis

The key to evaluating error performance per iteration 𝑘 is
to specify the relationship between s𝑗(𝑘) and s as a function
of 𝑘. To this end, the following lemma is instrumental.

Lemma 1. The consensus-based ZF iterates in (10a)-(10b)
can be expressed as the linear superposition

s𝑗(𝑘) =

𝐽∑
𝑖=1

C𝑗𝑖(𝑘)y𝑖, ∀𝑗 ∈ 𝒥 (12)

where the coefficient matrix C𝑗𝑖(𝑘) depends solely on the
network topology and 𝛼.

Proof: See Appendix B.
Using (12) into (11), Proposition 1 and (4) imply that

lim𝑘→∞ C𝑗𝑖(𝑘) =
(
H𝑇H

)−1
H𝑇

𝑖 , ∀𝑗. Substituting y𝑖 from
(1) into (12), it is further possible to express s𝑗(𝑘) as

s𝑗(𝑘) = G𝑗(𝑘)s +w𝑗(𝑘) (13)

where G𝑗(𝑘) and w𝑗(𝑘) are defined, respectively, as

G𝑗(𝑘) :=

𝐽∑
𝑖=1

C𝑗𝑖(𝑘)H𝑖, and w𝑗(𝑘) :=

𝐽∑
𝑖=1

C𝑗𝑖(𝑘)𝝐𝑖. (14)

Vector w𝑗(𝑘) denotes zero-mean colored Gaussian noise with
covariance matrix Σ𝑗(𝑘) :=

∑𝐽
𝑖=1 C𝑗𝑖(𝑘)C

𝑇
𝑗𝑖(𝑘). Using these

definitions, the ℓ-th entry of s𝑗(𝑘) satisfies (cf. (13))

𝑠𝑗,ℓ(𝑘) = 𝑔𝑗,ℓℓ(𝑘)𝑠ℓ +
𝑁𝑀∑
ℓ′=1
ℓ′ ∕=ℓ

𝑔𝑗,ℓℓ′(𝑘)𝑠ℓ′ + 𝑤𝑗,ℓ(𝑘) (15)
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where 𝑔𝑗,ℓℓ′(𝑘) and 𝑤𝑗,ℓ(𝑘) are the (ℓ, ℓ′)-th and ℓ-th entries
of G𝑗(𝑘) and w𝑗(𝑘), respectively. The last two terms in the
right-hand side of (15) capture interference-plus-noise effects.
If 𝑁𝑀 is sufficiently large, the interference can be assumed
to be Gaussian with variance

𝜎̃2𝑗,ℓ(𝑘) := var

⎧⎨
⎩

𝑁𝑀∑
ℓ′=1
ℓ′ ∕=ℓ

𝑔𝑗,ℓℓ′(𝑘)𝑠ℓ′ + 𝑤𝑗,ℓ(𝑘)

⎫⎬
⎭

=

𝑁𝑀∑
ℓ′=1
ℓ′ ∕=ℓ

𝑔2𝑗,ℓℓ′(𝑘)𝜎
2
𝑠 +Σ𝑗,ℓℓ(𝑘) (16)

where Σ𝑗,ℓℓ(𝑘) is the (ℓ, ℓ)-th entry of Σ𝑗(𝑘). Using (16), the
SNR in (15) becomes

𝜌𝑗,ℓ(𝑘) = 𝐸{[𝑔𝑗,ℓℓ(𝑘)𝑠ℓ]2}/𝜎̃2𝑗,ℓ(𝑘) = 𝑔2𝑗,ℓℓ(𝑘)𝜎2𝑠/𝜎̃2𝑗,ℓ(𝑘).
(17)

Based on (17), the symbol error rate (SER) can be readily
obtained in closed form, or, it can be bounded as in e.g.,
[12, Sec. 4.3] for popular one- or two-dimensional QAM
constellation points 𝑠ℓ ∈ 𝒜 transmitted over an AWGN
channel with SNR 𝜌𝑗,ℓ(𝑘). As an example, if 𝑠ℓ is drawn
from a 𝑞−ary PAM constellation, the optimal SER per sensor
𝑗 at iteration 𝑘 is given by

𝑃 𝑗
𝑒,ℓ(𝑘) = 2

(
1− 1

𝑞

)
𝑄

(√
3

𝑞2 − 1
𝜌𝑗,ℓ(𝑘)

)
(18)

where𝑄(𝑥) := (1/
√
2𝜋)
∫∞
𝑥

exp(−𝑡2/2)𝑑𝑡 denotes the Gaus-
sian tail function.

Such SER expressions can be easily obtained also when
inter-sensor links are corrupted by zero-mean additive noise.
Because the iterations are linear, the iterates s𝑗(𝑘) in (12)
will now include an extra colored noise term with covariance
determined by the inter-sensor noise level and the network
topology. To obtain the SNR in this case, it suffices to incor-
porate this extra noise term into w𝑗(𝑘), update the variance
term 𝜎̃2𝑗,ℓ in (16), and plug it into (17).

IV. DISTRIBUTED CONSENSUS ON SUFFICIENT STATISTICS

An alternative approach to solving (3) in a distributed fash-
ion is to have all sensors agree on minimal sufficient statistics
for the demodulation problem. The motivation behind this
approach is twofold: i) reduce the communication overhead
per sensor for a prescribed target SER; and ii) allow for more
general (possibly non-linear) (near-) optimal demodulators.

Bearing these goals in mind, the ML demodulator in (3)
can be re-expressed as

ŝ𝑀𝐿=arg max
s∈𝒜𝑁𝑀

⎧⎨
⎩2
⎛
⎝ 𝐽∑

𝑗=1

H𝑇
𝑗 y𝑗

⎞
⎠

𝑇

s−s𝑇

⎛
⎝ 𝐽∑

𝑗=1

H𝑇
𝑗 H𝑗

⎞
⎠s

⎫⎬
⎭ .
(19)

Upon defining the sample cross-covariance between the re-
ceived block y𝑗 and the channel H𝑗 as 𝝋𝑗 := H𝑇

𝑗 y𝑗 , and the
channel’s sample covariance matrix as Γ𝑗 := H𝑇

𝑗 H𝑗 , the ML
demodulator in (19) is equivalent to

ŝ𝑀𝐿=arg max
s∈𝒜𝑁𝑀

⎧⎨
⎩2
⎛
⎝1

𝐽

𝐽∑
𝑗=1

𝝋𝑗

⎞
⎠

𝑇

s−s𝑇

⎛
⎝ 1

𝐽

𝐽∑
𝑗=1

Γ𝑗

⎞
⎠s

⎫⎬
⎭ . (20)

