
Pergamon 

0967-0661(95)00077-1 

Control Eng. Practice, Vol. 3, No. 7, pp. 939-954, 1995 
Copyright © 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0967-0661/95 $9.50 + 0.00 

OPTIMAL ADAPTIVE CONTROL OF FED-BATCH 
FERMENTATION PROCESSES 

J.F. Van Impe* and G. Bastin** 

* Katlmlieke Universiteit Leuven, Laboratory for Industrial Microbiology and Biochemistry, 
B-3001 Heverlee, Belgium 

**Universit~ Catholique de Louvain, CESAME - Center for Systems Engineering and Applied Mechanics, 
B-1348 Louvain-la-Neuve, Belgium 

(Received June 1993; in final form March 1995) 

Abstract.  This paper presents a unifying methodology for optimization of biotechnological pro- 
cesses, namely optimal adaptive control, which combines the advantages of both the optimal control 
and the adaptive control approaches. As an example, the design of a substrate feeding rate controller 
for a class of biotechnologlcal processes in stirred tank reactors characterized by a decoupling between 
biomass growth and product formation is considered. More specifically, the most common case is 
considered of a process with monotonic specific growth rate and non-monotonic specific production 
rate as functions of substrate concentration. The main contribution is to illustrate how the insight, 
obtained by preliminary optimal control studies, leads to the design of easy-to-implement adaptive 
controllers. The controllers derived in this way combine a nearly optimal performance with good 
robustness properties against modeling uncertainties and process disturbances. Since they can be 
considered model-independent, they may be very helpful also in solving the model discrimination 
problem, which often occurs during biotechnological process modeling. To illustrate the method and 
the results obtained, simulation results are given for the penicillin G fed-batch fermentation process. 
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1. I N T R O D U C T I O N  

The design of high-performance model-based con- 
trol algori thms for biotechnological processes is 
hampered  by two major  problems which call for 
adequate engineering solutions. First, the pro- 
cess kinetics are most  often poorly understood 
nonlinear functions, while the corresponding pa- 
rameters  are in general t ime-varying. Second, up 
till now there has been a lack of reliable sensors 
suited to real-t ime monitor ing of the process vari- 
ables which are needed in advanced control algo- 
ri thms. Therefore, the earliest a t tempts  at con- 
trol of a biotechnological process used no model 
at all. Successful s tate trajectories from previous 
runs which had been stored in the process com- 
puter were tracked using open-loop control. Many 
industrial fermentat ions are still operated using 
this method.  

During the last two decades, two trends for the 
design of monitor ing and control algorithms for 
fermentat ion processes have emerged (Bastin and 
Van Impe,  1995). In a first approach, the difficul- 
ties in obtaining an accurate mathemat ica l  pro- 
cess model are ignored. In numerous papers clas- 
sical methods  (e.g., Ka lman  filtering, opt imal  con- 
trol t h e o r y , . . .  ) are applied under the assumption 
that  the model is perfectly known. Due to this 
oversimplification, it is very unlikely that  a real- 

life implementat ion of such controllers -very  often 
this implementat ion is already hampered by, e.g., 
monitoring problems-  would result in the pre- 
dicted simulation results. In a second approach, 
the aim is to design specific monitoring and con- 
trol algorithms without the need for a complete 
knowledge of the process model, using concepts 
from, e.g., adaptive control and nonlinear lineariz- 
ing control. A comprehensive t rea tment  of these 
ideas can be found in the textbook by Bastin and 
Dochain (1990) and the references therein. 

This paper shows how to combine the best of 
both  trends into one unifying methodology for 
optimization of biotechnological processes: opti- 
mal  adaptive control. This is mot ivated as fol- 
lows. Model-based optimal  control studies pro- 
vide a theoretically realizable opt imum.  However, 
the real-life implementat ion will fail in the first 
place due to modeling uncertainties. On the other 
hand, model-independent adaptive controllers can 
be designed, but there is a priori no guarantee of 
the opt imal i ty  of the results obtained. The gap 
between both approaches is bridged in two steps. 
First, heuristic control strategies are developed 
with nearly opt imal  performance under all con- 
ditions. These subopt imal  controllers are based 
on biochemical knowledge concerning the process 
and on a careful mathemat ica l  analysis of the op- 
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timal control solution. In a second step, imple- 
mentation of these profiles in an adaptive, model- 
independent way combines excellent robustness 
properties with nearly optimal performance. As 
an example, the design of a substrate feeding rate 
controller for a class of biotechnological processes 
in stirred tank reactors characterized by a decou- 
piing between biomass growth and product for- 
mation is considered. More specifically, the most 
common case of a process with monotonic specific 
growth rate and non-monotonic specific produc- 
tion rate as functions of substrate concentration 
is investigated. 

Finally, Section 6 presents some conclusions. The 
main contribution of this paper is to illustrate 
that the design of an adaptive controller for the 
considered class of fermentation processes can be 
successfully based on a preliminary optimal con- 
trol study. For instance, a substrate concentra- 
tion reference profile is designed which guarantees 
nearly optimal performance. As such, this paper 
can be considered as an extension of the meth- 
ods presented in Chapter 5 of the textbook by 
Bastin and Dochain (1990), where the reference 
substrate concentration is kept constant through- 
out the whole fermentation process. 

The paper is organized as follows. In Section 2 the 
concept of optimal adaptive control is motivated 
in detail. Starting from the optimal control solu- 
tion, the heuristic substrate controllers described 
in (Van Impe et al., 1992; Van Impe, 1994) are 
briefly reconsidered with respect to a real-life im- 
plementation. It is indicated that a straightfor- 
ward implementation is not robust at all. How- 
ever, as these controllers are the translation of a 
realistic control objective, namely set-point con- 
trol, they can serve as a basis for the develop- 
ment of more reliable, robust, model-independent 
adaptive control schemes. To do so, they are in- 
terpreted within the framework of nonlinear lin- 
earizing control theory. In this way, a mechanism 
is incorporated that makes them both stable and 
robust against disturbances. 

2. OPTIMAL ADAPTIVE CONTROL: 
MOTIVATION 

2.1. Problem statement 

This paper considers the class of fed-batch fermen- 
tation processes described by an (unstructured) 
model of the form: 

dS 
- - o ' Z  

dt 
dX 

- # X  
dt 
dP 

_ zrX 
dt 
dV 
dt 

+ Cs,dnu 

-- khP 
(i) 

The next step is then to cope with the monitoring 
problem, i.e., how to determine on-line the non- 
measurable variables needed in the controller, in 
other words, how to make the nonlinear linearizing 
controller adaptive. Sections 3, 4, and 5 present 
three possible solutions depending on which vari- 
ables are on-line available. The use of software 
sensors is clearly illustrated. Both a linear re- 
gression estimator and a state-observer-based es- 
timator can be used for on-line tracking of the un- 
known states and specific rates. According to the 
minimal modeling concept, these specific rates are 
considered as time-varying parameters. Further- 
more, it is possible to take a measurement delay 
into account. The three solutions are compared 
with simulation results for the penicillin G fed- 
batch fermentation process. 

