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On the Use of Lyapunov Criteria to Analyze the
Convergence of Blind Deconvolution Algorithms
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Abstract—We present an approach to determine sufficient
conditions for the global convergence of iterative blind deconvolu-
tion algorithms using finite impulse response (FIR) deconvolution
filters. The novel technique, which incorporates Lyapunov’s di- 7
rect method, is general, flexible, and can be easily adapted to .
analyze the behavior of many types of nonlinear iterative signal 8(r)
processing algorithms. Specifically, we find sufficient conditions to
guarantee a unigue solution for the NAS-RIF algorithm used for BLURRED L_ fr) :
blind image restoration. We determine that in many cases, there SIGNAL | e(r)
exists a tradeoff between the quality of the deconvolution result 7T
and the uniqueness of the solution. A procedure to determine the Fig. 1. Zero-memory nonlinearity deconvolution. Blind deconvolution is

length of the deconvolution filter to guarantee a unique solution Performed by recursively inverse FIR filtering the degraded signalith
is established. the adaptive filter: to produce an estimate of the true sigiialThis estimate

is passed through a zero-memory nonlinearity to produce a sj@lalwhich
is considered to be an even better estimate of the true signal. The difference
|. INTRODUCTION betweenf and fny. is used to update for the next iteration.
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N APPLICATIONS such as image processing, digital com-

munications, and seismic data analysis among others, thefethe cost function minimized in the NAS-RIF algorithm
is a need for efficient blind deconvolution algorithms. Blindhas been established in [3]. In this paper, we go beyond
deconvolution refers to the problem of separating two signalsir previous results and provide an analysis framework to
f and i from their convolutional producy = f = i, when determine sufficient conditions to guarantee a unique solution.
both signals are only partially known. In most applicatiofis, In the next section, we introduce some fundamental concepts
is the signal to be restoredl,is the unknown degradation, andused in our analysis, give a brief discussion of Lyapunov’s
g is the degraded signal. direct method, and discuss zero memory nonlinearity decon-

Many existing iterative blind deconvolution methods makeolution. In Section Ill, we provide a method to analyze the
use of nonlinear transformations on the degraded signal donvergence properties of blind deconvolution methods using
deconvolve the data. The existence of the nonlinearities maKigite extent [i.e., finite impulse response (FIR)] deconvolution
analysis of the convergence and uniqueness propertiesfibérs; we use the framework to find sufficient conditions
the algorithms difficult. In this paper, we present a genertd ensure a unique solution for the NAS-RIF algorithm.
framework based on Lyapunov’s direct method for studyingoncluding remarks are provided in Section IV.
the behavior of nonlinear blind deconvolution algorithms.
The framework we use applies to many blind deconvolution
schemes, such as the Bussgang class of blind equalization
methods [1] and the nonnegativity and support constraints
recursive inverse filtering (NAS-RIF) algorithm for blindA. Algorithm Convergence

image restoration [2]. These methods belong the to the classn this section, we address some related concepts concerning
of zero memory nonlinearity deconvolution techniques anfle issue of algorithm convergence and uniqueness of solu-
are popular for their low computational complexity and flexion for the blind deconvolution process. The general blind
ibility in performing blind deconvolution. Fig. 1 presents theconvolution problem is said to have a unique solution if
general architecture, which we discuss later. Each technigigre exists only one pair of signajs and ~ that produce

of the class differs in the nonlinearity NL imposed duringne resultg = f = h, where = is the linear convolution
deconvolution. We specifically discuss and concentrate on t@ﬁerator. It is easy to see that the solution is unique if both
NAS-RIF algorithm [3] for blind image restoration. CO”VeXitycomponentsf andh are considered to be irreducitiédeally,
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However, in practice, FIR deconvolution filters are used 2) there are continuous, strictly increasing functioms:
for processing. Therefore, we must settle for obtaining a R — R, andj: R — R, wherea(0) = 3(0) = 0 and
solution that is an approximation to the sigrfalwe call this a(flu—ul)) £ V(u) < 4(||lu—a) for all u € R,
approximation alesired solutionGiven an FIR deconvolution  3) V' is radially unbounded, i.e}/(u) — oo as||u|| — oo;
filter, the objective of an iterative blind deconvolution method 4) AV} = V(u*t!) — V(u*) < 0 for all k > 0;
is to converge to a desired solution from an arbitrary initiq,l,heren.” is the standard Euclidean norm.