Thus, in order to solve (20) locally, it suffices for each
sensor to acquire the following averages:

𝝋̄ :=
1

𝐽

𝐽∑
𝑗=1

𝝋𝑗 , and Γ̄ :=
1

𝐽

𝐽∑
𝑗=1

Γ𝑗 . (21)

Given 𝝋̄ and Γ̄, the optimal ŝ𝑀𝐿 in (20) depends only on
the symbol constellation 𝒜, that is assumed available at all
sensors. The main insight is summarized in the following
proposition:

Proposition 2. (Sufficient statistics for demodulation) In order
to solve the ML demodulation problem (3), it suffices for all
sensors to consent on 𝝋̄ and Γ̄ in (21), which are known
to constitute minimal sufficient statistics for the centralized
demodulator in (3).

The averages 𝝋̄ and Γ̄ are also sufficient statistics for sub-
optimal (non-ML) and (near-) optimal demodulation algo-
rithms, including the:

∙ Distributed ZF and MMSE demodulators, which from (4)
and (5) take the form

ŝ𝑍𝐹 = Γ̄
−1

𝝋̄ (22)

ŝ𝑀𝑀𝑆𝐸 =

(
Γ̄+

1

𝐽𝜎2𝑠
I𝑁𝑀

)−1

𝝋̄. (23)

∙ Distributed sphere decoder (SD), which uses the fact
that Γ̄ is symmetric positive definite, and thus admits a
Cholesky decomposition of the form Γ̄ = RR𝑇 [5, Ch.
4.3]. Based on the latter, the ML demodulator in (20) can
be re-expressed as

ŝ𝑀𝐿 = arg max
s∈𝒜𝑁𝑀

{
2𝝋̄𝑇R−1Rs− s𝑇R𝑇Rs

− 𝝋̄𝑇R−1
(
R−1

)𝑇
𝝋̄
}

= arg max
s∈𝒜𝑁𝑀

{
−∥ỹ −Rs∥2

}
(24)

where ỹ := (R−1)𝑇 𝝋̄ can be viewed as the vector
received over the equivalent channel matrix R. Note that
the objective of demodulating s in (24) coincides with
that of (20). Hence, the SD algorithm can be applied
in a distributed fashion too, provided that each sensor 𝑗
acquires the sufficient statistics 𝝋̄ and Γ̄.

Following similar arguments, other demodulation algo-
rithms such as decision-feedback [12, Ch. 10.3], or semi-
definite relaxation [16] whose objective function is expressible
in terms of (cross-) covariance matrices, can also be written
in terms of 𝜸̄ and 𝝋̄.

It is worth stressing at this point that if each sensor relies
only on local linear ZF or MMSE equalization without coop-
eration, the demodulation performance will degrade severely.
In lieu of cooperation, it is even impossible to employ SD
per sensor as in (3). Instead, sensors could employ ML or
generalized SD, but still their performance would be poor. On
the other hand, the equivalent channel seen by cooperating
sensors is generally full rank (so long as 𝐽 ≥ 𝑀 ), and the
demodulation performance improves considerably, as it will
be verified also by the simulations of the next section.

The remaining task is to derive algorithms that reach
consensus on each entry of Γ̄ and 𝝋̄ in a distributed fashion.
This is the theme of the ensuing subsection.
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A. Consensus Averaging Algorithms

The averages 𝝋̄ and Γ̄ can be found in a distributed fashion
by applying the CA algorithm of e.g., [18] per entry. However,
when inter-sensor links suffer from noise these algorithms
experience slow convergence. For this reason, we will use
a CA variant based on the MoM (CA-MoM), in which
the average value is found iteratively as the solution of a
distributed optimization problem [19]. In either CA or CA-
MoM, if the algorithm stops before finding the exact sufficient
statistics for (3), each sensor will be allowed to demodulate
the signal using the information collected up to that point.

To simplify notation, the scalar variable 𝑥𝑗 will be used
to denote any entry of 𝝋𝑗 or Γ𝑗 we wish to consent on
at sensor 𝑗. The 𝑘-th iterate at sensor 𝑗 will be denoted as
𝑥̄𝑗(𝑘). When consensus is achieved, lim𝑘→∞ 𝑥𝑗(𝑘) = 𝑥̄ :=

(1/𝐽)
∑𝐽

𝑗=1 𝑥𝑗 , which is equal to the corresponding entry in
𝝋̄ or Γ̄ (cf. (21)).

The CA-MoM approach originates from the well-known
fact that the sample average can be viewed as the solution
of an LS cost, namely 𝑥̄ = argmin𝜃

1
2

∑𝐽
𝑗=1(𝑥𝑗 − 𝜃)2 =

argmin𝜃
1
2∥x − 1𝐽𝜃∥2. The CA-MoM iterations for this

problem are given by

𝑣𝑗𝑖(𝑘) =𝑣𝑗𝑖(𝑘 − 1) +
𝛼

2
(𝑥̄𝑗(𝑘)− 𝑥̄𝑖(𝑘)),

𝑗 ∈ 𝒥 , 𝑖 ∈ 𝒩𝑗 (25a)

𝑥̄𝑗(𝑘 + 1)=
1

1 + 2𝛼∣𝒩𝑗 ∣
{
𝑥𝑗 −

∑
𝑖∈𝒩𝑗

[
𝑣𝑗𝑖(𝑘)− 𝑣𝑖𝑗(𝑘)

− 𝛼(𝑥̄𝑗(𝑘)+𝑥̄𝑖(𝑘))
]}
, 𝑗 ∈ 𝒥 (25b)

for any 𝛼 > 0. Indeed, upon setting H = 1 and substituting y𝑗

for 𝑥𝑗 , the DC-DS iterations (10a)-(10b) boil down to (25a)-
(25b). The iterates in (25a)-(25b) are provably convergent
under noisy or random failing inter-sensor links [19].
Remark 4. (Communication savings) Recalling that H𝑗 :=
I𝑁⊗h𝑇

𝑗 , and due to the fact that Γ𝑗 is symmetric, the problem
of consenting on each entry of the 𝑁𝑀 ×𝑁𝑀 matrix can be
reduced to consenting on 𝑀(𝑀 + 1)/2 scalar entries. Thus,
including 𝝋𝑗 , the overall number of scalars required to consent
on is 𝑁𝑀+𝑀(𝑀+1)/2, which is quadratic in𝑀 and linear
in 𝑁 but not dependent on the number of hypotheses ∣𝒜∣𝑁𝑀 .

