
 Wuhan University Journal of Natural Sciences

Vol. 8 No.2B 2006 603-609

Article ID:

OrientX: an Integrated, Schema-Based Native XML
Database System

□ MENG Xiaofeng, WANG
Xiaofeng, XIE Min, ZHANG Xin,
ZHOU Junfeng

School of Information Renmin University of
China，100872, Beijing
Abstract: The increasing number of XML
repositories has stimulated the design of systems
that can store and query XML data efficiently.
OrientX, a native XML database system, is
designed to meet this requirement. Compared with
other native XML databases, OrientX has two main
features: First, XML schema is fully supported in
OrientX, because schema has been proved to be of
great importance to XML data storage, Indexing,
query optimization and access control; Second,
OrientX is an integrated system that meets various
requirements on XML data repository, which
includes a native storage subsystem, several XML
query evaluators, a composite index manager, a
cost-based XQuery Optimizer, an Access Control
module and an extension to XQuery1.0 for XML
update. The main contributions of OrientX are:
a)We have implemented an integrated native XML
database system, which supports native storage of
XML data, and based on it we can handle XPath&
XQuery efficiently; b)In our OrientX system,
Schema Information is fully explored to guide the
storage, optimization and query processing, which
we show can boost the system performance
remarkably.

Keywords: XML; Database
CLC Number: TP 391
Received date: 2006-03-25
Foundation item: supported by the grants from the Natural
Science Foundation of China (60573091, 60273018)
Biography: MENG Xiaofeng(1964-), male, Professor, research
direction: web integration, XML Database and mobile data
management. Email: xfmeng@ruc.edu.cn

0 Introduction

ML is a self-describing language, and has become the new de
facto standard for data representation and exchange on
Internet. The increasing number of XML repositories has

stimulated the design of systems that can store and query XML data
efficiently. Many systems have been designed to meet the goal. All of
these systems can be divided into two categories: one falls into the
Relational way, which utilizes the table-based storage model of
existing DBMS, and needs to map XML data into two-dimension
tables(e.g.[1]); The other is a native way, which develops a tree-based
storage strategy for XML data, and doesn't need an additional
mapping.

The relational strategy introduces an additional transform
between the logical XML data and its physical relational storage. As
hierarchy of XML data is complex, and optional or repeatable
sub-elements are allowed in it, the mapping from XML data to
relational data often results in large amount of tables. Due to this
storage strategy, the complexity of XQuery is beyond the capacity of
SQL expressiveness. None of the existing traditional DBMS could be
adequately customized to support XML, despite all claims of their
vendors.

In a native XML database, XML data is stored directly, which
retain XML data's natural tree structure (for short, we call it data tree,
and call elements of XML document in it as nodes). The query
processing engine can handle query languages such as
XQuery&XPath directly on the tree structure. As it reserves the tree
structure of XML data, native strategy can avoid the mapping
operations. Some native XML databases have appeared, for example,
Timber[2], Natix[3], tamino[4] and so on. Most of these systems are
schema-independent, that is to say, the schema is not a necessity of
the system. But OrientX believes that schema plays a crucial role in
XML data management and is indispensable. XML schema describes

X

 604 Wuhan University Journal of Natural Sciences

the tree structure and the data type definitions of XML
data, i.e. nodes in data tree are organized together based
on its schema. We argue that making good use of schema
information could improve the efficiency of storing and
retrieving XML data remarkably. XML schema is of
great use in the following aspects of a native XML
database:

 As related(neighbor) nodes in XML data tree are
likely to be queried at the same time, it is better to
store them together, and XML schema provides
the information of how nodes are related.

 Path index is very important to XML query
evaluation, and schema makes good support to it.

 Schema can be used in validation of query and
update processing.

 Query optimizer can collect statistical information
by integrating the schema.