condition. Two issues arise concerning the convergence of thesy selecting an appropriate Lyapunov function candidate

algorithm: global convergencand uniqueness of solution 1/ we can determine the conditions that ensure that properties
An iterative blind deconvolution algorithm can be considf1)—(4) of Theorem 1 hold. These conditions will be sufficient

ered to be equivalent to the minimization of an associated c@st global asymptotic stability of the algorithm and will

function J. In this context, global convergence refers to thgherefore ensure that there is convergence to a unique solution
ability of the algorithm to reach a global minimum of the cos for any initialization.

function from any initial condition. Uniqueness of the solution

these properties are related to the convexity of the functionS | blind d luti lqorithms fall under th ¢
J. If a function is convex, then we can ensure convergence everal blind deconvolution aigorithms fafl under the cate-

to a global minimum using numerical descent routines. If%Ory of ztgro—r(;u;:mory nr(])nllntehar(ljty dfﬁor:avolutlon m?thods} El].h
function is strictly convex, then we can additionally guarante € mentioned two such methods—ine bussgang c'ass of tech-

that this desired global minimum is unique [4]. niques and the NAS-RIF glgorlthm—ln thellntr(.)ductlon. These

methods follow the architecture shown in Fig. 1 to restore
_ 3 the signal f. In such methods, deconvolution is performed
B. Algorithm Stability by inverse filtering the degraded signalith a FIR filter u.

The convergence of a signal processing algorithm is ald$e output of this filterf is an estimate of the true signdl
related to its stability. We focus on discrete-time algorithmEhis estimate is passed through a zero-memory nonlinearity
described by a recursive time domain relationship of the forf produce a signafxr., which is considered to be an even

better estimate of. The FIR deconvolution filtez is updated
uFt = By (ub) ) by trying to minimize the difference betweghand fnr1.. The
associated cost function is given by

whereu® € R”, andF}, : R* — R" for all & > 0. In most J(u) = [f(x) = fan(o)] 2)
iterative signal processing algorithms, we want to findia Ve

that is invariant under the mapping. [i.e., @ = Fi(W]. \where u is a column vector representing an ordered set
Such a parameter set is called equilibrium solutionof (1) ¢ parameters of the FIR filter,? r is the discrete signal
[5]. Given an initial conditionuy, we are often concernedindex (it is scalar in the 1-D situation and a vector in
with whether or not the recursion will lead to an equilibriumpe multiple dimension situation, e.g. for imageg)r) =

solution 1. fur_thermore, we w<|3u|d. kI]ike rt]he rer::'u_rsiorr:. 0)(r) # u(r), far(r) = NL{f(r)}, NL{-} is the zero-memory
converge tou given anyuo. An algorithm that exhibits this n,nlinearity, ands represents the linear convolution operator.

attribute is calledglobally asymptotically stablgs]; global e corresponding update law for the deconvolution filter is
convergence of the algorithm to a unique solution is ensured;}ven by

Many iterative algorithms, such as the set of zero-memory -~ . .
nonlinear deconvolution methods discussed in Section II-D, utt =u* - pvJ(u®) 3)

are in the form of (1). where

uk vector of filter coefficients:(r) at thekth iteration

C. Lyapunov's Direct Method of the algorithm;

Lyapunov’s direct method can be used to provide sufficienty: > 0 update step size;
conditions for the asymptotic stability of a given nonlinear VJ(u) gradient of./ with respect tou.
recursion of the form of (1) [5]. Lyapunov analysis entails thi is easy to see that (3) is in the same form as (1).
selection of an “energy” function commonly referred to as a The distinct algorithms of this class differ in the zero-
Lyapunov functionV” : R™ — R, which maps the parametersmemory nonlinearityNL{-} used for restoration. This function
of a given nonlinear recursion to a scalar quantity. If a functiosften depends on the prior knowledge available about the
V' can be found that exhibits certain properties, which wsignal f; it could be in the form of statistical information
state in Theorem 1, then the recursive algorithm is globalfgr applications such as seismic analysis and data communica-
asymptotically stable. We make use of the following theoretions, or it may be purely deterministic as for image processing
[5]. applications.