As for the computational complexity, after consenting on the
sufficient statistics, each sensor can solve not only centralized
ML demodulation problems incurring exponential complexity,
but also sub-optimal (e.g., ZF/MMSE ones) with linear com-
plexity, or, (near-) optimal ones (e.g., SD) with polynomial
complexity on the average [4, Ch. 5].

B. Performance analysis

This section derives bounds for the SER performance of
the DC-SS algorithm as a function of the number of iterations
𝑘, even before consensus on the exact (cross-) covariance is
achieved. We will first focus on the ML detector to benchmark
the (near-) ML solution provided by the SD in (20). Subse-
quently, we will consider the performance of the simpler ZF
and MMSE demodulators in (22) and (23), respectively.

1) Pairwise error probability bound for distributed ML
demodulation. Invoking the union bound, the error probability

of the ML demodulator in (3) conditioned on the channel,
namely 𝑃𝑒∣ℎ, can be bounded by the pairwise error probability
(PEP), which is the probability of erroneously detecting s
as s′ ∈ 𝒜𝑁𝑀 with s′ ∕= s. Since PEP captures the prob-
ability of block errors, and one block error is caused by
at least one symbol error, it follows that the PEP upper-
bounds the SER. Letting 𝑃 𝑗

s→s′∣ℎ(𝑘) denote the conditional

PEP at sensor 𝑗 and iteration 𝑘, it holds that 𝑃 𝑗
𝑒∣ℎ(𝑘) ≤∑

s∈𝒜𝑁𝑀 𝑃s

∑
s′ ∕=s 𝑃

𝑗
s→s′∣ℎ(𝑘), where 𝑃s is the probability of

transmitting s. Given 𝝋̄𝑗(𝑘) and Γ̄𝑗(𝑘) per sensor 𝑗 at iteration
𝑘, the local ML estimate of s, namely ŝ𝑗(𝑘), becomes

ŝ𝑗(𝑘) = arg max
s∈𝒜𝑁𝑀

{
2𝝋̄𝑇

𝑗 (𝑘)s − s𝑇 Γ̄𝑗(𝑘)s
}
. (26)

The PEP for the symbols detected as in (26) is clearly

𝑃 𝑗
s→s′∣ℎ(𝑘) = Pr

[
2𝝋̄𝑇

𝑗 (𝑘)s − s𝑇 Γ̄𝑗(𝑘)s

<2𝝋̄𝑇
𝑗 (𝑘)s

′ − s′𝑇 Γ̄𝑗(𝑘)s
′]. (27)

Using Lemma 1, the running averages can be expressed as

𝝋̄𝑗(𝑘) =
1

𝐽

𝐽∑
𝑖=1

𝑐𝑖𝑗(𝑘)𝝋𝑖, and Γ̄𝑗(𝑘) :=
1

𝐽

𝐽∑
𝑖=1

𝑐𝑖𝑗(𝑘)Γ𝑖

(28)
where the weights 𝑐𝑖𝑗(𝑘) are uniquely characterized by the
network topology and by the coefficient 𝛼 in (25a)-(25b). In
the limit, it holds that lim𝑘→∞ 𝑐𝑖𝑗(𝑘) = 1. Based on (28) and
after substituting 𝝋𝑖 = H𝑇

𝑖 H𝑖s+H𝑇
𝑖 𝝐𝑖 into (27), we find

𝑃 𝑗
s→s′∣ℎ(𝑘) = Pr

[
(s− s′)𝑇 Γ̄𝑗(𝑘)(s − s′)

−2

(
1

𝐽

𝐽∑
𝑖=1

𝑐𝑖𝑗(𝑘)H
𝑇
𝑖 𝝐𝑖

)𝑇

(s− s′) < 0

⎤
⎦

= 𝑄

⎛
⎝ (s− s′)𝑇 Γ̄𝑗(𝑘)(s − s′)√

2(s− s′)𝑇 Γ̃𝑗(𝑘)(s− s′)

⎞
⎠ (29)

where Γ̃𝑗(𝑘) := (1/𝐽2)
∑𝐽

𝑖=1 𝑐
2
𝑖𝑗(𝑘)Γ𝑖, and the second equal-

ity follows from the Gaussianity of 𝝐𝑖. Notice that when
consensus is achieved, 𝑐𝑖𝑗(𝑘) = 1 and so Γ̃𝑗(𝑘) = (1/𝐽)Γ̄.
In this case, the PEP becomes

lim
𝑘→∞

𝑃 𝑗
s→s′∣ℎ(𝑘)=𝑄

⎛
⎜⎝
√√√√⎷1

2
(s− s′)𝑇

⎛
⎝ 𝐽∑

𝑗=1

H𝑇
𝑗 H𝑗

⎞
⎠(s− s′)

⎞
⎟⎠

(30)

which equals the PEP obtained by the centralized demodulator
in (3); see e.g., [4, Ch. 2]. In other words, PEP perfor-
mance of distributed demodulation can be rendered asymptot-
ically equivalent to the one corresponding to a multiple-input
multiple-output (MIMO) system with 𝑀 transmit antennas
and 𝐽 receive antennas [4, Ch. 2].

A relevant performance measure is the diversity order
achieved by each sensor 𝑗 at any given iteration 𝑘, defined
as [4, Ch. 2.6]

𝐺𝑗
𝑑(𝑘) = lim

𝜎2
ℎ→∞

log𝐸ℎ{𝑃 𝑗
𝑒∣ℎ(𝑘)}

log(𝜎2𝑠𝜎
2
ℎ)

(31)

where 𝜎2ℎ is the variance of the channel coefficients. Interest-
ingly, it is not necessary to let 𝑘 → ∞ to achieve the diversity
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of the centralized system distributedly, as established in the
following proposition.

Proposition 3. (Diversity order after a finite number of
iterations) The distributed ML demodulator in (26) achieves
the same diversity order as the centralized ML of (3) in a
finite number of iterations.

Proof: See Appendix C for the proof.

Intuitively, after a number of iterations, Γ̄𝑗(𝑘) achieves the
same rank as Γ̄. Because the diversity order is characterized
by the rank of Γ̄ [4, Ch. 2], both systems achieve the same
diversity order.