 Schema is the precondition to access control of
XML data.
OrientX stores XML data using its own storage

subsystem---OrientStore, in which XML data is stored in
pages on disk, the granularity of storage can be changed
according to schema. When stored data are loaded into
memory, tree structure of the related nodes is built
dynamically, therefore OrientStore offers a DOM-like
navigation interface to the upper modules. Besides
OrientStore, there is a holistic Index Structure called
SUPEX, in which all path index and some value index
are put together. XPath queries can be handled efficiently
through fast navigation and join operation with the help
of SUPEX. There are two query Evaluators for XQuery
in OrientX. One is navigation-based, the other is
algebra-based.

1 Motivation

The goal of OrientX is to build a native database
system, which can manage XML repositories
conveniently and efficiently.

Among all criterions of such a system, we first
focus on the two main aspects: storage and query, for a
well-designed storage and an efficient query evaluator
form the basis of a good database system.

Two kinds of information need to be stored to
preserve the structure of the document tree: node and
edge. Node denotes element's data type and content.
Edge denotes the direct relationship (Parent-Child in data
tree) between nodes.

Another issue in XML data management is query,
on which much work has been done too. A group of
automata-based approaches are proposed for XPath and
twig query processing, but they become incapable when
facing complex XQuery statement. However, XQuery
has become more and more popular because of its
expressiveness and flexibility. There are two main
methods to process XQuery, one is navigating through
the data tree, and the other is using an algebra.

Besides storage and query, many problems remain
in XML data management, such as indexing, query
optimization, updating and accessing control on data
repository. As XML is more and more popular today,
both the industry and research communities show close
interest to these problems.

2 An overview of OrientX

The overall architecture of OrientX is shown in
Fig.1, it can be divided into three layers: data storage,
access interface and execution engine.

 Fig. 1 OrientX Architecture

 Data storage
In OrientX, XML documents are organized in

datasets according to their schema, which is a main
feature of data repository. Interfaces for user to create
and/or delete dataset are supplied. Documents should
first be imported into certain datasets before any other
jobs being done. Validation of document is done during
importing process, if data does not conform to schema, a
relevant error massage is reported and importing process
will be interrupted. OrientX also supports document
export operation. The detail of the storage strategy will
be discussed in section IV.

 Access interface
The access interface consists of data manager,

 Wuhan University Journal of Natural Sciences

schema manager and index manager, which is uniform to
upper level applications and data storage is hidden by it.

Data manager offers a uniform interface to access
the storage subsystem. The only entity type the query
evaluator can obtain is a logical element, which is the
same as node. And some navigation methods are bound
to logical elements to support navigation on data tree.

OrientX system is based on XML schema, and
schema manager is a key module in the system. The idea
and implementation of schema manager are discussed
later in section V.

 Execution engine
The execution engine composes of several

modules. The data definition defines a document in the
dataset. XPath and XQuery evaluators are the two main
parts of execution engine. The basic strategy of XPath
processing is navigation, however, in co-operating, we
also develop the index-based strategy that acts effectively,
the detail has been described in our previous work[5].

Our previous work [5,6] has discussed storage
module, schema management, index module and
optimization module in detail, so here we only briefly
describe the above four modules, we will focus on the
new modules of our OrientX system, which include the
query processing engine, update handling strategy and
the access control module.
3 OrientStore: A multi-granularity

storage strategy

Several native storage strategies have been
developed[2,3,4,6]. According to the granularity of the
records, these storage methods can be classified into
Element-Based(EB),Subtree-Based(SB)and
document-Based (DB). We observe that schema plays a
key role in designing effective storage strategies for
XML management systems. OrientX exploits schema
information in the design and implementation of two
storage strategies [7]: Clustering Element-Based (CEB),
and Clustering Subtree-Based strategies. OrientX also
implements the above schema-independent storage
strategies DEB and DSB. Detailed description can be
found in our previous work[6,8].
4 Schema Management

OrientX is schema-based. XML Schema strictly
constrains the type and structure of data. So, data storing,
retrieving and updating are all under the schema's
guidance. Schema information can be used in data layout,

in choice of index, in type checking, in user access
control, and in query optimization. Schema in OrientX is
consistent with the XML Schema standard. Detailed
description can be found in our previous work[9].