Theorem 1 (Global Asymptotic Stability)the equilibrium  In this paper, we focus on the analysis of the non-negativity
u of (1) is globally asymptotically stable if there is a functiorand support constraints recursive inverse filtering algorithm

- n
V: R" — R such that 2For the 2-D casen is the lexicographically ordered (i.e., row-ordered)
1) V(a) = 0; column vector of the filten.
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(NAS-RIF) algorithm for blind image restoration [3]. The UNDISTORED IMAGE ~ BLURRED IMAGE RESTORED IMAGE

method is applicable to situations in which one or more objects j

of known finite support are imaged against a uniformly grey
J

background. The zero-memory nonlinearity is given by

Fe(r) = NL{f (1)}

¢ it f ORIGINAL OUTLINE OF i
f(r), !f f(r)z0 and r € Dsy OBJECT BLURRED OBJECT REGION OF
={0, iff(r)<0 and reDyp (4 SUPPORT
Lg, if re Dsup (@
where UNDISTORED IMAGE ~ BLURRED IMAGE RESTORED IMAGE
. . . . L,
r 2-D vector representing discrete image pixel coor- P
dinates; o Ly#| Dy,
Dgyn region of support, which is assumed to be known b
(and which we discuss below); » Dy,
D, its complement; ORIGINAL OUTLINE OF REGION OF )
Lg  pixel value of the background grey level. OBIECT BLURRED OBJECT SUPPORT
The associated cost function reduces to (b)
J(u) = Z fQ(r)uS(—f(r)) + Z [f(r) _ LB]2 UNDISTORED IMAGE BLURRED IMAGE RESTORED IMAGE
e NN ! !
reDg, r€Dgp . > ( Ly |
N . S
2 N
+ Yy ZU/(I‘) — 1] (5) ﬂ ‘Dxupi Dxup {Dvup
Vr ;/k\ - k 3 - :
) ) . ORIGINAL OUTLINE OF REGI o/nﬁ )
where us() is the unit step funct|on,f(r) = g(r) * u(r), OBITCTS BLURRED OBJECT SUPPORT

and the third term with parameter> 0 is used to avoid the
trivial all-zero solution wherL. g = 0, as explained in [3]. The
corresponding update law is given by

©

Fig. 2. Different regions of support encountered in image processing ap-
plications. Three different cases are shown. For each case, the undistorted
image, blurred image, and restored image frames are drawn. Blurring causes
. . the object(s) in the image frame to spread spatially; the outlines of the blurred
uF ) = P () — 2p Z g(r — D) fH(r)u, (= f*(r)) objects are shown and subsequently overlap fhe, region due to the
spreading of the object. The restored image is of a larger size than the blurred

r&Dem image as it is computed by linearly convolving the blurred image with the
+ Z gl(r — 1)(fk (r)— Lp) deconvolution filteru.
rEDsup
original data. A similar problem has been considered by
+ 'y< uk(r) — 1)] (6) Gerchberg [6] (and later by Papoulis [7]) for the frequency
vr extrapolation of bandlimited functions with known finite sup-

ks p L k. port. The difference in the problem they consider is that
wherew” (i) is theith element of the vectan®, and f*(r) = the frequencies within the band limit of the degradation are

k
g(r) = u(r) L . . __assumed to be unaltered, whereas in the NAS-RIF algorithm, it
We consider situations in which the imaged scene is com- : S
. . . - is assumed that the attenuation of all frequencies is unknown,
prised of object(s) and a uniform background. We define

the region of supportD.., as a set including all pixels and we exploit the fact that the degradation is in the form

encompassing the object(s) within the image frame. T (Ingaspatial—dpm_ain Iinea_r sh_ift inve_lriant_ convolution that can
region can be of any shape. For example, in [B1 is rbe undone with inverse filtering. Wiley, in [8], shows that the

: j . .gr?jection—based algorithm used in [6] and [7] is a special case
defined as the smallest rectangle encompassing the Objo‘f generalized contraction mapping developed by Sandberg
Dgyp is the complement oD, (i.e., the set of all pixels

not within the predefined region of support); the regidns,,
and Ds,,;, are disjoint. We give examples of possible kinds

[9], which guarantees the convergence of the algorithm to
a unique solution. Our algorithm is somewhat similar to the

o) . . . .