A remarkable result is as follows. If there are 
no state inequality constraints, a substrate con- 
centration reference level is specified only for the 
second phase, namely the production phase. How- 
ever, the proposed controllers can be implemented 
without difficulty from the start of the fermen- 
tation on. The first phase, the growth phase, is 
then mainly used to obtain estimator convergence. 
Furthermore, the extension to a problem with con- 
straints is straightforward. 

where the state variables S, X, P, and V are re- 
spectively the amount of the only limiting sub- 
strate in broth [g], the amount of cell mass in 
broth [g DW] (DW stands for dry weight), the 
amount of product in broth [g], and the volume 
of the liquid phase in the fermentor [L]. Dissolved 
oxygen is considered non-limiting, by maintain- 
ing a sufficiently high aeration level. The input 
u of the system is the volumetric substrate feed 
rate [L/h]. Cs,in (expressed in [g/L])is the (con- 
stant) substrate concentration in the feed stream 
u, while kh [1/hi is the product hydrolysis or 
degradation constant, or, #, and lr are respec- 
tively the (overall) specific substrate consumption 
rate [g/g DW hi, the (overall) specific growth rate 
[1/hi, and the specific production rate [g/g DW 
hi. These rates are interrelated by: 

cr = #/YXlS + m + rc/YPis (2) 

with Yx/s  the biomass on substrate yield coeffi- 
cient [g DW/g], YP/s the product on substrate 
yield coefficient [g/g], and m the (overall) specific 
maintenance demand [g/g DW h]. When intro- 
ducing the concept of endogenous fractions (Van 
Impe et al., 1992; Van Impe, 1994), all kinds of 
metabolism for biomass survival and product syn- 
thesis can be easily described within one unifying 
frame. The endogenous fraction fm E [0, 1] of 
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the overall specific maintenance demand m, and 
the endogenous fraction fp  6 [0, 1] for product 
synthesis, are defined through the following equa- 
tions: 

zX 7r 
= P,~,bo,~ -- Yx/s(f,~rn + fP Yp/s ) (3) 

" mub,,~ /e) ~l"rr s = Yxl'--"~ + (1 - f .Om + (I - (4) 

where p,ub,tr is the specific substrate-to-biomass 
conversion rate. Observe that  equation (2) holds 
true independent of the value of the fractions 
fm and fp .  If f m =  fp  = 1, then endoge- 
nous metabolism is assumed: biomass survival 
and product synthesis are assumed due to com- 
bustion of part of the biomass. On the other hand, 
if f m =  fP = O, then maintenance metabolism is 
assumed: biomass survival and product synthesis 
are assumed due to consumption of part of the ex- 
ternal substrate. If fro 6]0, 1[ and f e  6]0, 1[, then 
a mixed maintenance/endogenous metabolism can 
be modeled. 

If the concentrations Cs, C x ,  and Cp (defined 
as S / V ,  X / V ,  and P/V'respectively) are used as 
state variables, the following equivalent model is 
obtained: 

dCSdt - ~ C x  - Cs  y + Cs, , .  y 

dCx t 4  
= pCx - Cx 

dt 

dCPdt IrCx - C p ~  - khCp 

dV 
~ U 

dt 

(5) 

In this paper, the shape of the specific rates 
#sub,tr and ~r as functions of substrate concentra- 
tion Cs is assumed as depicted in Fig. 1: P,ubatr 
is a monotonically increasing function, while ~r is 
non-monotonic exhibiting a maximum. In other 
words, the enzyme catalyzed production is not as- 
sociated to the microbial growth. Observe that  
this model structure represents the most common 
case of fermentation processes with product for- 
mation and growth/production decoupling. Ob- 
viously, the specific rates #~ubstr and r may be 
functions of other component concentrations as 
well. 

Consider the following optimization problem. De- 
termine for the set of dynamic equations (1) [or 
(5)] the optima/ volumetric substrate feed rate 
profile u*(t) which maximizes the final amount 
of product P( t f ) ,  subject to the following con- 
straints: 

1. to = 0, ty = free 
2. P(0) = P0 and X(0) = X0 are given. S(0) = 

% 

v.,u~.,,(c*) ~ ( c a )  

f 

C s  Ca  

Fig. 1. Process with monotonic /~o~b~,r and non- 
monotonic 

So is free. V(0) = V0 follows from: 

Vo = v ,  + S o / C s , , .  

with V, the initial volume without substrate. 
Remember that  substrate is added as a solu- 
tion with concentration Cs,i , .  

3. The total amount of substrate available for 
fermentation, denoted by a, is fixed. In other 
words, the final reactor volume is fixed to 
V(t f )  = VI, with V/ given. 

Observe that,  from a mathematical  point of view, 
the problem of determining both So and u* (t) is 
equivalent to determining u* (t), t 6 [0, t f] with a 
Dirac input at time t = 0. 

2.2. Case study: the penicillin G fed-batch fer- 
mentation process 

As a test case for all methods presented in this 
paper, consider the penicillin G fed-batch fermen- 
tation process modeled by Bajpai and Reufl (1980, 
1981). This unstructured model is of the form (1) 
[or equivalently (5)], with the specific rates defined 
as follows: 

C s  
7r = rr,~ Kp + Cs + C2s/Kx (Haldane) 

Cs 
t~ub~,r = PC K x C x  + Cs (Contois) 

with ~rm the specific production constant [g/g DW 
hi, Kp the saturation constant for substrate lim- 
itation of product formation [g/L], KI  the sub- 
strate inhibition constant for product formation, 
Pc the maximum specific growth rate for Contois 
kinetics [l/h], and K x  the Contois saturation con- 
stant for substrate limitation of biomass produc- 
tion [g/g DW]. Observe that  these specific rates 
have the general shape shown in Fig. 1. 

Bajpai and Reufl assume a completely mainte- 
nance metabolism for both biomass survival and 
product synthesis. In other words, the endoge- 
nous fractions fm and fp ,  as introduced in def- 
initions (3) and (4), are both equal to zero: 
fm = fP = 0. The extension to a mixed 
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maintenance/endogenous or completely endoge- 
nous metabolism assumption has been described 
by Nicola'/ et al. (1991) and Van Impe et al. 
(1992), with the endogenous fractions fm and fe  
modeled as functions of substrate concentration 
Cs. 

In the application considered here, equations (3) 
and (4) reduce to: 

[~ = fl aubatr 
~t = Dst*bstr/Yx/s q" m -1- lr /Yt , /$ 

which clearly satisfy relation (2). 

Based on some experimental evidence, B a j p i  and 
Reu6 (1980,1981) preferred Contois kinetics over 
the following, more commonly used Monod kinet- 
ics in modeling the specific substrate-to-biomass 
conversion rate ~substr: 

Cs 
~,ubstr  = # M  K s  .~ C s  (Monod) 

with ~M the maximum specific growth rate for 
Monod kinetics [l/h], and Ks the Monod satura- 
tion constant for substrate limitation of biomass 
production [g/L]. One reason is that at high cell 
densities serious diffusionl limitations can be ex- 
pected which would cause the apparent value of 
the saturation constant Ks in Monod kinetics to 
be higher than its value at lower cell densities. In 
Contois kinetics this behavior is modeled by the 
term K x C x  in the denominator. However, both 
kinetics have been shown to be valid for fung i  
growth. From the mathematical point of view, it 
is interesting to consider Monod kinetics as well, 
as all specific rates then become functions of sub- 
strate concentration Cs only. A procedure to cal- 
culate the kinetic constants ~M and Ks from the 
Contois constants #c  and Kx can be found in 
(Van Impe, 1994). The numerical value of the 
original B a j p i  and Keuss model parameters--i.e., 
involving Contois kinetics-is given in Table 2, to- 
gether with the operational and initial conditions 
used in simulations. The value of Kp and Kx 
has been adjusted to obtain agreement with recent 
biochemical knowledge of the penicillin G fermen- 
tation (Van Impe, 1994). The results of a constant 
feeding strategy during 100 h are summarized in 
Table 1. 

Table 2 Parameters and initial conditions used 
in simulations 

parameters 

pc 0.11 
rm 0.004 
Kp 0.1 
Yx/s 0.47 
m 0.029 

Kx 0.06 
kh O.01 
KI 0.1 
YP/s 1.2 
Csjn 500 

initial conditions 

X0 10.5 So to be specified 
Po 0 Vo 7 + SolOs,in 
to 0 a 1500 

2.3. Optimal control strategy 

The optimal control solution--in the sense of the 
Minimum Principle--for a general model (1) [or 
equivalently, (5)] has been analyzed by Van Impe 
(1994). Initial work along the same lines has been 
reported by Modak et al. (1986). Due to the 
decoupling between biomass growth and product 
synthesis, this type of fermentation behaves as a 
biphasic process. 