5 SUPEX: A Schema-Guided Index
Structure

 SUPEX[5] consists of two structures: structural graph
(SG), and element map (EM). SG is constructed
according to the schema, and represents the structure
summary of XML data; each node in it represents a list
of elements in XML document with the same tag name
as the schema node. And EM provides fast entries to the
nodes in SG. Further information can be found in our
previous work[5].

6 Query Processing

We have implemented several kinds of Query Proc-
essing Engines in our OrientX system based on the
original work[6]. Currently two XML query engines have
been used extensively in OrientX, one for XPath, the
other for XQuery. Here we only introduce the techniques
utilized in our new navigation-based XQuery
evaluator[9].

 Combine continuous steps in one XPath into a
single path. An XPath fragment has been separated
into a series of step expressions, the navigation
processing on it should be nested loop. But the only
element we want is end step of the long XPath, all
traversal for its ancestors is redundant. With the
help of OrientStore and the SUPEX index, we can
access any elements directly.

 Reform syntax tree into reduced execution plan.
Structure of execution plan of navigation processing
is similar to the structure of the syntax tree of
XQuery statement. Especially, the key FLW(O)R
structure in syntax tree is also the key operation in
processing. Therefore, we use a "reduced"1 syntax
tree to denote the execution plan. Note some tricks
in the reducing and reforming process:

 1）multi-processing units may be put together in-
to one syntax node, for example, the FOR-Var

1 Reduce here means omitting some hierarchies and
nodes in the syntax tree.

binding, LET-Varbinding, WHERE-Predicate
and the RETURN-EleConstruct form the FL-
WR node.

 2) multi-syntax nodes may be put into one
processing unit; this is one kind of reducing
operation

We explain the reforming from syntax tree to
execution plan with an XQuery example Q1:

<results>{
 let $doc := document("bib.xml")
 for $t in distinct-values($doc//book/title)
 let $p := $doc//book[title = $t]/price
 return
 <minprice title="{ $t }">
 <price>{ min($p) }</price>
 </minprice>
}</results>
Q1's execution plan is shown in Fig 2. We can see

that it is pretty small and is similar to Q1 in the structure.
Most transforming actions are straightforward.

Fig. 2 Execution plan for Q1

In execution, a pointer pointing to a node in the
execution plan is hold during the whole query process. It
points to the root in the beginning, and it travels through
the plan tree in the top-down and left-right manner, if it
encounters a source data node, for example, a
ForVarBind node, then proper data is located by
navigating on source document tree, on its way going,
operations on subsequent "action" node are done on
current located data. When the end of a FLWR is
encountered, the pointer is redirected to beginning to this
FLWR node except that there is no proper source data
available. Query execution stops at the same time when
the pointer stops.

The whole query process in OrientX is shown in Fig.
3, the white rectangle denotes processing modules and
the rectangle in grey is auxiliary data or data structure.
The chain composed of thin solid line is the data flow of
XQuery statement, the chain composed of thick solid

Fig. 3 Query process
Line is data flow of source XML data. The broken line
denotes the fact that the auxiliary data is used in the
target module.

7 Update

With the extensive use of XML in application over
the Web, how to update XML data is becoming an
important issue. So we currently implement a new
update engine to the users. We extend XQuery with a
FOR ...LET...WHERE...UPDATE structure for updates.

For XML documents with schema, we should check
whether the update request violates the schema
constraint. This is called update validation.

As elements are all encoded with region code in
OrientX, we have to encode the newly inserted data right
after inserting process, some efficient strategy is used in
code encoding for updating during update/inserting[10].
Currently, update for index is not implemented, it seems
that it is similar to the update for common relational
index.

The update process is as follows: Firstly we locate
the referred element in document. Secondly we validate
the update request according to its schema. The
validation includes the check of the new data's inner
constraint and whether the new data as a whole can
appear at the specified location. The request being valid
means that all constraints are fulfilled, if not, it is
rejected. Finally, valid request is evaluated.