We will wrap up the performance analysis of our distributed
ML demodulator by considering noisy inter-sensor links. In
this case, 𝝋̂𝑗(𝑘) and Γ̂𝑗(𝑘) can be written as 𝝋̂𝑗(𝑘) =

𝝋̄𝑗(𝑘) + 𝜼𝑗(𝑘) and Γ̂𝑗(𝑘) = Γ̄𝑗(𝑘) + Ξ𝑗(𝑘), where 𝝋̄𝑗(𝑘)
and Γ̄𝑗(𝑘) are defined in (28), 𝜼𝑗(𝑘) ∼ 𝒞𝒩 (0, I𝑁𝜎

2
𝑗 (𝑘)),

and vec(Ξ𝑗(𝑘)) ∼ 𝒞𝒩 (0, I𝑁2𝑀2𝜎2𝑗 (𝑘)) with 𝜎𝑗(𝑘) bounded.
Notice that consensus is carried on a per-entry basis and the
noise terms 𝜼𝑗(𝑘) and Ξ𝑗(𝑘) are uncorrelated across entries.
Therefore, the PEP now becomes [cf. (29)]

𝑃 𝑗
s→s′∣ℎ(𝑘)

= Pr

[
(s − s′)𝑇 Γ̄𝑗(𝑘)(s − s′) + s𝑇Ξ𝑗(𝑘)s− (s′)𝑇Ξ𝑗(𝑘)s

′

− 2𝜼𝑇
𝑗 (𝑘)(s − s′)− 2

(
1

𝐽

𝐽∑
𝑖=1

𝑐𝑖𝑗(𝑘)H
𝑇
𝑖 𝝐𝑖

)𝑇

(s − s′) < 0

]

= 𝑄

⎛
⎝ (s− s′)𝑇 Γ̄𝑗(𝑘)(s − s′)√

2(s− s′)𝑇 [Γ̃𝑗(𝑘) + I𝑁𝑁𝜎2𝑗 (𝑘)](s − s′) + 𝜎2Ξ(𝑘)

⎞
⎠

(32)

where 𝜎2Ξ(𝑘) := var
{
s𝑇Ξ𝑗(𝑘)s− (s′)𝑇Ξ𝑗(𝑘)s

′}. Because
the denominator in (32) is strictly larger than that of (29),
the overall system performance is worse when compared to
the noise-free case. As expected, the presence of noise in
inter-sensor communications reduces the equivalent overall
SNR. As a sanity check, observe that when 𝜎2𝑗 (𝑘) → 0,
equation (32) reduces to (27). Because diversity is defined
as 𝜎2ℎ goes to infinity, 𝜎2𝑗 (𝑘) will vanish and both systems
with and without inter-sensor noise will achieve the same
diversity order. This argument can be made rigorous, albeit
after employing tedious manipulations. Furthermore, using the
same logic as in Appendix C, it is not difficult to deduce that
full diversity is likewise achievable after a finite number of
iterations even for non-ideal inter-sensor links.

2) Linear demodulation. Consider the distributed ZF de-
modulator in (22). Substituting Γ̄ and 𝝋̄ for Γ̄𝑗(𝑘) and 𝝋̄𝑗(𝑘),
the estimate s𝑗(𝑘) of ŝ𝑍𝐹 at sensor 𝑗 and iteration 𝑘 is given
by

s𝑗(𝑘) = Γ̄𝑗(𝑘)
−1𝝋̄𝑗(𝑘) =

1

𝐽

𝐽∑
𝑖=1

𝑐𝑖𝑗(𝑘)Γ̄
−1
𝑗 (𝑘)𝝋𝑖 (33)

where the second inequality comes from (28). Since 𝝋𝑖 =
H𝑇

𝑖 H𝑖s+H𝑇
𝑖 𝝐𝑖, it follows that

s𝑗(𝑘) = G̃𝑗(𝑘)s+ w̃𝑗(𝑘) (34)
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Fig. 2. SER vs. SNR (in dB) curves for the DC-DS algorithm with
𝑀 = 4, 𝑁 = 2, 4-PAM, and ideal inter-sensor links. Local and centralized
demodulators are also included for comparison.

where now G̃𝑗(𝑘) := (1/𝐽)
∑𝐽

𝑖=1 𝑐𝑖𝑗(𝑘)Γ̄
−1
𝑗 (𝑘)H𝑇

𝑖 H𝑖 and

w̃𝑗(𝑘) := (1/𝐽)
∑𝐽

𝑖=1 𝑐𝑖𝑗(𝑘)Γ̄
−1
𝑗 (𝑘)H𝑇

𝑖 𝝐𝑖. The rest of the
steps are identical to those in Section III-B: (i) write the
ℓ-th entry of s𝑗(𝑘) as in (15); (ii) find the variance of
the interference-plus-noise term in (16); and (iii) and for-
mulate an equivalent SNR for the ℓ-th entry of s𝑗(𝑘) as
in (17). Recall also that similar performance results can be
obtained for the MMSE demodulator by substituting Γ̄

−1
𝑗 (𝑘)

for (Γ̄𝑗(𝑘)+
1

𝐽𝜎2
𝑠
I𝑁𝑀 )−1 in (33). Performance analysis in the

presence of inter-sensor noise is far more challenging in this
case, since it involves computing expectations over inverted
Gaussian matrices. For this reason, our performance analysis
in the presence of noise will rely on simulations.

V. SIMULATIONS

The distributed demodulators of Sections III and IV are
tested and compared in this section. The WSN has 𝐽 = 10
sensors uniformly placed over the unit square. The com-
munication range of each sensor is 𝑟 = 0.5. Two nodes
are connected if their Euclidean distance is less than 𝑟. As
a result, the number of graph edges here is ∣ℰ∣ = 18.
Symbols are drawn from a 4-PAM constellation and directly
mapped to the entries of matrix S. The AP has 𝑀 = 4
antennas, and the block duration is 𝑁 = 2 time slots.
The channels h𝑗 ∼ 𝒩 (0𝑀 , 𝜎

2
ℎI𝑀 ) are independently and

identically distributed. The average AP-sensor 𝑆𝑁𝑅 in dB
is 𝑆𝑁𝑅 := 10 log10(𝜎

2
𝑠𝜎

2
ℎ).

