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Chris T. K. Ng, Muriel Ḿedard, and Asuman Ozdaglar
Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology, Cambridge, MA 02139
Email: {ngctk, medard, asuman}@mit.edu

Abstract

A wireless packet network is considered in which each user transmits a stream of packets to its destination.
The transmit power of each user interferes with the transmission of all other users. A convex cost function of the
completion times of the user packets are minimized by optimally allocating the users’ transmission power subject
to their respective power constraints. It is shown that, at all ranges of SINR, completion time minimization can
be formulated as a convex optimization problem and hence canbe efficiently solved. When channel knowledge is
imperfect, robust power control is considered based on the channel fading distribution subject to outage probability
constraints. The problem is shown to be convex when the fading distribution is log-concave in exponentiated channel
power gains; e.g., when each user is under independent Rayleigh, Nakagami, or log-normal fading.

I. INTRODUCTION

Power control plays a crucial role in the operation of a wireless network, as it strives to provide
maximum benefits to the users within the confines of availableresources. In particular, in a wireless
network, each user’s transmit power interferes with the transmission of all other users; therefore, power
allocation has a significant impact on the quality-of-service (QoS) experienced by the network users.
The user benefits derived from a given power allocation assignment can be characterized by different
performance metrics. Traditionally, a common performancemetric is a utility function of the rates of the
users.

However, maximizing a concave utility function over the feasible rate region in a wireless network is not
necessarily a convex optimization problem [1]–[5]. In the high signal to interference-plus-noise (SINR)
regime, rate utility maximization can be approximately formulated as a convex optimization problem [1],
and hence it can be efficiently solved. For voice or video applications that need to maintain at least a
moderate minimum rate, the high-SINR regime is often an appropriate assumption. On the other hand, in
wireless sensor networks or delay-insensitive data applications, a user may wish to transmit at arbitrarily
low rates (i.e., at low SINRs) depending on the channel conditions. At medium to low SINR, rate utility
maximization are handled by iterative approximation methods [1], [2]. In this paper, we study a different
network performance metric that is motivated by data applications. In particular, we consider the scenario
where each user transmits a stream of packets to its destination, and we wish to minimize a convex
cost function of the user packet completion times. We show that completion time minimization and the
corresponding optimal power allocation can be formulated as a convex optimization problem at all ranges
of SINR.

Moreover, we consider imperfect channel knowledge due to channel fading, and formulate the mini-
mization as a stochastic programming problem. The channel gains are modeled as random variables: an
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outage event occurs when the SINR realization falls below the transmitter’s SINR target. Robust power
control is considered where each user is subject to an outageprobability constraint. We show that for
a wide class of commonly used channel fading distributions,e.g., Rayleigh, Nakagami, and log-normal,
robust power control can be posed a convex optimization problem.

Optimal power control in wireless networks is studied in [1]; it shows that maximizing concave rate
utility functions can be formulated as geometric programming (GP) problems in the high-SINR regime,
which are convex and hence their solutions can be computed efficiently. In the medium- to low-SINR
regime, [6] describes an iterative approximation method tomaximize a concave rate utility function
by solving a series of GPs, and [2] proposes an algorithm to maximize a linear function of the rates by
approximating the feasible SINR region by a series of polyblocks. In [3], sufficient conditions are presented
for the convexity of the feasible QoS region, with optional constraints on the allocation of user power.
Utility maximization through joint optimization of adaptive modulation, rate allocation, and power control
is investigated in [5]. In [7] power control is studied in frequency-selective Gaussian interference channels.
Outage probabilities corresponding to different fading distributions for network users and interferers are
derived in [8]. For interference-limited wireless networks, optimal power control is considered in [9] under
Rayleigh fading subject to outage probability constraints.

The rest of the paper is organized as follows. Section II describes the channel model and the optimization
framework. In Section III, minimizing a cost function of thecompletion times is posed as a convex
optimization problem. Section IV explains how the completion time region and its corresponding rate
region are related. Section V considers robust power control against imperfect channel knowledge subject
to outage probability constraints. Conclusions are presented in Section VI.