The state vector x is defined as: 

x T ~ [ s  X P Y]  

while the control input u is the volumetric sub- 
strate feeding rate. This paper is limited to a 
problem with an unconstrained state vector x and 
control input u, and free initial substrate concen- 
tration Cs(O). The extension to problems involv- 
ing one or more constraints is described in (Van 
Impe ¢t al., 1993; Van Impe, 1994). The optimal 
substrate feed rate profile u* (t) ca~ be character- 
ized as follows (the results of the optimal control 
strategy for the penicillin G fed-batch fermenta- 
tion are summarized in Fig. 2 and Table 1): 

1. The first phase, the growth phase, is a batch 
phase, i.e., [u*(t) = 0,0 < t < t2] (see the 
upper plot of Fig. 2). All the substrate con- 
sumed during growth, denoted by Otgrowth, is 
added all at once at time t = 0, thus ensuring 
the highest possible specific growth rate p for 
all t E [0, t~], with a low production rate (see 
the lower plot of Fig. 2). 

Table 1 Constant control, optimal control, heuristic Cs-control, and optimal adaptive control results 

Constant control 
Optimal control 
Heuristic Cs-control with Cs(t2) = (KpKI) 1/2 
Optimal adaptive control using Cs and Cx 
Optimal adaptive control using Cs 
Optimal adaptive control using CER 

S(0) t2 t! P( t / )  
0 100.000 19.422 

337 25.312 139.533 22.606 
345 25.530 138.478 22.515 
345 126.072 22.233 
345 137.538 22.484 
345 146.275 22.273 
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2. During the second phase, the production 
phase, a singular control [uaing(t),t2 < t < 
t3] (see the upper plot of Fig. 2) forces the 
process to produce the product as fast as pos- 
sible. At any time, there is a balance between 
glucose feeding and glucose demand for pro- 
duction and possibly maintenance, thus en- 
suring the lowest possible growth rate (see 
the lower plot of Fig. 2). When V(t3) = V 1, 
the fermentation continues in batch [u*(t) = 
O, t3 < t < tf] until the net product forma- 
tion rate dP/dt  equals zero at t = t I . 

This solution is similar to the one reported by San 
and Stephanopoulos (1989) who used Cs as con- 
trol input. In summary, the two-point boundary- 
value problem, which results from the application 
of the Minimum Principle and involves the state 
vector x and the so-called costate vector p, has 
been reduced to the two-dimensional optimization 
of the initial subs,rate amount S(O) : So [ or 
equivalently, Cs(O) ], and the time t2 at which the 
switching from batch to singular control occurs. It 
can be shown that for the performance measure 
considered here the singular control using(t) is a 
nonlinear feedback law of the state variables S, X ,  
P, and V only [see, e.g., (Modak et al., 1986; Van 
Impe, 1994)]. In other words, the costate vector 
p (which has no clear physical interpretation) has 
been eliminated completely. 

0.~5 i 
~ 0 . ~  

~ 0.015 

~ o.o1 

o.g~5 . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . .  : . . . . . . . . . . . . . . . . . . . . . . .  

o 12 50 1o0 131t 150 
"r'~,e Ihl 

4G 

. . . . . . . . .  Gs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

p~ 

~ . . . . . . . . . . . . . . . . . . . . . . . . . .  i.c~ . . . .  r ~  i . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . .  i ................... ! . . . . . . . . . . . .  ! ................................ 

TIIne Ihl 

Fig. 2. Optima] control. Upper plot: optima] sub- 
strate feed rate profile u*(t). Lower plot: sub- 
strate concentration Cs(t), biomass concentra- 
tion Cx(t), amd product amount P(t) profiles 

2.4. Heuristic control strategies 

The most important drawbacks of the optimal 
control solution can be summarized as follows. 

1. Optimal control is a very model-sensitive 
technique. It requires a complete knowledge 
of the process model, including an analytic 
expression for all specific rates. Since in 
biotechnology this assumption is in practice 
never fulfilled, the optimal profile is generally 
calculated using a highly simplified model de- 
scribing the process more or less correctly 
only from a qualitative viewpoint. Therefore, 
the resulting optimal profiles can be used only 
to increase the insight into both the process 
and the quality of the model. 

2. For the performance measure considered in 
this paper [i.e., maximization of final product 
amount P(tf)], the optimal feed rate profile 
is obtained in complete state feedback form 
except for the switching time t2 between the 
batch growth phase and the singular produc- 
tion phase (Fig. 2). In general, t~ must be 
determined numerically in advance. 

3. Necessary and sufficient conditions can be de- 
rived for which t2 also becomes a function 
of state variables only [see, e.g., (Van Impe, 
1994)]. However, even if a perfect process 
model could be available which satisfies all 
conditions to obtain the complete optimal so- 
lution in closed loop, real-life implementation 
is still hampered by the lack of reliable sen- 
sors suited to real-time monitoring of the pro- 
cess variables needed in the controller. Be- 
sides a perfect analytical knowledge of all spe- 
cific rates and corresponding parameters, the 
control during the singular phase Usina(t) re- 
quires on-line measurements of all state vari- 
ables S, X, P, and V (Van Impe, 1994). 

Therefore, it is very useful to construct suboptimal 
strategies that do not suffer from the above diffi- 
culties, at the expense of as small as possible a de- 
crease in performance. In (Van Impe et al., 1992; 
Van Impe, 1994) suboptimal heuristic controllers 
for both the substrate concentration Cs (heuristic 
Cs-control) and the overall specific growth rate p 
(heuristic p-control) are designed. As an example, 
in this paper heuristic Cs-control is considered, 
which can be motivated from both the microbio- 
logical and mathematical point of view. 

2.4.1. Microbiological and experimental motiva- 
tion. The construction of a suboptimal profile 
for the type of biotechnological processes under 
consideration can be based on the concept of a 
biphasic fermentation. 

1. Growth phase [0, t2]. During the growth 
phase the specific substrate-to-biomass con- 
version rate psubstr is focused. For the con- 
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trol needed reference is made to the optimal 
control results: in the case of an unbounded 
input u, an unconstrained state vector x, and 
a free initial substrate concentration Cs (0), 
the growth phase is a batch phase. In the 
case of a constraint on the input or the state 
and/or a fixed initial state, some minor mod- 
ifications are required. A general strategy is 
that the fraction acro~oth of the total amount 
of substrate available a, which is consumed 
for biomass accumulation during the growth 
phase, must be added as fast as possible in 
order to obtain the highest possible value of 
I ~ s u b s t r  • 

2. Production phase [tz,ts]. During production 
the specific production rate r is focused. As 
shown in Fig. 1, r exhibits a maximum as a 
function of the substrate concentration Ca. 
So, it is a reasonable control objective to 
keep the substrate concentration during the 
production phase constant at the level Cs,~ 
which maximizes r. For instance, in the case 
of Haldane kinetics, Cs,~ equals (KpKx) 1/2. 
Therefore, as soon as Ca(t) equals Cs,~, the 
feed rate switches from [u(t) = 0] to: 

~Cx V 
Uprod.a~o. = C s , i .  - C s  (6) 

which keeps substrate concentration Cs con- 
stant dtiring production. This can be read- 
ily seen using model equations (5). Con- 
troller (6) is shut off when all substrate a has 
been added at time t = t3, or equivalently, 
when V(ts) = V/. As in the case of optimal 
control, the fermentation continues in batch 
[u(t) = 0,t3 < t < ty] until the net product 
formation rate dP/dt equals zero at t = t I . 

Obviously, the switching time t2 (Fig. 2) is known 
in closed loop: the production phase starts when 
the substrate concentration Cs becomes equal to 
Cs,~. As a result, the optimization problem has 
been reduced to the one-dimensional optimiza- 
tion of the initial substrate concentration Cs(O), 
or more generally, of the fraction agrowth of the 
total substrate amount available. 