Test Case 1 (Distributed linear demodulators). In this case,
the average SER of the DC-DS in Section III is simulated for
ideal and non-ideal inter-sensor communication links. Both
distributed ZF and MMSE demodulators based on the DC-DS
iterations (10a)-(10b) are considered (tagged as ZF-DS and
MMSE-DS, respectively). Each sensor 𝑗 quantizes the iterate
s𝑗(𝑘) to obtain the demodulation result at iteration 𝑘.

Fig. 2 plots SER as a function of the AP-to-sensor SNR
assuming ideal inter-sensor links for different values of the
iteration index 𝑘. The centralized ZF and MMSE demod-
ulators (using y and H in (4) and (5)) are included as
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Fig. 3. SER vs. SNR (in dB) curves for the DC-DS algorithm with 𝑀 =
4, 𝑁 = 2, 4-PAM, and non-ideal inter-sensor links. Local and centralized
demodulators are also included for comparison.

a benchmark. The local demodulators using only y𝑗 and
H𝑗 are provided by the distributed initialization at iteration
number 𝑘 = 0. The analytical SER obtained as detailed in
(18) is also included. Clearly, the average SER improves as
the number of iterations increases, approaching that of the
centralized benchmark after approximately 50 iterations of
the ZF-DS and MMSE-DS demodulators. In the centralized
setting, the MMSE is known to outperform the ZF, but their
diversity orders are the same. This is also observed for the
distributed setting after a finite number of iterations. Notice
that local demodulators perform poorly. This is because each
sensor locally faces an under-determined scenario (the number
of transmit antennas is larger than the number of receive
antennas). As the number of consensus iterations increases,
the equivalent number of receive antennas increases and the
system becomes identifiable.

Fig. 3 depicts the error performance when considering non-
ideal inter-sensor links. Single-hop exchanges are corrupted
by AWGN at equivalent 𝑆𝑁𝑅′ = 𝑆𝑁𝑅 + 10dB. Also, links
are assumed to fail independently with probability (w.p.) 0.1.
The noise-free (ideal) case from Fig. 2 after 𝑘 = 50 iterations
is also included here for comparison. Clearly, non-ideal inter-
sensor links degrade the error performance. Notwithstanding
this performance loss, the slope of the SER curve for both
ideal and non-ideal cases is the same; i.e., the same diversity
order is obtained in both cases.

Test Case 2 (Distributed demodulation using consensus on
sufficient statistics). Here, the performance of the algorithm
based on the DC-SS approach of Section IV is simulated.
As discussed in Section IV, this approach allows for a
broader class of demodulation methods. Distributed SD and
ZF (tagged as ZF-SS) are tested by consenting on sufficient
statistics through iterations (25a)-(25b). After a given number
of iterations 𝑘, each sensor relies on the averages Γ̄(𝑘) and
𝝋̄(𝑘) collected up to that instant to run the demodulators
using either (22) or (20). Fig. 4 plots the resulting SER
vs. SNR curves under ideal inter-sensor links for the SD
and the ZF-SS demodulators. Analytical results obtained in
Section IV-B for ZF-SS are also included. The average SER
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Fig. 4. SER vs. SNR (in dB) curves for the DC-SS algorithm with 𝑀 = 4, 𝑁
= 2, 4-PAM, and ideal inter-sensor links. Local and centralized demodulators
are also included for comparison.
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Fig. 5. SER vs. SNR (in dB) curves for the DC-SS algorithm with 𝑀 =
4, 𝑁 = 2, 4-PAM, and non-ideal inter-sensor links. Local and centralized
demodulators are also included for comparison.

improves as the number of iterations increases much more
rapidly compared to Fig. 2, approaching that of the centralized
benchmark after about 𝑘 = 10 iterations. (See Test Case 3 for
more detailed comparisons.) This is not surprising since the
diversity collected by the demodulator increases as statistical
information from neighboring sensors becomes available as
iterations proceed. Fig. 5 shows the performance of distributed
SD when imperfect inter-sensor links are present, where now
the inter-sensor 𝑆𝑁𝑅′ = 𝑆𝑁𝑅 + 15dB and links fail w.p.
0.1, as before. For comparison, the CA algorithm with the
vanishing step size proposed in [6] to cope with noise is
also implemented. The resulting SER of both algorithms
degrades w.r.t. the one in Fig. 4, as expected. As discussed
in Section IV-B, even under non-ideal links, the CA-MoM al-
gorithm after 𝑘 = 20 iterations exhibits approximately the
same diversity as the centralized SD. However, the larger the
iteration number 𝑘 is, the slower the CA iterations progress,
especially at high SNR.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2010 at 15:32:06 UTC from IEEE Xplore.  Restrictions apply. 



2052 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

0 100 200 300 400 500 600 700

10
−4

10
−3

10
−2

10
−1

10
0

Number of transmisions

S
E

R

 

 
Centralized ZF
ZF−SS (ideal)
ZF−DS (ideal)
ZF−SS (non−ideal)
ZF−DS (non−ideal)

Fig. 6. SER vs. number of transmissions for the distributed ZF demodulators
under both ideal and non-ideal inter-sensor links with 𝑀 = 4, 𝑁 = 2 and
4-PAM.

0 5 10 15 20 25 30

10
−4

10
−3

10
−2

10
−1

10
0

Number of transmissions

S
E

R

 

 

Centralized SD
Distributed SD (ideal)
Distributed SD (non−ideal)

Fig. 7. SER vs. number of transmissions for the distributed SD demodulator
using consensus on sufficient statistics under both ideal and non-ideal inter-
sensor links with 𝑀 = 4, 𝑁 = 2 and 4-PAM.

Test Case 3 (Performance comparisons). Here, we compare
the DC-DS and DC-SS demodulators of Sections III and
IV. The key to comparing both algorithms is to find the
SER for the same number of transmissions (that might be
different from the number of iterations of the algorithm). At
each iteration of the DC-DS, the number of transmissions
is proportional to 𝑁𝑀 = 8, which is the length of ŝ𝑗(𝑘);
while the number of transmissions for DC-SS is proportional
to 𝑁𝑀 +𝑀(𝑀 + 1)/2 = 18, as pointed out in Remark 4.
We set 𝑆𝑁𝑅 = 10 dB, and for the non-ideal inter-sensor
links 𝑆𝑁𝑅′ = 25 dB with link failure probability equal to
0.1. Fig. 6 compares the average SER of both ZF-DS and ZF-
SS algorithms as a function of the number of transmissions.
For ideal inter-sensor links, the ZF-SS algorithm exhibits fast
convergence to the centralized benchmark. However, under
non-ideal inter-sensor links, its performance degrades con-
siderably. The ZF-DS algorithm exhibits slower convergence

rate compared to the ZF-SS, but it is more robust to non-
ideal links. Fig. 7 plots the average SER of the SD algorithm.
Clearly, the distributed SD algorithm converges faster than
either ZF-DS or ZF-SS under ideal links at the price of
increased demodulation complexity. If links are non-ideal,
however, its performance also degrades severely. Finally, note
that the distributed SD algorithm involves nonlinear operations
(Cholesky decomposition) over the CA-MoM iterates in (25a)-
(25b), which explains the non-monotonic behavior in Fig. 7.