II. SYSTEM MODEL

A. Wireless Channels

Consider the scenario in whichM users are communicating in a wireless packet network. Each user i
consists of a transmitteri and a corresponding receiveri, wherei = 1, . . . , M . Transmitteri wishes to
send a stream of equal-length packets to receiveri, where each packet hasLi bits. We assume the complex
baseband additive white Gaussian noise (AWGN) channel model between the transmitters and receivers:

Yi =
M

∑

j=1

√

HijXj + Zi, (1)

whereYi is the observed signal at receiveri, Xj is the signal sent by transmitterj, Hij is the channel
power gain from transmitterj to receiveri, andZi is independent Gaussian noise with powerNi. We
consider coherent detection: thusHij may be assumed real as detection is unaffected by phase change
in the received signal. In the subsequent sections, we consider different channel knowledge assumptions
where Hij ’s may represent known constants or random variables. Suppose transmitteri has transmit
power constraintP̄i. When transmitteri transmits at a power level ofPi ≤ P̄i, in the capacity limit, the
transmission rateRi (bits per channel use) achieved by useri is given by:

Ri = log(1 + Si), (2)

where log is base 2, andSi is the signal to interference-plus-noise ratio (SINR) at receiver i. When the
interference from the other transmitters is treated as noise, the SINR at receiveri is:

Si =
HiiPi

Ni +
∑

j 6=i HijPj
. (3)

We assume each user has a sufficient number of packets backlogged at the transmitter so that it is always
transmitting, and we assumeLi is sufficiently large to allow transmission close to the channel capacity
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Fig. 1. An AWGN wireless packet network withM = 2 users.

limit. The completion time (number of channel uses) of the transmission of each of useri’s packet is
given by:

Ti = Li/Ri. (4)

For example, an AWGN wireless packet network withM = 2 users is illustrated in Fig. 1.

B. Completion Time Cost Function

We consider the problem of minimizing a convex cost functionof the completion timesT1, . . . , TM

by optimally choosing the users’ transmission power subject to the power constraints:0 ≤ Pi ≤ P̄i,
i = 1, . . . , M . Let J(T) be the completion time cost function, whereT ,

[

T1 . . . TM

]T
, and other vectors

are denoted similarly in this paper. We assumeJ(T) is jointly-convex in T1, . . . , TM ; the convexity
penalizes overlong completion times. For example, the following completion time cost functions are
convex [10]:

Jr(T) = T[1] + · · ·+ T[r] (5)

Jp(T) =
(

(T1)
p + · · ·+ (TM)p

)1/p
, p ≥ 1. (6)

In (5), T[i] denotes theith largest component ofT. Thus the cost functionJr(T) is the sum of ther longest
completion times. As special cases,r = 1 represents the maximum completion time:max{T1, . . . , TM},
and r = M represents the sum of the completion times:

∑M
i=1 Ti. In (6), the cost functionJp(T) is the

ℓp-norm of the user completion times.

III. PACKET COMPLETION TIME M INIMIZATION

A. Perfect Channel Estimation

We first consider the scenario where the channel power gainsHij ’s can be accurately estimated and
they are known by all users:

Hij = Gij , i = 1, . . . , M, j = 1, . . . , M, (7)

where Gij ’s are known constants. In this case, the minimization of thecompletion time cost function
J(T) can be mathematically formulated as the following optimization problem:

minimize J(T) (8)

over Ti, Ri, Pi

subject to

Ti ≥ Li/Ri (9)

Ri ≤ log

(

1 +
GiiPi

Ni +
∑

j 6=i GijPj

)

(10)

0 ≤ Pi ≤ P̄i, (11)



4

wherei = 1, . . . , M , and the problem dataGij ∈ R+, P̄i, Ni, Li ∈ R++ are given. The constraint (10) in
the optimization problem is not convex [1]–[3], [5]. However, we show in the next section (8)–(11) can
be transformed into a convex optimization problem, and hence its solution can be efficiently computed.