2.4.2. Mathematical justification. The mathe- 
matical motivation of the proposed heuristic Ca- 
controller is based on the following considera- 
tions. If it is assumed that /~,~,b,tr and ~r [and 
thus e through relation (2)] are functions of sub- 
strate concentration Cs only--consider for in- 
stance the above model for penicillin fermentation 
with/~,ub,tr modeled by Monod kinetics--then the 
optimal feed rate during the singular production 
phase [~2,t3] is given by (Van Impe, 1994): 

~CxV 
u.,.g(t) = c~,S':.- b s  

ps V ( Tr' X - I~' P ) 
+ k~ x ( c s , , .  - c ~ ) o . , , . "  - ~ . "  - p . . :")  (r) 

where a prime denotes derivation with respect to 
substrate concentration, and Pi is the costate as- 
sociated with component zi of the state vector x. 
Note that this expression is linear in the specific 
product decay rate kh, and a feedback law of state 
variables only (it can be shown that the costates 
Pl and P2 depend linearly on Ps). Furthermore, 
the second term requires knowledge of an analyti- 
cal expression of the derivatives of all specific rates 
up to second order. It is shown in (Van Impe, 
1994) that the proposed heuristic Ca-controller re- 
duces to the optimal profile if (and only if) (i) the 
performance index is independent of final time tl ,  
(ii) the specific rates Psubstr and r are functions 
of Cs only, (iii) kh = 0, and (iv) the production 
phase starts when the substrate concentration Cs 
reaches the level which maximizes the ratio lr/e. 
In cases where (some of) these conditions are not 
satisfied, the proposed heuristic Ca-controller is 
at least a very good approximation of the optimal 
solution. 

Note that the specific rates /-tsubstr and 7r can be 
allowed to be functions of other component con- 
centrations as well (e.g., Cx), provided these spe- 
cific rates as functions of substrate concentration 
Cs have the general shape shown in Fig. 1. As 
an example, the results given in Table 1 are ob- 
tained for the penicillin fermentation process with 
Psubatr modeled by Contois kinetics. 

A further refinement of this strategy consists of 
optimizing the value of the substrate concen- 
tration level during production (denoted by C~, 
which plays the role of a set-point). In other 
words, during production Cs is kept constant, but 
not necessarily at the value Cs,~ which maximizes 
r. As in the case of optimal control, optimiza- 
tion of final product amount reduces to a two- 
dimensional optimization problem. The degrees 
of freedom are the initial substrate concentration 
Cs(O)--or more generally, the fraction ~growth- 
and the substrate concentration set-point C} dur- 
ing production. 

2.5. Linearizing control 

With respect to a real-life implementation, the 
heuristic controller (6) has the following advan- 
tages over the optimal controller (7). First, the 
switching time t2 between growth and produc- 
tion (and thus the complete control) is known in 
closed-loop as a function of the state: Ca(t2) = 
C]. Second, as for the modeling uncertainty prob- 
lem, only the specific substrate consumption rate 

is required. Third, as for the on-line monitor- 
ing problem, the number of state variables to be 
measured on-line has been reduced by one: there 
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is no need for a measurement of the product P. 
This is an important advantage in cases where the 
product remains (almost) completely in the liquid 
phase of the reactor. Finally, the most impor- 
tant advantage is that the given optimal control 
problem--namely, optimization of the final prod- 
uct amount P(tl)  at some unknown final time t l -  
has been replaced by a more common regulator 
problem--namely, regulation of substrata concen- 
tration Cs to some set-point C~ for all time t dur- 
ing production--for which feedback control loops 
can be developed. 

dCx 
dt 
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However, a real-life implementation is still far 
away. Two important problems remain to be 
solved. 

Problem 1: The monitoring problem. Al- 
though the number of unknowns has been re- 
duced, the heuristic Cs-controller still needs 
on-line measurements--or at least reliable 
estimates--of substrata S, biomass X, vol- 
ume of the liquid phase V, and of the specific 
substrate consumption rate c~. 
Problem P: The stability problem. The 
closed-loop stability is not guaranteed a pri- 
ori. From general model (5) the closed- 
loop dynamics during production for sub- 
strate concentration Cs when using controller 
(6) are simply: 

dCs 
= 0  

dt 

Clearly, even a small disturbance can move 
substrate concentration irreversibly away 
from its desired value C~, resulting in per- 
formance degradation. 

In the following it is illustrated how to design con- 
trollers based on the heuristic approach that do 
not suffer from the above drawbacks. 

REMARK 
It is emphasized that the primary goal of a sub- 
strata feedback controller for a fed-batch fermen- 
tation process is not to stabilize the process glob- 
ally, but rather to optimize it while keeping an 
inherently unstable type of behavior under control 
[see also (Bastin and Dochain, 1990)]. As an ex- 
ample, consider the growth phase of a fed-batch 
fermentation process with a substrata inequality 
constraint. The optimal strategy then consists of 
keeping Cs at its maximum value, say C$,MAX, 
using a control of the form (6) until all substrate 
available for growth ~gro~vth has been added [see 
(Van Impe, 1994)]. The closed-loop dynamics of 
biomass are then, using (1) and (5): 

dX 
-- # ( C S , M A X ) X  

dt 

[.(Cs,M,x) 

_ ~(Cs,MAX) Cx]Cx. 
Cs,in -- CS ,MAX 

During growth, in generM the specific growth rate 
is much larger than the dilution rate D = u/V.  

As a result, both the absolute amount X and the 
concentration Cx of biomass increase in an expo- 
nential way. Clearly, the substrata controller (6) 
does not stabilize the growth phase. It optimizes 
growth by keeping substrate concentration at its 
optimal value. • 

2.6. The stability problem 

The second problem is considered first. When re- 
placing the optimal controller (7) by the heuristic 
controller (6) the control objective becomes more 
realistic, namely se~-point control or more gener- 
ally tracking of a reference profile. The heuristic 
controller (6) performs well if there are no dis- 
turbances, measurement errors, . . . ,  and if the 
switch from growth to production occurs exactly 
when Cs(t2) = C~. As in general these assump- 
tions are not fulfilled, some mechanism must be 
incorporated in control law (6) which controls the 
tracking error in presence of disturbances, . . .  At 
this point the principle of linearizing control can 
be used. An introduction and several applications 
in bioreactor control can be found in (Bastin and 
Dochain, 1990) and the references therein. 

1. In the application considered in this paper, 
the control variable is the volumetric feed rate 
u, while the controlled variable is the sub- 
strate concentration Cs. So an input~output 
model for this case is simply the first differ- 
ential equation of (5): 

dCs (8) 

This input/output model (which is linear in 
the control u) is of relative degree one: the 
control u appears explicitly in the first deriva- 
tive (with respect to time t) of the controlled 
variable Cs. 

2. A linear stable (A is a strictly positive given 
number) reference model for the tracking er- 
ror is then: 

d(Cs - C;) 
- ) ~ ( C s  - C ; ) .  (9) 

dt 

Note that the reference model is of the same 
degree as the input/output model. At this 
point, the reference signal C~ may be time- 
varying. 

3. A nonlinear linearizing controller is obtained 
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by eliminating dCs/dt  between (8) and (9): 

~t 0 --- 

dC;   (Cs - C;) 
+-Ti-- 

Cs , in  -- C s  

In the application considered here, a constant 
substrate concentration during the produc- 
tion phase is desired, so: 

J.F. Van Impe and G. Bastin 

case of optimal and heuristic control, this is a two- 
dimensional optimization problem. The degrees 
of freedom are the initial substrate concentration 

V Cs(O) -or more generally, the fraction agrowth- 
and the reference substrate concentration during 
production C~. 

The extension to the case of a substrate inequal- 
ity constraint [Cs(t) < CS,MAX] during growth 
is straightforward. The optimal initial substrate 
concentration is then (Van Impe, 1994) Cs(O)= 
CS,MAX. During growth, a controller of the form 
(10) tries to keep Cs at C S , M A X  [ C s , M A X  then 
plays the role of the reference value] until at some 
time instant t = tl  the total amount of substrate 
reserved for growth, Oigrowth, is added. At t = t l  
the reference level switches to the level C} which 
is optimal for production. Since at t = tl  the 

(10) actual substrate concentration Cs is much larger 
than C}, controller (10) switches to zero--i.e., 
batch mode--as required. If Cs --* C}, controller 
(10) switches automatically to positive values to 
keep Cs around C}. Controller (10) can again 
be implemented from t = 0 on. For this case the 
two degrees of freedom in the optimization are the 
time t l - -or  equivalently, the amount of substrate 
reserved to growth ~growth--and again the refer- 
ence substrate concentration level during produc- 
tion C~. 