‘s in Fia. 2. Si th tored imakd ted class of iterative algorithms considered by Sandberg, except
supports in Fig. 2. Since the restored imafiés compute that the projection operator is not necessarily one-to-one; thus,

_by I|_nearly_ convolvmg the blurred image with «, f grows convergence and uniqueness issues cannot be easily addressed
in size with the size ofu. The edges of the image are

extended during filtering process. The dimensionsfoare using the work in [9].
(Nog + Npw — 1) x (Nyg + Ny, — 1), whereN,, x N, and Il. ANALYSIS
Ngu X Ny, are the dimensions of and«, respectively.
The NAS-RIF algorithm attempts to extract informatiod® G€neral Methodology
concerning the frequencies attenuated due to blurring by usingn this section, we provide a systematic technique to find
information concerning the support and non-negativity of theufficient conditions to ensure the unique global convergence
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of an iterative blind deconvolution method using an FIR filtefTo obtain these specific requirements, we make use of the

We base our analysis on Theorem 1. following definition and theorem [4].
1) Select a Lyapunov function candidate. Definition 1 (Hessian of a Function)The Hessian of a
For examp|e’ we may Se|e@f(u) — J(u) — J(ﬁ)’ function 7 : R®* — R is defined as
where.J is the associated cost function of the algorithm, % gija(? gija (ZZ)
and is the desired equilibrium solution to the update az;tz) 97 (n) 0 7()
law of (3) and is a global minimum of. V27 (z) = 08z 022 1 0220z,
2) RestrictV (u) to the four conditions outlined in Theorem : : :
1, and translate these to constraints on the algorithm PI(z) Iz 827 (z)
parameters (e.g., nonlinearities, update gains, etc.). Fznd21 02n0z T T 0A
Continuing with the previous example, the conditionwherez is ann-dimensional vector comprised of components
translate to the following constraints of{u): 21,72, . Zn.

J1) o(|lu—1a|) +J(@) < J(u) < B(llu—1a|)+.J(a) _Theorem 2:Let J(z) be twipe diﬁe_rentiable iR™. Then,
for all u € R, wherea(-) and 3(-) are as stated 9ivenz, € R" and azp € R in a neighborhood about,
in (1) of Theorem 1. T(azs+ (1 - a)zp) < ad(z4) + (1 — a)T(zp) 8)
J2) J(u) — oo as|u|| — o~c. . . N o
J3) AV = J(uF+) — J(u*) < 0 for all k > 0, where for all a € (0,1) andz4 # zp if V27(z) is positive definite
ut £ 7 for all z [which is denoted by?27(z) > 0 for all z € R"].
. 4 ‘ Applying Theorem 2, we see that if we constraif.7(u)
3) Form the functionAV;, = V(u**t!) — V(u*) and e o _
) substitutew*+* with thé right s(ide o)f the l(de)ate law © be positive definite (i.ey2J(u) > 0), thenJ fuffills

of (3) to getAV; solely in terms ofu”. J(aug + (1 —a)up) < aJ(us) +(1—a)J(ug) (9)

In our example AV, becomes
ple. AV for a € (0,1) and for alluy,up € R” such thatu, #

AVi = V(M) — V(b up. He_nce, (9) implies tth(u) ipcreases along any ray
B Kl p originating from the global minimura [4]. We can then bound
= J(u™) = J(u®) J(u)—J(1i) such that|[u—1|P < J(u)—J(@) < \|lu—a?
= J(uk — pvIh)) - J(b) (7) for some integep > 1 and0 < x < A < oo, which fulfills
J1). Furthermore, the increasing nature/¢fi) along any ray
4) Determine the conditions for which all the constrainteriginating froma ensures thaf(u) — oo as|ju|| — oo [see
obtained from steps 2 and 3 are fulfilled. J2)]. Inequality (9) also suggests thamust be strictly convex
From Theorem 1, we establish that these conditioy definition [4]. The strict-sense convexity dfimplies that
are sufficient to ensure global convergence and a unigéiehas no points (other than at), which have a gradient
solution to the algorithm. If such conditions cannot bealue of zero. Therefore, with an appropriate gainit is
obtained or are not satisfactory, go back to Step 1, thadways possible to decrease the cost at the next iteration using
time selecting a different Lyapunov function candidatethe gradient update law of (3) for any # a. As a result,
We continue this stage of the analysis on the exampl@ndition J3) is fulfilled becausé(u**!) — J(u*) < 0 for
in the next section. all k, whereu®* # u.