B. Convex Optimization

To formulate the the completion time minimization problem given in (8)–(11) as a convex optimization
problem, we first rewrite the constraints (9), (10) as:

Ti ≥
Li

log(1 + Si)
, i = 1, . . . , M (12)

Si ≤
GiiPi

Ni +
∑

j 6=i GijPj

, i = 1, . . . , M. (13)

Next we apply the change of variables:

S̃i , ln Si, P̃i , ln Pi, i = 1, . . . , M, (14)

whereln is the natural logarithm. The completion time minimizationin (8)–(11) then becomes:

minimize J(T) (15)

over Ti, S̃i, P̃i

subject to

Ti ≥
Li

log
(

1 + exp(S̃i)
) (16)

ln

{

exp(S̃i − P̃i − ln Gii + ln Ni) +
∑

j 6=i

exp(S̃i − P̃i + P̃j − ln Gii + ln Gij)

}

≤ 0 (17)

P̃i ≤ ln P̄i, (18)

wherei = 1, . . . , M . Note that the constraint in (17) follows from rewriting (13) as:

SiP
−1
i G−1

ii Ni +
∑

j 6=i

SiP
−1
i PjG

−1
ii Gij ≤ 1, (19)

and taking logarithm on both sides after applying (14). The change of variables is similar to the transfor-
mation techniques in geometric programming (GP) problems [1]. In particular, the log-sum-exp function
in constraint (17) is convex [10]. The convexity of (16) can be verified from its second-order conditions,
as the right-hand side of (16) is twice-differentiable and its second derivative is positive:

d2

dx2

[

log(1 + ex)
]−1

=
ex ln 2

[

2ex − ln(1 + ex)
]

(1 + ex)2
[

ln(1 + ex)
]3 (20)

> 0, (21)

which follows from the inequalityy > ln(1 + y) for y > 0. Note that the transformation in (14) does
impose a slight loss of generality as we assumePi 6= 0. Nevertheless, the formulation in (15)–(18) is
otherwise valid for all ranges of SINR, and its solution can be efficiently computed by standard numerical
methods in convex optimization [10]. Note that we may consider additional linear or convex constraints
on T, and sum power constraints on subsets ofP: they can be readily incorporated in the optimization
problem without violating its convexity.



5

C. Fading Channels and Power Adaptation

In this section we consider fading channels, i.e., the channel gainsHij ’s in (1) experience random
variations. In particular, we assume the channel gains can be characterized by a set ofs ∈ {1, . . . , S}
discrete fading states:

H =











G
(1) with probability p1

...

G
(S) with probability pS

,

S
∑

s=1

ps = 1, (22)

where H ∈ R
M×M
+ ,

[

Hij

]

is the channel power gain matrix, andG ∈ R
M×M
+ ,

[

Gij

]

is defined
similarly. For example, the discrete states may represent afinite set of quantized channel estimates. We
consider slow fading where the duration of a fading state is long compared to the packet completion
times. We assume the channel states can be accurately estimated and it is known by all users.

We first consider the case where each user can adapt its transmission power level according to the
fading state. Suppose useri transmits at power levelP (s)

i in fading states, subject to the average power
constraints:

E[Pi] ,

S
∑

s=1

psP
(s)
i ≤ P̄i, i = 1, . . . , M. (23)

To minimize a cost function of the expected completion times, the optimization problem can be formulated
as:

minimize J(E[T1], . . . , E[TM ]) (24)

over E[Ti], T
(s)
i , S

(s)
i , P

(s)
i

subject to

E[Ti] =

S
∑

s=1

psT
(s)
i (25)

T
(s)
i ≥

Li

log
(

1 + S
(s)
i

)
(26)

S
(s)
i ≤

G
(s)
ii P

(s)
i

Ni +
∑

j 6=i G
(s)
ij P

(s)
j

(27)

0 ≤ P
(s)
i (28)

S
∑

s=1

psP
(s)
i ≤ P̄i, (29)

wheres = 1, . . . , S; i = 1, . . . , M . The optimization in (24)–(29) can then be transformed intoa convex
optimization problem by similar techniques as described inSection III-B. Note that to minimize the
expected value of the cost function, it can be handled similarly by replacing the objective function in (24)
by:

E[J(T)] =
S

∑

s=1

psJ(T
(s)
1 , . . . , T

(s)
M ), (30)

where convexity is preserved in the nonnegative weighted sum of convex functions.