VI. CONCLUDING SUMMARY

Distributed demodulation of symbols transmitted from a
multi-antenna AP to a wireless sensor network was investi-
gated. Two iterative algorithms were developed to obtain dis-
tributed estimates of the AP’s transmitted symbols. The DC-
DS one resulted after viewing the linear demodulation task as
an unconstrained optimization problem solved with the MoM
to obtain the optimal solution in a distributed fashion. For ML
optimal demodulation and various sub-optimal alternatives,
the DC-SS scheme aimed at consensus on the average local
(cross-) covariance terms, which are sufficient statistics for
the general ML, SD and ZF/MMSE demodulation problems.
Both DC-DS and DC-SS algorithms entail affordable com-
munication complexity, irrespective of the constellation size.
The per-iteration error performance was analyzed for both
algorithms, and the number of iterations needed to attain a
prescribed error rate was quantified. Simulations suggest that
for ideal inter-sensor links, consenting on sufficient statistics
offers faster convergence and more flexibility to choose from
a variety of demodulation options including ML, near-ML,
and sub-optimum linear algorithms. However, under non-ideal
inter-sensor links, the performance of nonlinear demodulators
degrades considerably as the SNR drops. In this case, consent-
ing on the demodulated symbols, although limited to linear
receivers, is a more suitable approach.

APPENDIX A
DERIVATION OF (10a)-(10b)

The 𝑘-th iteration of the MoM solver of (9) is [1, pg. 255]

𝒔(𝑘 + 1) = argmin
𝒔

ℒ𝑎 (𝒔, 𝒛(𝑘),𝒗(𝑘),𝒗
′(𝑘)) (35a)

𝒛(𝑘 + 1) = arg min
𝒛∈𝒞𝑧

ℒ𝑎 (𝒔(𝑘 + 1), 𝒛,𝒗(𝑘),𝒗′(𝑘)) (36a)

v𝑗𝑖(𝑘 + 1) = v𝑗𝑖(𝑘) + 𝛼(s𝑗(𝑘 + 1)− z𝑗𝑖(𝑘 + 1)),

𝑗 ∈ 𝒥 , 𝑖 ∈ 𝒩𝑗 (36b)

v′
𝑗𝑖(𝑘 + 1) = v′

𝑗𝑖(𝑘) + 𝛼(−s𝑖(𝑘 + 1)− z′𝑗𝑖(𝑘 + 1)),

𝑗 ∈ 𝒥 , 𝑖 ∈ 𝒩𝑗 (36c)

Because the variables s𝑗 in (9) are not coupled, (35a) is
equivalent to the following 𝐽 separable sub-problems, one per
sensor 𝑗

s𝑗(𝑘 + 1)=argmin
s𝑗

⎧⎨
⎩12∥y𝑗−H𝑗s𝑗∥2+

∑
𝑖∈𝒩𝑗

(v𝑗𝑖(𝑘)−v′
𝑖𝑗(𝑘))

𝑇

s𝑗 +
∑
𝑖∈𝒩𝑗

𝛼

2
{∥s𝑗−z𝑗𝑖(𝑘)∥2 + ∥ −s𝑗−z′𝑖𝑗(𝑘)∥2}

⎫⎬
⎭ .

(37)
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Being linear-quadratic in s𝑗 , each of these sub-problems can
be solved in closed form to obtain

s𝑗(𝑘 + 1) =
(
H𝑇

𝑗 H𝑗 + 2𝛼∣𝒩𝑗 ∣I
)−1

{
H𝑇

𝑗 y𝑗 −
∑
𝑖∈𝒩𝑗

[v𝑗𝑖(𝑘)

− v′
𝑖𝑗(𝑘)− 𝛼(z𝑗𝑖(𝑘)− z′𝑖𝑗(𝑘))]

}
. (38)

Similarly, 𝒛(𝑘 + 1) in (36a) is obtained by solving the
following 2∣ℰ∣ sub-problems indexed by (𝑗, 𝑖) ∈ ℰ
{z𝑗𝑖(𝑘 + 1), z′𝑗𝑖(𝑘 + 1)}

=arg min
z𝑗𝑖+z′𝑗𝑖=0

{−v𝑇
𝑗𝑖(𝑘)z𝑗𝑖 − [v′

𝑗𝑖(𝑘)]
𝑇 z′𝑗𝑖

+
𝛼

2
∥s𝑗(𝑘 + 1)−z𝑗𝑖∥2+𝛼

2
∥−s𝑗(𝑘 + 1)−z′𝑗𝑖∥2

}
. (39)

If v𝑗𝑖(𝑘) and v′
𝑗𝑖(𝑘) are initialized as v𝑗𝑖(0) = v′

𝑗𝑖(0)
∀(𝑗, 𝑖) ∈ ℰ , the solution to (39) for 𝑘 = 0 becomes z𝑗𝑖(1) =
−z′𝑗𝑖(1) =

1
2 (s𝑗(1) + s𝑖(1)). Substituting this expression into

(36b) and (36c) yields

v𝑗𝑖(1) = v′
𝑗𝑖(1) = v𝑗𝑖(0) +

𝛼

2
(s𝑗(1)− s𝑖(1)). (40)

Proceeding by induction, if v𝑗𝑖(𝑘) = v′
𝑗𝑖(𝑘), the solution to

(39) is

z𝑗𝑖(𝑘 +1) = −z′𝑗𝑖(𝑘 +1) =
1

2
(s𝑗(𝑘+ 1)+ s𝑖(𝑘+ 1)). (41)

Substituting (41) into (36b) and (36c) proves that

v𝑗𝑖(𝑘+1) = v′
𝑗𝑖(𝑘+1) = v𝑗𝑖(𝑘)+

𝛼

2
(s𝑗(𝑘+1)− s𝑖(𝑘+1))

(42)
which establishes along with (40) that v𝑗𝑖(𝑘) = v′

𝑗𝑖(𝑘) ∀𝑘 >
0.