Our analysis approach is general in the sense that it canf NUS, using our analysis methodology, we have determined
theoretically provide sufficient conditions for the global conthat VZ.J(u*) > 0 for all & ensures the global convergence of
vergence to a unique solution of an algorithm with an updat@e algorithm to a unique solution. Using a different candidate
law of the form of (1). The drawback is that the approackyapunov function can provide a different set of conditions.
works as long as an appropriate Lyapunov function can beWe show in Appendix A that the Hessian of the cost function
found that satisfies the conditions stated in Theorem 1. f@" the NAS-RIF algorithm is given in matrix-vector notation

should be emphasized that the difficulty of the method lies By

determination of the candidate Lyapunov functionSelection V2J(u) = 2G T, (0)G + 2G TG
of a good function can be a nontrivial task; experience makes
the selection process easier. Vidyasagar [5] and Khalil [10] + N, NN N (10)

give some good examples; however, there exists no general NowNyu
procedure to determine a good Lyapuno\/ function for a givéNe define and discuss the associated variables below. We as-
problem. sume for simplicity that the blurred imagéx, y) of dimension
Nzg x Nyg is indexed from(0, 0) to (N4 — 1, N, — 1) and
the that FIR deconvolution filtex(x, y) of size N, x N, is
indexed from(0,0) to (N, — 1, Ny, — 1).
Since the vectoru is the row-ordered vector of filter
From (7), we see that for our specific choice of Candida&eﬁicientSu(aj,y), it is given by
Lyapunov function, finding the conditions that ensure that the
constraints J1) to J3) hold implies that the algorithm will u = [1(0,0)u(0,1) - w(0, Nyu — 1) u(1,0) - --
converge globally to a unique solution under these conditions. u(1,1) - w(Np, — 1, Ny, — DY (12)

B. Conditions to Ensure Global Convergence
to a Unique Solution
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Similarly, f is the row-ordered vector of the pixels ofone (i.e., itis not full rank). The first component is also positive

[z, y) = g(z,y) *ulz,y), ie., semi-definite in general. Because thg,(u) diagonal matrix
. . . . is a function ofu, its rank depends on, and we can always
f= A[f(()’ O)Af(()’ - -Af(O, Nyp—=1)-- find au such thatG*L,,,,(u)G becomes positive semidefinite.

F(1,00£(1,1) -+ f(Nop — 1, N, — D]F. (12) For example, substituting = 0 results in it reducing to the

all-zero matrix. Thus, it is not possible in general to constrain
the component to be positive definite for all

The second component, however, has no dependenece on
and can be constrained to be positive definite. Thus, we force

We also use(z;,y;) to denote the pixel location in the
image f(x,y) of the element corresponding to thth row
of f. For example,(z1,11) = (0,0), (z2,%2) = (0,1), and
(%n, yn) = (%, y) such thatn = N, + 7+ 1.

The remaining matrices and vectors in (10) are defined as M £ GTImG >0 (19)
follows. G is an(Nyg+ Nyy — 1) (Nyg + Ny — 1) X (N Ny,

matrix such thaf — Gu. Specifically which implies that theV,, N, X Ny, ¥y, matrix M must be

full rank. We can use this information to determine whether a
80,0 given deconvolution filter size can guarantee a unique solution.
80,1 The matrixM is a function of the blurred image pixels (due

: to the presence ofx) and the support size of the true image

G- ~ (13) (due to the presence df,;). In the next section, we show
- B0, Nyg +Nyu —1 that in some cases, we can determine an optimal (in terms of
gl_’o accuracy) filter size, which also guarantees a unique solution.
LN, g+ Now—2,Nyg+Nyu—2 C. The Accuracy and Uniqueness Tradeoff
whereg, , is al x N,,V,, vector given by Using (19), we can rewrit® as
&oy = [0(z,9)g(z,y = 1) -+ Gz, y = Now + 1)glz — 1,9) M= > g &, (20)
gl —Ly—1) - g(x — Npuw+ 1,y — Ny + 1)] (@y)€Deup