Both cases are illustrated for the penicillin G fed- 
batch fermentation in Fig. 3 where it is assumed 
that  the measurements are all perfect and that 
there are no disturbances. Observe that  the non- 
linear linearizing controller (10) becomes positive 
before Cs reaches C~. This guarantees a smooth 
transition in the substrate concentration profile at 
the start of the production phase. This behavior 
can be obtained using a small value of )~ (e.g., 
A = i) in the reference model (9). 

4. On the other hand, a large value of A increases 
the stability margin, tracking behavior and dis- 
turbance rejection. This can be easily seen when 
calculating the closed-loop response of substrate 
concentration Ca. Since A is at the disposal of 
the user, it can be used to search for an optimal 
trade-off. • 

-  (Cs - c ; )  v 
Uo -- Cs,ln - Cs 

In most practical situations the control action 
(i.e., the feeding pump capacity) is bounded. 
The resulting controller during the produc- 
tion phase is then: 

tlproduction -~. 

REMARKS 

u0 if O<_uo <UMAx 
0 if u 0 < 0  
UMAX if uo >_ UMAX 

1. Note that  it is preferred t 9 apply nonlinear lin- 
earizing control theory. Since a fermentation pro- 
cess is known to be inherently nonlinear, it is rea- 
sonable to expect that  better control would result 
by exploiting from the outset the nonlinearities in 
the model in the design of a nonlinear adaptive 
control algorithm. 

2. Obviously, this controller reduces to heuristic 
controller (6) if the tracking error (Cs - C~) due 
to disturbances, measurement errors, . . . ,  equals 
zero. 

3. An important advantage as compared with 
the heuristic controller (6) is the following. Con- 
troller (10) can be implemented from t = 0 on, 
by considering C~ as the set-point from t = 0 
on. This idea can be motivated as follows. If 
there are no inequality constraints on the state 
x and the initial substrate concentration is free, 
the control sequence is as shown in Fig. 2 with 
u,~,g replaced by the above nonlinear linearizing 
controller. The growth phase is a batch phase, as 
all substrate consumed during growth Olgrowt h is 
added at time t = 0 in order to maximize the spe- 
cific growth rate #. In other words, there is no ref- 
erence profile for substrate concentration during 
the growth phase. In general, the optimal initial 
substrate amount So is sufficiently high so that 
during growth Cs(t) > >  C~, with C~ the desired 
substrate concentration level during production. 
As a result, the tracking error (Cs(t) - C;) is 
a very large positive number. Consequently, the 
control calculated using (10) is set equal to u = 0, 
i.e., a batch phase as required. Furthermore, the 
feed rate switches automatically to positive val- 
ues as soon as Cs --* C~, so controller (10) can 
indeed be implemented from t = 0 on. As in the 

2.7. The monitoring problem 

In the following sections the first problem is con- 
sidered, i.e., monitoring of all variables required 
in controller (10). Three solutions depending on 
which measurements are available on-line are pre- 
sented. The remaining variables are then esti- 
mated on-line using software sensors. The three 
algorithms proposed are all based on the mini- 
mal modeling concept introduced in (Bastin and 
Dochain, 1990). In this approach no assumption 
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is made concerning the exact analytical structure 
of the specific rates required in the control law, 
thus circumventing the modeling and correspond- 
ing parameter  identification problem. Instead, 
they are treated as time-varying parameters which 
are est imated on-line. By doing so, the nonlinear 
linearizing controller (10) is made adaptive and 
can be implemented independently of the -usually 
unknown- analytical expression for the specific 
rates. Simulation results for the penicillin G fed- 
batch fermentation process as described above il- 
lustrate each of the variants proposed. 
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from the reactor contents. 
3. The volume of the liquid phase V is available 

on-line without time delay. 
4. In agreement with the minimal modeling con- 

cept, no assumption is made concerning the 
exact analytical structure of the specific rates 

and #. 

In practice, a control algorithm will be imple- 
mented in discrete time. So the differential equa- 
tions for Cs, Cx ,  and Y [see equations (5)] are 
discretized first. As an on-line measurement de- 
vice can take a new sample from the reactor only 
after finishing the analysis of the previous one, 
the discretization interval is set equal to the sam- 
pling interval AT.  A first-order forward Euler dis- 
cretization results in the following equations: 

I l k  
Cs,k+l - Cs,k = - akCx,kAT - Cs,k ~-~kAT 

uk A m  + C s , i . ~  

I l k  
Cx,k+x - Cx,k = pkCx,kAT - Cx,k ~"~AT 

k 

V~+~ - Vk = ukAT 

(11) 

The discrete-time version of linearizing controller 
( 1 0 )  is: 

uk = a k C x , k  -- A (Cs , k  - C ; )  Vk 

Cs,~,~ - Cs,k 

Ilproducti on 

I U k  , 0 <~ U k  ~ U M A X  

= 0 , Ilk < 0 (12)  

UMax , Ilk >_ UMAx 

Besides the on-line measurement of Vk, controller 
(12) needs on-line estimates of Cs,k, Cx,k, and 
ek. Observe that  Cs,in and A are prespecified con- 
stants. 

Fig. 3. Nonllneaz linearizing control. Upper plot: no 
constraints. Lower plot: inequality constraint 
on Cs. Legend: actual substrate concen- 
tration Cs, ----reference profile C~,-. con- 
trol action u 

3. OPTIMAL ADAPTIVE CONTROL: 
ON-LINE MEASUREMENTS OF Cs AND Cx 

3.1. Mathematical description 

The following assumptions are made. 

1. Both substrate concentration Cs and bio- 
mass concentration Cx  are measured on-line. 

2. The results of the on-line measurement de- 
vices become available to the controller only 
after a t ime delay AT, which is assumed 
equal for both measurements. This delay rep- 
resents the time required to analyze a sample 

Since the discrete-time model equations (11) are 
linear in the specific rates c and #, these rates 
can be estimated using a recursive least squares 
algorithm with forgetting factor ( fed with on-line 
data  of Ca and Cx.  A standard textbook formu- 
lation of RLS can be found in, e.g., (Goodwin and 
Sin, 1984). 

However, due to the measurement delay, at t ime 
t = k A T  only Cs,k-1 and Cx,k-1 are known. An 
adaptive version of controller (12) can then be ob- 
tained using the following algorithm (a hat '^' de- 
notes an estimate). 

Algorithm 1 

S t e p  1: Estimation of c%_z and #k-z  using RLS 
Using equations (11) the residuals ~ can be writ- 
ten as: 
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A 
g C s , k - 1  --" C s , k - 1  -- C , , k - 1  

= Cs,~-~ + b~_2Cx,~_~AT 

( Cs,~. uk---A~ Cs,k-  2 -- -- C s ' k - 2 )  V k - 2  AT - 

ix 
~Cx,k-1 = Cx,k-i -- Cz,k-I 

= Cx,k-1 - f~-2Cx,k-2AT 

. ,  uk-2 A T  + ~x,k-2V-~_2 - Cx,~-~. 

The gain K is obtained via: 

Pk-1 = Pk-21((  + C~,k-~AT2Pk-2) 

Kk-1 = -Cx ,k-2ATPk-1 .  

An estimation of ek-1 and/~k-1 is then: 

O'k-1 = ~ 'k -2  + K k - l g C s , k - 1  

;~-1  = P~-2 - Kk- l ecx ,~ -x .  

Step 2: Prediction of Cs,k and Cx,k 
These variables can be calculated by using the es- 
timates b~_ 1 and/2t¢-1 from Step 1 in the discrete 
equations (11) rewritten at time k. 
Step 3: Calculation of the controller action uk 
uk is calculated by substituting the results of the 
previous steps in (12): 

Ilk ~k-, O . , k  - , \ ( ¢ , , k  - c}) vk 
C S , i .  -- CJ,k 

In the above expression the required estimate &k 
is replaced by the (available) estimate bk-1, as cr 
varies only slowly as compared with the dynamics 
of the process. • 

REMARKS 

1. Following a same line of reasoning as presented 
in Section 2.6 it can be concluded that  this con- 
troller can also be implemented from k = 0 on. 