Equation (42) shows that it is sufficient to update only one
set of multipliers

{{v𝑗𝑖(𝑘)}𝑖∈𝒩𝑗

}
𝑗∈𝒥 per iteration as in (10a).

Finally, substituting (41) into (38) proves the validity of (10b).

APPENDIX B
PROOF OF LEMMA 1

Substituting (10a) into (10b) leads to

s𝑗(𝑘 + 1)=(H𝑇
𝑗 H𝑗 + 2𝛼∣𝒩𝑗 ∣I𝑁𝑀 )−1

{
H𝑇

𝑗 y𝑗

−
∑
𝑖∈𝒩𝑗

[v𝑗𝑖(𝑘 − 1)−v𝑖𝑗(𝑘 − 1)−2𝛼s𝑖(𝑘)]

}
. (43)

Subtracting (43) from its counterpart written for s𝑗(𝑘) leads
to the multiplier-free recursion

s𝑗(𝑘 + 1)=s𝑗(𝑘) + 2𝛼(H𝑇
𝑗 H𝑗 + 2𝛼∣𝒩𝑗 ∣I𝑁𝑀 )−1∑
𝑖∈𝒩𝑗

[s𝑖(𝑘)− s𝑖(𝑘 − 1)]. (44)

Hence, to show that s𝑗(𝑘) = C𝑗(𝑘)y, with C𝑗(𝑘) :=
[C𝑗1(𝑘), . . . ,C𝑗𝐽 (𝑘)], it suffices to establish this linear rela-
tionship for 𝑘 = 1, 2 and proceed by induction. Wlog initialize
(10a)-(10b) with v𝑗𝑖(0) = 0𝑁𝑀 , ∀(𝑗, 𝑖) ∈ ℰ , and let s𝑗(1)
equal the local ZF demodulator, namely

s𝑗(1) =
(
H𝑇

𝑗 H𝑗

)†
H𝑇

𝑗 y𝑗 = C𝑗𝑗(1)y𝑗 (45)

where (⋅)† denotes matrix pseudo-inverse. Clearly C𝑗(1) has
all zero entries except for the 𝑗-th block. Furthermore, for
𝑘 = 2 it holds that (cf. (43))

s𝑗(2) = (H𝑇
𝑗 H𝑗 + 2𝛼∣𝒩𝑗 ∣I𝑁𝑀 )−1

⎧⎨
⎩H𝑇

𝑗 y𝑗 + 2𝛼
∑
𝑖∈𝒩𝑗

s𝑖(1)

⎫⎬
⎭

= C𝑗𝑗(2)y𝑗 +
∑
𝑖∈𝒩𝑗

C𝑗𝑖(2)y𝑖 (46)

where the weights are given by

C𝑗𝑗(2) = (H𝑇
𝑗 H𝑗 + 2𝛼∣𝒩𝑗 ∣I𝑁𝑀 )−1H𝑇

𝑗

C𝑗𝑖(2) = 2𝛼(H𝑇
𝑗 H𝑗 + 2𝛼∣𝒩𝑗 ∣I𝑁𝑀 )−1C𝑖𝑖(1) ∀𝑖 ∈ 𝒩𝑗 .

(47)

Using (44), it can be readily proved by induction that the
linear relationship s𝑗(𝑘) = C𝑗(𝑘)y holds for any 𝑘 ≥ 3, and
the weights can be obtained iteratively as well.

APPENDIX C
PROOF OF PROPOSITION 3

We first prove that there exists a finite 𝑘′ for which 𝑐𝑖𝑗(𝑘) >
0 for all 𝑘 ≥ 𝑘′. For that matter, observe that 𝑐𝑖𝑗(𝑘) converges
exponentially to 1; hence, each entry of 𝑐𝑖𝑗(𝑘) obeys ∣𝑐𝑖𝑗(𝑘)−
1∣ ≤ 𝐶𝜆𝑘, ∀𝑘, for some 0 < 𝐶 < ∞ and 0 < 𝜆 < 1 (cf.
[19, Appendix E]). Thus, to guarantee that 𝑐𝑖𝑗(𝑘) > 0, one
can choose any 𝑘′ such that

𝑘′ ≥ log𝐶

log(1/𝜆)
<∞. (48)

If 𝑐𝑖𝑗(𝑘) > 0 ∀𝑖, it is possible to bound the PEP in (29) by

𝑃 𝑗
s→s′(𝑘)

≤ 𝑄

⎛
⎜⎜⎝ (s− s′)𝑇

(∑𝐽
𝑖=1 𝑐

min
𝑗 (𝑘)H𝑇

𝑖 H𝑖

)
(s− s′)√

2(s− s′)𝑇
(∑𝐽

𝑖=1(𝑐
max
𝑗 (𝑘))2H𝑇

𝑖 H𝑖

)
(s − s′)

⎞
⎟⎟⎠

≤ 𝑄

⎛
⎝𝜅𝑗(𝑘)

√√√⎷1

2
(s− s′)𝑇

(
𝐽∑

𝑖=1

H𝑇
𝑖 H𝑖

)
(s− s′)

⎞
⎠ (49)

where 𝑐min
𝑗 (𝑘) := min𝑖{𝑐𝑖𝑗(𝑘)}, 𝑐max

𝑗 (𝑘) := max𝑖{𝑐𝑖𝑗(𝑘)}
and 𝜅𝑗(𝑘) := 𝑐min

𝑗 (𝑘)/𝑐max
𝑗 (𝑘) ≤ 1. The inequality in (49)

implies that the performance of the system is bounded by an
equivalent centralized system with SNR reduced by 𝜅2𝑗(𝑘).
Then, the diversity achieved is at least the same as the one
achieved by the centralized system. On the other hand, the
diversity order per local sensor can only be at most that of the
centralized demodulator. This implies that, so long as 𝑐𝑖𝑗(𝑘) >
0, (26) achieves the same diversity order as (3).

REFERENCES

[1] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Athena Scientific, 1997.

[2] R. Dabora and S. D. Servetto, “Broadcast channels with cooperating
decoders,” IEEE Trans. Inf. Theory, vol. 52, pp. 5438–5454, Dec. 2006.