8 Node-Mapping Role Based Access
Control

Access control module is an essential part for an
integrated database system. Because of the different data
model between relation data and XML data, the access

 Wuhan University Journal of Natural Sciences

control mechanism in relational database is not capable
of managing XML data any more. Some important
aspects need to be reconsidered, such as the granularity
of access control, the semantic of authority, the relation
among the rights on relative node in XML structure. At
the same time, large data capacity and alteration of the
data also should be taken care of. In this section, we will
discuss a new Node-Mapping Role Based Access
Control module for XML data that is utilized in the
OrientX system.

The module is excited from the fact that the part of
dataset one can access in an XML document being best
described by one node or several nodes in schema graph.
It is true that if role A is the superior to role B, then the
part of dataset that role A can access should be the
superset of the part of dataset that role B can access.
Therefore, we can map the two roles to two nodes in
XML schema so that ancestor is the superior and
descendant is the junior. In this way we can achieve both
the excellence of Role and the convenience of XML data
access controlling.

We give the definition of role here: A role is a set of
triples R = {Node, Context, Action}, where Node denotes
the tag name of the root of the subtree in schema graph;
Context is an XPath locating the unique position of the
node in the schema, and the Action represents a
collection of allowed operation on the node, including
reading, inserting, deleting and updating.

Access rules can be defined on roles(nodes), for
example, we have used the Dynamic Separation of Duty
Relation(DSD) characteristic to solve the problem of
illegal association information accessing. Roles can be
assigned to the user in two ways: positive and negative.
The positive roles assign the actions user can do, and the
negative roles assign the actions user can not do. In
OrientX, general roles and DSD roles are all supported
for compatibility. A user can choose many general roles
during one session, and only one DSD role during one
session.

9 Conclusion and Expectation

 In this paper, we described the system structure and
design of OrientX, an integrated, schema-based native
XML database proposed by Renmin University of China.
We have explored many issues on XML data
management and proposed some new ideas. We also
proved that schema plays a crucial role in XML data

management system. Right now, the storage, query and
index parts mentioned in this paper have already been
implemented, and the query optimization, access control
parts are being integrated and will be completed soon.

References
[1] Florescu D, Kossman D. Storing and Querying Xml Data

Using an Rdbms [J]. IEEE Data Eng Bull , 1999,22(3):27-34
[2] Jagadish H Ｖ, Divesh S, Wu Yuqing ,et al. Timber: A

Native Xml Database[J]. The VLDB Journal, 2002,
11(4):274-291.

[3] Kanne C and Moerkotte G. Efficient Storage of Xml
Data[M]. California: IEEE Computer Society,2000.

[4] McHugh J, Abiteboul S, Goldman R, Quass D, et al. Lore: A
Database Management System for Semi-structured Data [J].
SIGMOD Record, 1997,26(3):54-66 .

[5] Wang Jing, Meng Xiaofeng, and Wang Shan. Supex: A
Schema-guided Path Index for Xml Data[C] //Proceedings of
28th International Conference on Very Large Data
Bases(VLDB), Hong Kong ,2002.8.

[6] Meng Xiaofeng and Wang Yu. OrientX: A Native XML
Database System[C].//Proceedings of 20th NDBC,Chang Sha:
2003.10(Ch)

[7] Li Quanzhong and Moon B. Indexing and Querying Xml
Data for Regular Path Expressions[C]//Proceedings of 27th

International Conference on Very Large Data Bases(VLDB),
Roma, 2001.9

[8] Meng Xiaofeng, Luo Daofeng, An Jing ,et al. OrientStore: A
Schema Based Native XML Storage System[C]//
Proceedings of 29th International Conference on Very Large
Data Bases(VLDB),Berlin,2003.9

[9] Lu Shichao, Meng Xiaofeng, Lin Can , et al. Navigation
Implementation for XQuery in OrientX [C]// Proceedings of
20th NDBC ,XiaMen,2004.10(Ch).

[10] Jiang Yu, Luo Daofeng, Meng Xiaofeng, et al. Dynamically
Updating Xml Data:Numbering Scheme Revisited[J]. World
Wide Web, 2005, 8(1):.5-26