2. Instead of a linear regression estimator, an 
observer-based estimator could be used as well for 
the estimation of the specific rates a and p. The 
use of an observer-based estimator will be illus- 
trated in the following sections. 

3. Although the specific growth rate p is not ex- 
plicitly required in controller (12), an estimate 
is needed in order to predict the state at time 
t = k A T  in Step 2 of the algorithm. Obviously, 
this complication is entirely due to the measure- 
ment delay AT. 

4. As already indicated in Section 2.6, the param- 
eter A is at the disposal of the user to search for 
an optimal trade-off between smoothness of the 
controller action on the one hand, and stability 
margin and tracking behavior on the other. • 

J.F. Van Impe and G. Bastin 

3.2. Simulation results 

Consider again the penicillin G fed-batch fermen- 
tation described in Section 2.2. All simulations 
are carried out using a continuous-time process 
model and a discrete-time controller action. Be- 
tween two samples the controller action is kept 
constant. 

In addition to the measurement time delay AT, 
the on-line measurements of Cs and Cx are 
assumed to be corrupted by zero mean white 
noise. The standard deviation is set equal to 
s td (Cx)=0 .25  g/L, and s td(Cs)=0.01 g/L. For 
a typical value of Cx = 10 g/L, this represents 
a standard deviation of 2.5 ?6. A typical value of 
substrate concentration Cs during the production 
phase is the level Cs,~ which maximizes the spe- 
cific production rate rr. For the set of parameters 
given in Table 2, Cs,~ is equal to (KpKI) 1/2 = 0.1 
g/L. Under the above assumptions, a standard de- 
viation on Cs of even 10 ?6 is allowed. 

For a measurement time delay AT = 0.1 h, the 
following results are obtained. The RLS scheme 
is initialized with Pk=o = 109, bk=0 = 0 [g/g DW 
h], and /Sk=0 = 0 [l/h]. The forgetting factor 

is set equal to ¢" = 0.98, while the parameter 
A is set equal to A = 10. The substrate con- 
centration set-point during production C] is set 
equal to C~ = Cs,~ = 0.1 g/L. When using the 
same initial substrate amount So = 345 g as given 
in Table 1 for the heuristic Cs-controller, a final 
product amount P( t f )  = 22.233 g is obtained at 
t /  = 126.072 h, which comes very close to the 
optimal value Port(t/) = 22.606 g. 

The convergence of the estimation of the specific 
rates ~ and p is illustrated in the upper plot of 
Fig. 4. The lower plot shows the regulation of 
the actual substrate concentration Cs(t) towards 
its set-point C], and the corresponding adaptive 
control action uk. From both plots it can be con- 
cluded that  the algorithm has converged shortly 
after the beginning of the production phase. 

For AT ---- 1 h the algorithm did not converge. 
Remember that AT  represents both the sampling 
interval in discretizing the model equations and 
the measurement delay. As for Step 1 in the algo- 
rithm, it can be easily verified that  there always 
exist an initial value Pk=o and a forgetting factor 

such that  the estimations c~k-1 and #k-1 and 
the corresponding gain Kk-1 remain bounded if 
biomass concentration Cx is strictly positive for 
all t and if the control input u is bounded. As a 
result, the instability at too large values of AT is 
completely due to the increasing inaccuracy of the 
predictions made in Step 2. It can be expected-- 
and this has been confirmed during simulations- 
that  if the measurement delay AT becomes too 
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large, especially the prediction of substrate con- 
centration Cs around the transition from growth 
to production becomes worse. 
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Fig. 4. Optimal. adaptive control: on-line measure- 
ments of C5 and Cx. Upper plot: estimation 
errors of a and p. Lower plot: regulation of 
Cs and adaptive control action uk 

the specific substrate consumption rate ~r and the 
biomass concentration Cx is needed. More pre- 
cisely, only an estimate of the product of ~ and Cx 
is needed. Therefore, the ra te /3  -wi th  dimension 
[g/L hi-  is defined as follows: 

By doing so, the only unknown is exactly the rate 
/3, which is considered as a time-varying parame- 
ter. In the following continuous-time algorithm,/3 
is estimated using a state-observer-based parame- 
ter estimator. 

A l g o r i t h m  2 

S t e p  1: Estimation of~3 

dCs 
- + (Cs n - Cs) V +  (Cs - d s )  dt 

- - 

dt 

Step 2: Calculation of the controller action u 

uo = 3 - ~(Cs - C;I v 
C s , i .  - C s  

u0 if 0 _< u0 < UMAX 
u = 0 i fu0 _< 0 

UMAX i f  ?A 0 _~> UMAX 

REMARKS 

4. OPTIMAL ADAPTIVE CONTROL: 
ON-LINE MEASUREMENTS OF Cs 

4.1. Mathematical description 

The following assumptions are made. 

1. Besides the volume V, substrate concentra- 
tion Cs is the only available on-line measure- 
ment. 

2. In this and the next Section, a measurement 
t ime delay is not explicitly taken into ac- 
count. If the measurement delay cannot be 
ignored, an additional prediction step must 
be incorporated in the discrete-time imple- 
mentat ion of the proposed algorithms. An 
example is given in Section 3. Therefore, 
from now on A T  only represents the dis- 
cretization interval. 

3. In agreement with the minimal modeling con- 
cept, no assumption is being made concerning 
the exact analytical structure of the specific 
rate a. 

An adaptive implementation of controller (10) can 
be obtained as follows. Since Cs,in and A are 
known constants, only an on-line estimate of both 

1. Tuning of the state-observer-based parameter 
estimator proposed in Step 1 reduces to the cali- 
bration of the (positive) constants w and 7. 

2. Just like the controller proposed in Section 
3, this controller does not need any a priori in- 
formation either, such as, e.g., yield coefficients, 
. . .  Moreover, treating )3 (and thus e) as a time- 
varying parameter makes it robust against mod- 
eling uncertainties. 

3. During simulations, a continuous-time process 
model and a discrete-time version of the above 
estimator and controller have been used. Between 
sampling instants -a t  distance A T -  the controller 
action uk is kept constant. It can be easily shown 
that convergence of the estimator is guaranteed if 
the following inequalities are satisfied: 

I I - w A T I  < 1 

I I - w A T  + 7AT21 < 1 

Observe that  these constraints are independent of 
the design parameter  A in the controller action u~. 
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4.2. Simulation results 

J.F. Van Impe and G. Bastin 

Some simulation results for the penicillin G model 
presented in Section 2.2 are shown in Fig. 5. The 
sampling interval AT  is set equal to AT = 0.1 
h. The initial substrate amount So is set equal 
to So = 345 g, which is optimal for heuristic Cs- 
control (Table 1). Tuning of the estimator, ini- 
tialized with /3k=0 = 0.25 [g/L hi, leads to the 
following efficient values: w = 1, and 7 = 10. 
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Fig. 5. Optimal adaptive control: on-line measure- 
ments of Cs. Upper left plot: optimization of 
P(tl) as function of f.  Upper right plot: in- 
fluence of f and A on P(tl). Lower plots: time 
profiles for the set-point C~ = 0.9(KpKI) U2 
g/L 

Define a factor f as: 

f a C ;  _ c }  
= Cs,r - (KpKI) 1/2 

The results of an optimization with respect to this 
factor f - in other words, with respect to the set- 
point during production-, and the controller pa- 
rameter A are shown in the upper plots of Fig. 
5. The left plots shows the final production P(t!)  
and the final time t! as functions of the factor 
f ,  for the controller parameter A equal to A = 1. 
Observe that  the optimal value does not occur at 
f = 1 -in other words, at C~ = C s : - ,  but at: 

C},op , = 0.9 Cs,. 

Due to the shape of the function P(t!)  as function 
of f ,  it is clear that  in practice three experiments 
should suffice to optimize the process. In addition, 
f can be used to search for a trade-off between 
P(t!)  and t!. The upper right plot illustrates the 
influence of the controller parameter A on the final 
product amount P(t!),  for different choices of the 
factor f .  It can be seen that  values of A larger 
than 1 have little influence upon the final product 
amount. 