[3] S. C. Draper, B. J. Frey, and F. R. Kschischang, “Interactive decoding
of a broadcast message,” in Proc. 41st Allerton Conf. Commun., Contr.,
Computing, Oct. 2003.

[4] G. B. Giannakis, Z. Liu, X. Ma, and S. Zhou, Space-Time Coding for
Broadband Wireless Communications. John Wiley & Sons, Inc., Jan.
2007.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2010 at 15:32:06 UTC from IEEE Xplore.  Restrictions apply. 



2054 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 6, JUNE 2010

[5] G. H. Golub and C. Loan, Matrix Computations, 3rd edition. Baltimore,
MD: Johns Hopkins University Press, 1996.

[6] Y. Hatano, A. K. Das, and M. Mesbahi, “Agreement in presence of
noise: pseudogradients on random geometric networks,” in Proc. 44th
Conf. Decision Control, Dec. 2005, pp. 6382–6387.

[7] A. Jadbabaie, J. Lin, and S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Trans. Autom.
Control, vol. 48, pp. 988–1001, June 2003.

[8] S. Kar and J. M. F. Moura, “Consensus based detection in sensor
networks: topology optimization under practical constraints,” in Proc.
1st Intl. Wrkshp. Inform. Theory Sensor Networks, June 2007.

[9] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity
in wireless networks: efficient protocols and outage behavior,” IEEE
Trans. Inf. Theory, vol. 49, pp. 3062–3080, Dec. 2004.

[10] Y. Liang and G. Kramer, “Rate regions for relay broadcast channels,”
IEEE Trans. Inf. Theory, vol. 53, pp. 3517–3535, Oct. 2007.

[11] R. Olfati-Saber, E. Frazzoli, E. Franco, and J. S. Shamma, “Belief
consensus and distributed hypothesis testing in sensor networks,” in
Network Embedded Sensing and Control, P. J. Antsaklis and P. Tabuada,
editors. Springer–Verlag, 2006, pp. 169–182.

[12] J. G. Proakis and M. Salehi, Digital Communications, 5th edition. New
York: McGraw-Hill, 2008.

[13] M. G. Rabbat, R. D. Nowak, and J. A. Bucklew, “Generalized consensus
algorithms in networked systems with erasure links,” in Proc. Signal
Process. Advances Wireless Commun., June 2005.

[14] V. Saligrama, M. Alanyali, and O. Savas, “Distributed detection in
sensor networks with packet losses and finite capacity links,” IEEE
Trans. Signal Process., vol. 54, pp. 4118–4132, Nov. 2006.

[15] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc
WSNs with noisy links—part I: distributed estimation of deterministic
signals,” IEEE Trans. Signal Process., vol. 56, pp. 350–364, Jan. 2008.

[16] N. D. Sidiropoulos and Z.-Q. Luo, “A semidefinite relaxation approach
to MIMO detection for high-order QAM constellations,” IEEE Signal
Process. Lett., vol. 13, pp. 525–528, Sep. 2006.

[17] T. Wang, A. Cano, G. B. Giannakis, and J. Ramos, “Multi-tier coopera-
tive broadcasting with hierarchical modulations,” IEEE Trans. Wireless
Commun., vol. 6, pp. 3047–3057, Aug. 2007.

[18] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
System Control Lett., vol. 53, pp. 65–78, Sep. 2004.

[19] H. Zhu, G. B. Giannakis, and A. Cano, “Distributed in-network channel
decoding," IEEE Trans. Signal Process., vol. 57, pp. 3970–3983, Oct.
2009.

Hao Zhu (S’07) received her bachelor’s degree from
Tsinghua University, Beijing, China in 2006 and
the M.Sc. degree from the University of Minnesota,
Minneapolis in 2009, both in electrical engineering.

From 2005 to 2006, she worked on radar wave-
form design as a research assistant with the In-
telligent Transportation information Systems (ITiS)
Laboratory, Tsinghua University. Since September
2006, she has been working towards her Ph.D.
degree with the Department of Electrical and Com-
puter Engineering at the University of Minnesota.

Her research interests lie in the areas of communication theory and signal
processing. Her current research focuses on sparsity-exploiting detection with
alphabet constraints and behavior pattern inference for social networks.

Alfonso Cano (S’01) received the electrical en-
gineering degree and Ph.D degree with honors in
telecommunications engineering from the Universi-
dad Carlos III de Madrid, Madrid, Spain, in 2002
and 2006, respectively. During 2003–2006, he was
with the Dept. of Signal Theory and Communica-
tions, Universidad Rey Juan Carlos, Madrid, Spain.
Since 2007 he has been with the ECE Department
at the Univ. of Minnesota, MN, USA, where he is a
post-doctoral researcher. His research interests lie in
the areas of signal processing and communications.

Georgios B. Giannakis (Fellow’97) received his
diploma in electrical engr. from the Ntl. Tech. Univ.
of Athens, Greece, 1981. From 1982 to 1986 he was
with the Univ. of Southern California (USC), where
he received his MSc. in electrical engineering, 1983,
MSc. in mathematics, 1986, and Ph.D. in electrical
engr., 1986. Since 1999 he has been a professor
with the Univ. of Minnesota, where he now holds
an ADC Chair in Wireless Telecommunications in
the ECE department, and serves as director of the
Digital Technology Center.

His general interests span the areas of communications, networking and
statistical signal processing - subjects on which he has published more
than 285 journal papers, 485 conference papers, 20 book chapters, two
edited books, and two research monographs. His current research focuses on
compressive sensing, cognitive radios, network coding, cross-layer designs,
mobile ad hoc networks, wireless sensor and social networks.

G. B. Giannakis is the (co-)inventor of 15 patents issued, and the (co-
)recipient of seven paper awards from the IEEE Signal Processing (SP) and
Communications Societies, including the G. Marconi Prize Paper Award in
Wireless Communications. He also received Technical Achievement Awards
from the SP Society (2000), from EURASIP (2005), a Young Faculty
Teaching Award, and the G. W. Taylor Award for Distinguished Research
from the University of Minnesota. He is a Fellow of EURASIP, has served
the IEEE in a number of posts, including as a Distinguished Lecturer for the
IEEE-SP Society.

Authorized licensed use limited to: University of Minnesota. Downloaded on July 09,2010 at 15:32:06 UTC from IEEE Xplore.  Restrictions apply. 