(14)  which is the sum of||Dqup|| rank oneN,,N,, x N..N,.,
matrices, wherd|D,.,;,|| denotes the number of elements in
%sup. Therefore, a necessary (but not sufficient) condition to
guarantee thaM is full rank® is

andg(z,y) is defined as (15), shown at the bottom of the pag
The matrixI..;,(u) is a diagonal matrix dependent onwith
diagonal entries given by

[Isup(u)]ii _ {Us(—f(xi,yi)), if (x“yz) c Dsup (16) HDsupH > Na;uNyu (21)

0, otherwise which can provide an upper bound on the sizewofWe
evaluate this condition for the three cases shown in Fig. 2.
Case A) ||Dsup|| depends on the values of bof#,, and
Ny.. Using Fig. 2 and the definitions df, 4 and
L, 4 as labeled in the figure, (21) reduces to

where [-];; denotes the(s, j)th element of a given matrix,
and (z;,v;) is the pixel location in the restored imagé
corresponding to théth element off. Similarly, Isg is a
diagonal matrix (independent af) with the diagonal entries

given by [ Dsupll = (Nag + Naw — 1)(Nyg + Nyu — 1)
0 if (.’L'7,y7) < Dsup - LacALyA 2 NacuNyu
Tsuplii = herwi (7)
1 otherwise & (Nag = 1)(Nyg — 1) = LaaLya
whereDy,,;, is the set of all pixels within the region of support + Nou(Nyg — 1) + Nyu(Nog — 1)
as described in Section 1I-D. The vecigr,, v, is an all-ones >0 (22)

column vector of dimensiomV,, N, x 1, i.e., o ) _ _
which is always fulfilled if the blurred image has

r dimensions greater thab, 4 x L, (dimensions
iv .y, =1 1 - 1] . (18) of the support in Case A of Fig. 2) and greater
wu Ny < . . .
Nyu N, terms than1 x 1. This suggests that there is no upper
) bound on the size ofi. An arbitrarily large size
We denote the matrix transpose operator(By . of practical relevance can be chosen.

The right side of (10) is comprised of three components. It
9 ( ) P P SRecall that the condition tha¥l is full rank is a sufficient condition for

is st_raig_ht_forward to see that th_e_ third ‘?QmpO”?”t is pOSitivgﬁiqueness. Thus, (21) is necessary for a sufficient condition for uniqueness
semidefinite and cannot be positive definite as it has a rankio#t is, for (19) to hold].

g(x’y):{g(a:,y), forz=0,1,....Noy—1 and y=0,1,....Nyy—1

0 otherwise (15)

7
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Case B) ||Dsup|| does not depend ofY,, or N,,. Condi- The background pixel value 55 = 0, andDSup includes the

tion (21) gives us three center locations. The blurring function is
whereL,p and L, 5 are defined as in Case B of =[02 06 02]
Fig. 2. An upper bound ofV., = L., Nyu = The resulting convolution product is given by
L,p can be selected.
Case C) || Dsup|| depends onV,, only. The condition g=1[9(0) (1) 9(2) 9(3) g(4) 9(5) g(6)]

1Daupll = Loc(Nyg + Nyu — 1) = NowNyu (24) =[10 14 04 0 04 14 1.0]

. . . . 25
where L, is shown in Case C of Fig. 2 is (25)

select anyN,, and N,, that fulfills (24) as an Nyg = 1, we assume that no quantization of the blurred image

upper bound on the size of. pixels occurs and that the blurring at the ends of the signal are
0t'r{mcated from the signal support as in Case B. Following the

Similar analysis can be carried out for any arbitrary su . . ; .
y y y supp procedure outlined in Section 3.1, we have the following.

shape.
Itphas been shown in [11] that increasing the sizewof 1) We select a filter size of 3 (i.eN., = 3, Ny, = 1)

improves the accuracy of the restored image. However, our ~ Using the results of Case B (i.e.. = L.p and

previous analysis shows that in some cases, there is an upper Ny = Lyp).