The lower plots show the time profiles for the op- 
timal values f = 0.9 and A = 1, while assuming 
a zero mean white noise on the measurements of 
Cs with standard deviation s td(Cs)=0.01 g/L. 
This represents an admissible standard deviation 
of 10 % for substrate concentration within the or- 
der of magnitude Cs = O[(KpKI) 1/2] = O[0.1] 
g /L during production. The lower left plot illus- 
trates the convergence of the estimator for the rate 
3, and the regulation of the actual substrate con- 
centration Cs(t) towards its set-point C~ = 0.09 
g/L. As in the previous Section, the proposed al- 
gorithm has converged shortly after the beginning 
of the production phase. The right plot shows the 
adaptive control action uk, together with the cor- 
responding profiles for the state variables. The 
final product amount is P(t]) = 22.484 g at 
t!  = 137.538 h, which comes again very close to 
the optimal value of Popt(t!) = 22.606 g (Table 
1). 

5. OPTIMAL ADAPTIVE CONTROL: 
ON-LINE MEASUREMENTS OF CER 

5.1. Mathematical description 

In the algorithms of Sections 3 and 4, the ma- 
jor bottle-neck is the accuracy of the on-line sub- 
strate concentration measurements. Kleman et al. 
(1991) reported a control algorithm maintaining 
Cs as tight as 0.49 5:0.04 g/L during growth 
of E. coll. Using the parameter values of Table 
2, the optimal value for substrate concentration 
during production is in the order of magnitude 
Cs = o [ ( g p g i )  1/2] = O[0.1] g/L. Although the 
proposed algorithms proved robust against stan- 
dard deviations of even 10 %, the question arises 
whether such a small, locally determined concen- 
tration level can be considered as representative 
for the whole reactor contents, which is in prac- 
tice not perfectly mixed. 

This problem can be circumvented as follows. In 
order not to overload the notation, a completely 
maintenance metabolism is assumed, i.e., f m =  
fp - 0 in expressions (3) and (4). In other words, 
the specific substrate-to-biomass conversion rate 
#,ub,tr is identical to the specific growth rate #. 
If the specific growth rate # is a monotonically 
increasing function of substrate concentration Cs 
(see Fig. 1), then prespecifying a reference profile 
for Cs can be replaced by prespecifying a reference 
profile for the specific growth rate. In the case of # 
function of Cs only this is even identical. An ap- 
propriate reference profile is then: during growth 
# should be as high as possible, while during pro- 
duction # should be kept constant at # = #*. 

Obviously, an on-line estimation of the specific 
growth rate # is required. This can be done, e.g., 
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using the easily accessible measurement of C02 in 
the effluent gas from the fermentor. The dissolved 
carbon dioxide dynamics are given by: 

dCc 
- CER- DCc - Q o u t  

dt 

with Cc the dissolved carbon dioxide concentra- 
tion [L CO2/L], and Qou, the rate of outflow of 
carbon dioxide from the reactor in gaseous form [L 
CO2/L h]. This model is valid only if the dissolved 
carbon dioxide concentration Cc is lower than the 
saturation concentration Cc,,at representative of 
the C02 solubility: 

Cc ~- II Cc,,at H 6 [0, 1] 

The differentiM equation can then be written as 

d H  
Cc,,at--~ = CER - HDCc,,a, - Qot, t (13) 

In agreement with (2) the carbon dioxide evolu- 
tion rate CER [L CO2/L h] can be described by: 

C E R  = [ V o / x ,  + m c  + rc/  ]Cx 
under suitably controlled conditions for pH. At 
any time during the fermentation, carbon diox- 
ide arises from (i) growth and associated en- 
ergy production (yield coefficient Yc/x  [L CO2/g 
DW]), (ii) maintenance energy (specific rate mc 
[L C02/g DW h]), and (iii) product biosynthesis 
and other possible specialized metabolism (yield 
coefficient Yc/P [L CO2/g]). 

In most applications Cc,sat is very low (i.e., C02 
solubility is very low), which means that car- 
bon dioxide appears almost completely in gaseous 
form. Thus, letting Cc,,~t = 0 is a meaningful 
singular perturbation. Equation (13) reduces to 
the following algebraic equation: 

Qout = CER 

which means that an on-line C02 analysis of the 
effluent gas flow from the fermentor can be used 
to extract the variables needed. Note that Cc,,at 
is not assumed to be equal to zero. It is only 
assumed that Cc,,at is small enough to neglect the 
terms Cc,,at(d H/dt) and IIDCc,sat in differential 
equation (13). Calam and Ismail (1980) reported 
the following slightly simplified relation in the case 
of penicillin G fermentation: 

CER = Y c / x # C x  + m c C x  + kp (14) 

Based on experimental results, a constant value 
kp [L CO2/L h] representing the contribution of 
product synthesis is proposed, instead of a term 
involving the penicillin production rate. This can 
be motivated as follows. First, during the main 

production period the rate of biosynthesis is re- 
markably steady. Second, it is known that peni- 
cillin production is accompanied by decomposi- 
tion (see, e.g., the hydrolysis constant kh in the 
penicillin model of Section 2.2). Therefore, it 
seems possible that as production later appears to 
slow down, biosynthesis itself may be continuing 
or may be diverted to non-antibiotic substances. 

In the following algorithm the adaptive observer 
for Cx and # is inspired by (Di Massimo et al., 
1989). This is only a partially adaptive observer, 
as some model constants are required a priori. 

Algorithm 3 

S t e p  1: Estimation of# and Cx 

dCx - ~-Cxu/V +w(CER-CER) 
dt 
dJ 
d'-7 = 7( CER - CER) 

CER = Yc/x~ + m c C x  + kP 

- C x  

b = [ L I Y x / s + m + C  

Step  2: Calculation of the controller action u 

- - / )  v 
UO = Cs,in 

uo if 0 ~ uo ~ UMA x 
u = 0 if uo _< 0 

UMAX ifuo >_ UMAX 

REMARKS 

1. The time-varying parameter 6 can be inter- 
preted as an estimate of the biomass growth rate 
#Cx [g DW/L hi. During estimation of ~ in Step 
1, the contribution of ~r/Yp/s is replaced by the 
constant term C [g/g DW hi. This can be moti- 
vated as follows. During production, the objective 
is to keep the specific growth rate # constant. In 
the case of # and r functions of Cs only, this 
corresponds to keeping Cs -and thus also lr- con- 
stant during production. In any other case this 
is at least an excellent approximation. Observe 
that the expression for b has now exactly the same 
form as model equation (14) for CER. 

2. In the denominator of the controller action in 
Step 2 substrate concentration Cs is considered 
negligible as compared with Cs,in. 

3. Note that this scheme requires the a priori 
knowledge of the parameters YClX, mc, and kp, 
and Yx/s,  m, and C. In addition, if the endoge- 
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nous fractions fm and f~, are different from zero, 
their value should be known as well. Clearly, this 
is the price to pay for estimating state variables 
using only on-line measurements of easily accessi- 
ble auxiliary variables. 

4. However, this estimation procedure has an ad- 
ditional benefit over the algorithms presented in 
Sections 3 and 4 when scaling up the production 
from a pilot plant towards an industrial fermen- 
tot. When measuring substrate and/or  biomass 
on-line, it becomes very important  where to place 
the sampling devices on such a large reactor (e.g., 
actual penicillin production on an industrial scale 
takes place in fermentors of about 150000 L). Due 
to an imperfectly mixed reactor, the question is 
whether a locally determined concentration is rep- 
resentative of the whole reactor contents. On the 
other hand, an analysis of the effluent gas from the 
fermentor provides in some sense averaged values 
of the reactor state which can be used immediately 
in the feed rate controller. 
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Fig. 6. Optimal adaptive control: on-line measure- 
ments of CER. Upper left plot: optimization 
of P(tI) as function of #*. Upper right plot: 
sensitivity of optimal values to increasing mea- 
surement noise. Lower plots: time profiles for 
the set-point p* = 0.006 1/h 

5. Obviously, this algorithm can also be imple- 
mented from time t = 0 on by considering the set- 
point for production #* as the reference from t = 0 
on. In case of a substrate inequality constraint 
during growth, the reference profile has the form 
shown in the lower plot of Fig. 3 with CS,MAX 
and C~ replaced by the corresponding values for 
#. 