6

In the case where the user cannot adapt its transmission power level to the fading state (i.e., the
transmitter is under a short-term power constraint), the optimization problem is similar to (24)–(29), but
with the average power constraint in (29) replaced by separate power constraints for each fading state:

P
(s)
i ≤ P̄i, s = 1, . . . , S, i = 1, . . . , M. (31)

Note that under the short-term power constraints of (31), minimizing the expected cost function (30)
decomposes intoS independent optimization problems: i.e., each ofJ(T

(s)
1 , . . . , T

(s)
M ), for s = 1, . . . , S,

can be minimized separately.

IV. RELATIONS TO RATE REGION

In general, in a wireless network as defined in (1)–(4), minimizing a convex cost functionJ(T) of the
completion timesT1, . . . , TM is not equivalent to maximizing a concave utility functionU(R) of the rates
R1, . . . , RM . In particular, maximizingU(R) over the rate region is in general non-convex [3]: at high
SINR it can be approximately formulated as a GP, and in the medium- to low-SINR regime there are
iterative approximation methods [1], [2]. Suppose the costfunctionJ+(T) is convex and nondecreasing in
each argumentTi, then completion time minimization is a special case of rateutility maximization where
the optimization problem can be formulated as convex. To seethat minimizingJ+(T) can be posed as a
rate utility maximization problem, we define the corresponding rate utility function:

UT (R) , −J+(L1/R1, . . . , LM/RM ). (32)

Note that minimizingJ+(T) is equivalent to maximizingUT (R), and the utility functionUT (R) is concave
in R as prescribed by the convexity composition rules [10].

Nevertheless, in the converse, some rate utility maximization problems can be formulated as minimizing
convex functions of the completion times. Suppose we minimize a positively weighted sum of the
completion times:

Jw(T) = w1T1 + · · · + wMTM , w � 0, 1
T
w = 1, (33)

where� denotes component-wise inequality, then it is equivalent to maximizing:

Ud(R) = −
w′

1

R1
− · · · −

w′
M

RM
, (34)

where Ud(R) is the utility function that corresponds to minimum potential delay fairness [11], with
w′

i = wiLi, i = 1, . . . , M . In addition, minimizingJw(T) in (33) is also equivalent to maximizing the
weighted harmonic mean of the rates:

Uh(R) =

(

w′
1

R1
+ · · · +

w′
M

RM

)−1

. (35)

Note that by applying Jensen’s inequality on the convex function 1/x for x ∈ R++, we have

1

w′
1R1 + · · ·+ w′

MRM
≤

w′
1

R1
+ · · ·+

w′
M

RM
, (36)

which implies:

w′
1R1 + · · ·+ w′

MRM ≥ Uh(R). (37)

Hence maximizingUh(R) provides a lower bound tomax w′
1R1 + · · · + w′

MRM , which represents a
weighted throughput of the wireless network. In particular, the bound is tight whenR1 = · · · = RM as
equality is achieved in (36); therefore, maximizing the minimum rate in (38) below can be formulated as
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Fig. 2. Completion time region (̄P1 = P̄2 = 0 dB).

a minimization of the convex cost functionJx(T) as given in (39), which corresponds to the maximum
completion time:

Un(R) = min{R1, . . . , RM} (38)

Jx(T) = max{T1, . . . , TM}. (39)

Moreover, the entire rate region achievable under (10)–(11) can be characterized in terms of the
corresponding completion time region. Specifically, the completion time region as characterized in (16)–
(18) is convex, and its boundary are given by the minimizer ofJw(T) in (33) over allw � 0, 1T

w = 1. In
turn, from the monotonicity of (4), each minimal completiontime vectorT⋆ = arg min Jw(T) corresponds
to a maximal rate vectorR⋆ on the boundary on the rate region (10)–(11), withR⋆

i = Li/T
⋆
i , for

i = 1, . . . , M . As a numerical example, we consider the following 2-user AWGN wireless packet network:

G =

[

0.42 0.89
0.63 0.15

]

, L =

[

10
10

]

(40)

P̄ =

[

0
0

]

dB, N =

[

0
0

]

dB, (41)

with maximum completion time constraints:Ti ≤ 100Li. The completion time region and its corresponding
rate region are shown in Fig. 2 and Fig. 3, respectively. Notethat the power constraints as given in (41)
belong to the low SINR regime, where the high-SINR GP approximation does not readily apply. The
completion time region is convex in Fig. 2; however, note that its rate region counterpart is non-convex
as can be observed in Fig. 3.

V. ROBUST POWER CONTROL

A. Outage Probability Constraints

In Section III, we assume that the channel power gainsHij ’s can be accurately estimated. However,
in a fading environment where the channel estimates are updated not as fast as the channels vary, the
transmitters may not know theHij ’s perfectly. In this section, we consider the scenario where the channel
gains are modeled as random variables:

H = W ,
[

Wij

]

, (42)

where the users know the joint probability distribution ofWij ’s but do not know their realization. As in
Section III-C, we assume the duration of a fading state is long compared to the packet completion times.
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Fig. 3. Rate region (̄P1 = P̄2 = 0 dB).

Based on the channel distribution, each useri chooses a target SINRSi. Should the realized channel
SINR fall below the targetSi, the receiver cannot decode the transmitter’s message, andit results in
an outage event. To ensure the network operates with an acceptable level of reliability, we extend the
completion time minimization framework in Section III to additionally consider constraints imposed on
the permissible probability of outage. Specifically, we minimize the completion time cost function subject
to a set of outage probability constraints:qi ∈ [0, 1], i = 1, . . . , M , where we stipulate that the probability
of useri’s transmission in outage not exceedqi.

Incorporating the outage probability constraintsqi’s, the minimization of the completion time cost
function is described by the following stochastic programming [12] problem:

minimize J(T) (43)

over Ti, Si, Pi

subject to

Ti ≥
Li

log(1 + Si)
(44)

Pr

{

PiWii

Ni +
∑

j 6=i PjWij
≤ Si

}

< qi (45)

0 ≤ Pi ≤ P̄i, (46)

wherei = 1, . . . , M . We show that the minimization in (43)–(46) can be posed as a convex optimization
problem for a wide class of channel fading distributions commonly considered in wireless communications.

B. Robust Convex Optimization

In terms of the transformed variables in (14), we first define the reliability function as:

Φi(S̃i, P̃) , Pr{useri not in outage} (47)

= Pr

{

W̃ii > ln
{

exp(S̃i − P̃i + lnNi) +
∑

j 6=i

exp(S̃i − P̃i + P̃j + W̃ij)
}

}

, (48)

where (48) follows from rearranging (45) with the additional change of variables:

W̃ij , ln Wij , i = 1, . . . , M, j = 1, . . . , M. (49)
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Next, we characterize the reliability function in terms of the channel distribution. LetWi be anM-
component non-negative random vector that corresponds to the ith row of the channel matrixW:

Wi ,
[

Wi1 . . . WiM

]T
, (50)

andwi ∈ R
M
+ a realization ofWi. Under (49), the transformed vectors̃Wi, w̃i are defined similarly. Let

fWi
(wi) denote the joint probability distribution function (pdf) of Wi. Theorem 1 below describes the

sufficient condition that establishs the log-concavity ofΦi(S̃i, P̃), under which (43)–(46) can be posed as
the following convex optimization problem:

minimize J(T) (51)

over Ti, S̃i, P̃i

subject to

Ti ≥
Li

log
(

1 + exp(S̃i)
) (52)

ln Φi(S̃i, P̃) ≥ ln(1 − qi) (53)

P̃i ≤ ln P̄i, (54)

wherei = 1, . . . , M . Let exp(wi) denote component-wise exponentiation of the vectorwi.
Theorem 1: The reliability functionΦi(S̃i, P̃) is log-concave inS̃i, P̃ if fWi

(

exp(wi)
)

is log-concave
in wi.
The proof is given in the appendix. For example, the above condition is satisfied when each user expe-
riences independent fading distributed as [13]: i) Rayleigh (richly scattered environments), ii) Nakagami
(significant line-of-sight propagation), or iii) log-normal (shadowing due to signal attenuation). Therefore,
in all these cases, completion time minimization subject tooutage probability constraints can be formulated
as convex optimization problem (51)–(54).