bound on the size af to ensure a unique solution. Thus, there 28) We form the matrbG as follows:

is an inherent tradeoff between accuracy and the possibility We form the row vectorg; for i =0,1,..., Nyg +

of a unique solution. The matrix inequality of (19) provides a Now — 2.

testable condition to evaluate the convergence properties of the

algorithm prior to restoration. An optimal FIR deconvolution g0 =1[9(0) g(-1) g(-2)]=[1.0 00 0.0]
filter of selected dimensions can be chosen to guarantee a g; = [g(1) g(0) g¢(—1)]=[1.4 1.0 0.0]
unllciu: sloluttlct)rr: usmg.the foI'Io.\;\'/lrllg geniral tf]rocf.eltolureﬂ.1 t g =1[3(2) §1) §0)]=[04 14 1.0]
elect the maximum initial size for the filtar tha O N . _
fulfills (21) (i.e., a necessary condition favl to be %3 B [~(3) ‘?(2) ‘?(1)] =[00 04 14]
full rank). We provided three examples in this section 8+ =1[9(4) 9(3) g(2)]=[04 0.0 04] (26)
(above) on the use of (21) to find maximum values for g =1[9() g(4) ¢(3)]=[14 04 0.0]
N, and Ny,. If bounds can be found as in Cases B g6 =[3(6) §(5) §(4)]=[10 14 04]
and C, the filter size is set to these values. If the filter ~ _ D6 H= 100 1.0 14
size has no bounds (as in Case A), an arbitrarily large %7 o [~( ) ‘?( ) *?(O)] =[0. ) 4]
filter size is used. gs=1[9(8) g(7) g(6)]=[00 0.0 1.0].
2) Build the matrixM given in (19) using the following ]
procedure: We use (13) to form the matri&
2a) Form the matrixG using (13) given the blurred 10 00 001
image g(z, y). 14 1.0 00
2b) Form.Iﬁ from the given region qf suppo@sup.. 04 14 1.0
Dgyp is assumed to be known prior to restoration; 0.0 04 1.4
otherwise, a support-finding algorithm such as in G= 104 00 04]. 27)
[3] can be used. 14 04 00
2c) ComputeM = G IwG. 1.0 14 04
3) Test the rank ofM. If M is not full rank, decrease 0.0 10 14
the size ofu, and go to 2. Otherwise, stop and use the L0.0 0.0 1.0

preceding filter size tested in the NAS-RIF algorithm. B
In practice, M is almost always full rank for the upper 20) We formleyg, using the fact thab)s,,, is of size 3 and
bound on the size of. However, in some cases, additive noise IS centered on the restored image
and guantization of the blurred image may result in a loss of
rank. We provide one such instance next. Since the NAS-RIF
algorithm can be used for 1-D applications such as gamma ray
spectra processing, we give a simple 1-D numerical example.
Example 1—No QuantizationConsider the situation in
which the true image has a support at locatigitg), f(1), Lp =
f(5), and f(6) and is given by

f=0/O) f(O 1@ B & [ f6)
=[1 2 0 0 0 2 1]

1
]

(28)

je=il er i e Bl en i an Bl e B e B o B @)
je=il er i e Bl en i an Bl e B e B o B @)
(el enlien el = =l o)
OO OO R OO OO
S oo OO o oo
je=il er i e Bl en i an Bl e B e B o B @)
je=il er i e Bl en i an Bl e B e B o B @)
o=l er e Bl el en Bl oo B e B o B @)

SO oo oo oo
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2c) We compute to determine a method to find an FIR deconvolution filter that
53 14 4 guarantees the most accurate unique solution. We demonstrate
M; =G I;zG=— |14 8 14 (29) this with the use of examples.
sSup = .
204 14 53

3) Since the determinant @13 is nonzero, it is full-rank APPENDIX

and positive definite. Therefore, we may use a filter size DERIVATION OF THE HESSIAN OF J

of 3 to guarantee a unique solution. We provide a brief derivation for the Hessian.bffu) given
In our next example, we show how quantization noise cgm0). From Definition 1, we see that we must take the second

cause the matrix to lose rank. derivative ofJ with respect to the elements af The variables