6. As in Sections 3 and 4, a continuous-time 
process model and a discrete-time version of the 
above estimator and controller have been used. 
Between sampling instants - a t  distance A T -  the 
controller action u~ is kept constant. • 
5.2. Simulation results 

Some simulation results for the penicillin G model 
presented in Section 2.2 are shown in Fig. 6. 

The model constants required in the estimator of 
CER are set equal to Yc/x  = 0.4 [L CO2/g DW], 
mc = 0.01 [L CO2/g DW h], and kp = 0.3 [L 
CO2/L h! (Nelligan and Ca!am, 1983). Using the 
parameters given in Table 2, the maximum value 
of Ir is rrrnax = 1.333 10 -3 [g/g DW hi. Therefore, 
the constant C in the estimator of ~, which is an 
approximation of r /Yp/s ,  is set equal to C = 10 -3 
[g/g DW h]. 

The sampling interval AT is set equal to AT = 0.1 
h. The initial substrate amount So is set equal to 
So = 345 g, which is optimal for heuristic Cs- 
control (Table 1). Tuning of the estimator, ini- 
tialized with C,,k=0 = 1.3 [g DW/L], Sk=0 = 0.13 
[g DW/L  h], and CERk=o = 0.375 [L CO2/L h], 
leads to the following efficient values: w = 5, and 

= 25. The controller parameter X is set equal 
to X = 50. 

The upper left plot of Fig. 6 shows the optimiza- 
tion of the final product amount P(t!) with re- 
spect to the set-point #* for the specific growth 
rate during production, and the corresponding 
values of the final time t! .  The optimum occurs 
at #* = 0.006 [1/hi. As in Section 4, a trade-off 
can be made between P(t!) and t! with respect 
to #*. Furthermore, from the shape of the func- 
tion P(tl)  versus #* it can be concluded again 
that  in practice three experiments should suffice 
to optimize the process. 

The lower plots show the time profiles for this op- 
timal set-point #* = 0.006 [l/h!, while assum- 
ing a zero mean white noise on the measurements 
of CER with standard deviation st, d(CER)=O.025 
L CO2/L h. This represents an admissible stan- 
dard deviation of 5 % for CER within the order of 
magnitude CER = 0[0.5] L CO2/L h during pro- 
duction. The lower left plot illustrates the con- 
vergence of the estimator for the specific growth 
rate #, and the regulation of the actual specific 
growth rate #(t) towards its set-point #* = 0.006 
1/h. As in Sections 3 and 4, the proposed algo- 
rithm has converged shortly after the beginning 
of the production phase. The right plot shows the 
noisy measurements of CER, the adaptive con- 
trol action uk, together with the corresponding 
profiles for the state variables. The final product 
amount is P( t ] )  = 22.273 g at t /  = 146.275 h, 
which again comes very close to the optimal value 
of Popt(t!) = 22.606 g (Table 1). 

The upper right plot illustrates the robustness 
of the optimal final product amount P(t]), and 
the corresponding final time ts, with respect to 
increasing standard deviation of the measure- 
ment noise on the carbon dioxide evolution rate 
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[ optimal control ] [ model-sensitive, open-loop 

microbiological/biochemical process knowledge 
mathematical analysis of optimal control 

[ heuristic control [ I model-independent control objective [ 

linearizing control 
adaptive state and parameter estimation 

I optimal adaptive control I I robust, nearly optimal performance I 

CER. It can be seen that the optimal values are 
more or less insensitive to this measurement noise, 
for standard deviations up to szd(CER)=0.06 L 
CO2/L h. For CER within the order of magni- 
tude CER = 0[0.5] L CO2/L h during production, 
this represents an admissible standard deviation 
of more than 10 %. 

6. CONCLUSIONS 

The main contribution of this paper was to 
present a unifying methodology for optimiza- 
tion of biotechnological processes, namely opti- 
mal adaptive control, by combining concepts and 
techniques from both optimal control and adap- 
tive linearizing control. As an example, substrate 
feed rate controllers have been designed for a class 
of biotechnological processes, characterized by a 
decoupling between biomass growth and product 
formation. 

It has been illustrated how the information ob- 
tained during preliminary optimal control studies 
leads to the design of easy-to-implement adaptive 
controllers. The optimal adaptive control proce- 
dure is summarized in a schematic way in Table 
3. 

The design consists of the following steps. 

Step 1 Derivation of the optimal control solu- 
tion to the given optimization problem, under 
the assumption of a perfectly known process 
model. 

Step  2 Derivation of nearly optimal heuristic 
controllers, based on a careful analysis of the 
optimal control solution of Step 1 from both 
the biochemical and the mathematical point 
of view. This second step itself consists of: 
1. Detection of process variables which char- 

acterize the optimal control solution, such 
as a concentration, a specific rate, .. .  

2. Construction of a reference profile for the 
characteristic process variable as a function 
of time. 

As such, the optimization problem of Step i is 
replaced by a more common tracking control 
problem, for which feedback control loops are 
designed in Step 3. 

Step 3 Nonlinear adaptive implementation of 
the derived heuristic controller in two steps: 
I. Embedding of the heuristic controller 

within a nonlinear linearizing controller. 
2. Adaptive estimation of the states and pa- 

rameters which are not available on-line. 
According to the minimum modeling prin- 
ciple, no assumption is made concerning 
the exact analytic nature of the specific 
rates needed in the control algorithm. 

The optimal adaptive controllers derived in this 
way combine a nearly optimal performance with 
good robustness properties against modeling un- 
certainties and process disturbances. 

To illustrate the method and the results obtained, 
simulation results have been given for the peni- 
cillin G fed-batch fermentation process. Three 
possible implementations have been presented, de- 
pending on which variables are available by means 
of on-line measurements. The trade-off between 
on-line measurement requirements (such as acces- 
sibility and accuracy) and a priori information 
needs (such as yield and maintenance coefficients) 
has been clearly illustrated. 
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N O M E N C L A T U R E  

: t i m e  [h] 
: absolute substrate amount in the reactor [g] 
: absolute amount [g DW (Dry Weight)] 

of biomass 
: absolute amount of product [g] 
: reactor volume [L] 
: substrate concentration in the infiuent [g/L] 
: substrate concentration in the reactor [g/L] 
: biomass concentration [g DW/L] 
: product concentration [g/L] 
: dissolved C02 concentration [L CO2/L] 
: carbon dioxide evolution rate [L CO2/L h] 
: influent volumetric flow rate [L/h] 
: endogenous fraction of the [-] 

overall specific maintenance demand 
: endogenous fraction of product synthesis [-] 
: total amount of substrate consumed [g] 

during fermentation 
: spec. substr, consumption rate [g/g DW h] 
: overall specific growth rate [l/h] 
: specific substrate-to-biomass [l/h] 

conversion rate 
: maximum specific growth rate for [l/h] 

Contois kinetics 
: Contois saturation constant for [g/g DW] 

substrate limitation of biomass production 
: maximum specific growth rate for [l/h] 

Monod kinetics 
: Monod saturation constant for [g/L] 

substrate limitation of biomass production 
: specific production rate [g/g DW hi 
: specific production constant [g/g DW hi 
: Monod saturation constant for [g/L] 

substrate limitation of product formation 
: substrate inhibition constant for [g/L] 

product formation 
: overall specific [g/g DW h] 

maintenance demand 
: spec. C02 production [L CO2/g DW h] 

rate in maintenance processes 
: product degradation constant [l/h] 
: CO~ due to production [L CO2/L hi 
: cell mass on substrate yield coeff. [g DW/g] 
: product on substrate yield coeff. [g/g] 
: C02 on product yield coefficient [L CO2/g] 
: C02 on biomass yield coeff. [L CO2/g DW] 
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