VI. CONCLUSIONS

In this paper we consider minimizing a convex function of thecompletion times of user packets by
optimally allocating transmission power in a wireless network. We first focus on the scenario where the
channel gains can be estimated accurately and are known by all users. We show that completion time
minimization can be formulated as a convex optimization problem, and hence the corresponding optimal
power allocation can be efficiently computed. The optimization formulation is valid for all ranges of SINR,
which is especially pertinent for wireless sensor networksor delay-insensitive data applications where the
users may transmit at moderate or low SINRs. Under fading channels with transmission power adaptation
across fading states, an average power constraint can be incorporated into the optimization problem. We
show that completion time minimization is a special case of rate utility maximization for which the
optimization problem can be posed as convex. In particular,in a wireless network, although the feasible
rate region is non-convex, the corresponding completion time region is shown to be convex. Finally, we
consider robust power control under imperfect channel knowledge in fading channels. Completion times
are minimized subject to outage probability constraints over the fading distribution, and we show that for
a wide class of commonly used fading distributions, e.g., Rayleigh, Nakagami, and log-normal, robust
power control can be posed as a convex optimization problem.

APPENDIX

Proof of Theorem 1

We first introduce, in terms of the transformed variables in (49), the notation ofW̃−i ∈ R
M−1

representing the interfering channel random vector:

W̃−i ,
[

W̃i1 . . . W̃i i−1 W̃i i+1 . . . W̃iM

]T
, (55)
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and w̃−i is a realization ofW̃−i. The pdf ofW̃−i is given by the marginal:

f
W̃

−i
(w̃−i) =

∫

W̃ii

f
W̃i

(w̃i) dW̃ii. (56)

Next, conditioning onW̃−i = w̃−i, the reliability function in (48) is given by:

Φi(S̃i, P̃) =

∫

W̃
−i

φi(S̃i, P̃, w̃−i) dw̃−i. (57)

For notational convenience, we writeφi(S̃i, P̃, w̃−i) as a composition of:

φi(S̃i, P̃, w̃−i) , F̄W̃ii

(

gi(S̃i, P̃, w̃−i)
)

f
W̃

−i
(w̃−i) (58)

F̄W̃ii
(w̃ii) , 1 − FW̃ii

(w̃ii) (59)

gi(S̃i, P̃, w̃−i) , ln

{

exp(S̃i − P̃i + ln Ni) +
∑

j 6=i

exp(S̃i − P̃i + P̃j + w̃ij)

}

, (60)

whereFW̃ii
(w̃ii) in (59) is the cumulative distribution function (cdf) of̃Wii, and F̄W̃ii

(w̃ii) is referred to
as its complementary cdf, which is a nonincreasing functionin w̃ii.

Proof: In the construction ofΦi(S̃i, P̃) in (57), with the application of Lemma 1 below, log-concavity
is preserved [10], [12] in the integration in (57), (56); multiplication in (58); complementary cdf in (59);
and composition of a logarithmically concave, nonincreasing function with a convex function in (60).

Lemma 1: Under transformation (49),f
W̃i

(w̃i) is log-concave iñwi.
Proof: Consider the logarithm of the pdf of transformed random vector W̃i:

ln f
W̃i

(w̃i) = ln

{

exp
(

M
∑

j=1

w̃ij

)

fWi

(

exp(w̃i)
)

}

(61)

=
M

∑

j=1

w̃ij + ln fWi

(

exp(w̃i)
)

, (62)

where log-concavity offWi

(

exp(w̃i)
)

in w̃i follows from assumption from Theorem 1.
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