Example 2—Quantization of the Blurred SignaWe per- used in our analysis have been defined in Sections II-D and
form the same steps once more on the quantized blurigdB.
signal g. We round the convolution results to the nearest From (5), we see that the derivative Hfwith respect to an

integer so that element ofu, namelyw(i), is given by
=[9(0) 9(1) 9(2) 9(3) 9(4) g(5) ¢(6)] 9J(w) _ S 2f )8f( r) (=)
:[ 1 1 0 0 0 1 1] oul) & du(i)
(30) 9
Us
—_ | | MPIRAC a(u({)( =
We select a filter size of 3 (i.eN, = 3, Ny, = 1) using r€Dgyy,
the results of Case B once more. Using the same steps as in . af(r)
Example 1, computation di; gives + > 2[f(x) - Lg] ) +2y| > u(r) -1
rCDsup Vr
1 00 (33)
M;=G'I.zG=[0 0 0 (31)
0 01 where we use the product and chain rules for differentiation.
Since
Since the determinant &5 is zero, it is not full-rank. Thus, 9F
a unique solution cannot be guaranteed for a deconvolution f(lf) =g(r —1i) (34)
filter size of 3. du(i)
Repeating the procedure fd¥,, = 2 and Ny, = 1, we and
find that . .
us(—f(r)) _ 2 2o 2 (r)
1 0 —_— = 6(— =0 35
M, = GG = {0 0} (32) au(i) F()b(=f(r)) du(i) (35)
which is not full rank. Thus, a unique solution cannot b¥e find that our expression reduces to
guaranteed for any filter size greater than 1 due to the coars%( )
guantization imposed in our example. — _ 7
e =2 Z F(r)g(r — Dus(—f(r))
reD,,
IV. CONCLUSION
In this paper, we employ Lyapunov’s direct method to +2 D [f(r) = Lpla(r - )2y [Z u(r) = 1]'
analyze the convergence properties of iterative blind decon- r&Peup vr
volution algorithms. The analysis approach is shown to be (36)

successful in providing sufficient conditions for the unique

global convergence of an iterative blind deconvolution alg@imilarly, we can differentiate once more with respect.{g)
rithm. Depending on the choice of the Lyapunov functién to give

different sets of conditions may be obtained. The most difficult

part of the proposed analysis approach is the selection of an 9%J(u)

appropriate Lyapunov functior’. This limitation, however, au()ou) Z g(r = Dus (= f(x))g(r - J)

allows the technique to be general and to be applied to a r € Daup

broad class of algorithms. +2 Z (r—i)glr—j)+2y. (37)
The method is shown to be feasible and straightforward in rE€Daup

determining sufficient conditions for a unique solution to the

NAS-RIF algorithm. We successfully convert the problem of Using the definition of the Hessian (Definition 1), as well
establishing conditions for global convergence to determinimg our indexing notation described in Section IlI-B in which
constraints that guarantee the full rank of algorithm-relateéle indices of the 2-D FIR filter: range from(0,0) to
matrices. We also develop insight from our analysis framewo(®,.,, — 1, N, — 1), it is straightforward to writeV2.J(u)
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3T () 32T () o 9% J (u)
JuZ(0,0) Ju(0,0)0u(0,1) Ju(0,0)8u(Ny,, —1,N,, 1)
9 J () 97 (u) . 9 J(u)
V?J(u) — du.(0,1)0u(0,0) du?(0,1) 91(0,1)0u(Ny —1,N,,,—1) (38)
8% 7 (w) 8°J (u) o 8% (2)
Ju(Nyy—1,Nyu—1)0u(0,0)  Ju(Nyy—1,N,,—1)0u(0,1) Su?(Nyy—1,N,, —1)
as (38), shown at the top of the page, or equivalently i Deepa Kundur (5'93) was born in Toronto, Ont.,

matrix-vector notation using (37) as

A similar but more detailed derivation can be found in [11].

Canada. She received the Bachelor of Applied Sci-
ence degree in 1993 and the Master of Applied
Science degree in communications in 1995, both
from the Department of Electrical and Computer
Engineering, University of Toronto. She is cur-
rently pursuing doctoral studies at the University
of Toronto.
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ing of multimedia, blind image restoration, and
data fusion for the classification of remote sensing

VQJ(u) = GTISUP(II)G + 2GTIWG'

+ (39)

—iN. N ifx Noo-
Na;uNyu eudtVyu T Noy Nyy

imagery.
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