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Abstract

A wireless packet network is considered in which each usarsmits a stream of packets to its destination.
The transmit power of each user interferes with the transionisof all other users. A convex cost function of the
completion times of the user packets are minimized by oplyjnadiocating the users’ transmission power subject
to their respective power constraints. It is shown that,llatamges of SINR, completion time minimization can
be formulated as a convex optimization problem and hencéeagificiently solved. When channel knowledge is
imperfect, robust power control is considered based onhl@amel fading distribution subject to outage probability
constraints. The problem is shown to be convex when the dedistribution is log-concave in exponentiated channel
power gains; e.g., when each user is under independentiflayhakagami, or log-normal fading.

. INTRODUCTION

Power control plays a crucial role in the operation of a veissl network, as it strives to provide
maximum benefits to the users within the confines of availabs®urces. In particular, in a wireless
network, each user’s transmit power interferes with thaegmaission of all other users; therefore, power
allocation has a significant impact on the quality-of-seev(QoS) experienced by the network users.
The user benefits derived from a given power allocation assént can be characterized by different
performance metrics. Traditionally, a common performametric is a utility function of the rates of the
users.

However, maximizing a concave utility function over thedede rate region in a wireless network is not
necessarily a convex optimization problem [1]-[5]. In thghhsignal to interference-plus-noise (SINR)
regime, rate utility maximization can be approximatelynfotated as a convex optimization problem [1],
and hence it can be efficiently solved. For voice or video iappbns that need to maintain at least a
moderate minimum rate, the high-SINR regime is often an @mpte assumption. On the other hand, in
wireless sensor networks or delay-insensitive data aguphies, a user may wish to transmit at arbitrarily
low rates (i.e., at low SINRs) depending on the channel ¢mrd. At medium to low SINR, rate utility
maximization are handled by iterative approximation mdthfl], [2]. In this paper, we study a different
network performance metric that is motivated by data appbos. In particular, we consider the scenario
where each user transmits a stream of packets to its destinand we wish to minimize a convex
cost function of the user packet completion times. We shat tlompletion time minimization and the
corresponding optimal power allocation can be formulated aonvex optimization problem at all ranges
of SINR.

Moreover, we consider imperfect channel knowledge due tneél fading, and formulate the mini-
mization as a stochastic programming problem. The charmekgare modeled as random variables: an
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outage event occurs when the SINR realization falls belaavttansmitter's SINR target. Robust power
control is considered where each user is subject to an ouygeg®ability constraint. We show that for
a wide class of commonly used channel fading distributieng,, Rayleigh, Nakagami, and log-normal,
robust power control can be posed a convex optimizationlenob

Optimal power control in wireless networks is studied in; [it]shows that maximizing concave rate
utility functions can be formulated as geometric programgn{GP) problems in the high-SINR regime,
which are convex and hence their solutions can be compufegeafly. In the medium- to low-SINR
regime, [6] describes an iterative approximation methodntaximize a concave rate utility function
by solving a series of GPs, and [2] proposes an algorithm teimiae a linear function of the rates by
approximating the feasible SINR region by a series of pagksé. In [3], sufficient conditions are presented
for the convexity of the feasible QoS region, with optionahstraints on the allocation of user power.
Utility maximization through joint optimization of adapgé modulation, rate allocation, and power control
is investigated in [5]. In [7] power control is studied in dueency-selective Gaussian interference channels.
Outage probabilities corresponding to different fadingtritbutions for network users and interferers are
derived in [8]. For interference-limited wireless netwsrkptimal power control is considered in [9] under
Rayleigh fading subject to outage probability constraints

The rest of the paper is organized as follows. Section Il iess the channel model and the optimization
framework. In Sectio_Ill, minimizing a cost function of tr@mpletion times is posed as a convex
optimization problem. Section 1V explains how the commetitime region and its corresponding rate
region are related. Sectidn V considers robust power cbagrainst imperfect channel knowledge subject
to outage probability constraints. Conclusions are piteseim Sectior MI.

II. SYSTEM MODEL
A. Wiréess Channels

Consider the scenario in whick/ users are communicating in a wireless packet network. Eaehiu
consists of a transmitterand a corresponding receiverwhere: = 1, ..., M. Transmitter; wishes to
send a stream of equal-length packets to recéiwehere each packet hds bits. We assume the complex
baseband additive white Gaussian noise (AWGN) channel himete/een the transmitters and receivers:

M
Y; :Z\/Hinj+Ziu (1)
=1

whereY; is the observed signal at receiverX; is the signal sent by transmittgr ,; is the channel
power gain from transmittey to receiveri, and Z; is independent Gaussian noise with powér We
consider coherent detection: thiis; may be assumed real as detection is unaffected by phaseechang
in the received signal. In the subsequent sections, we @endifferent channel knowledge assumptions
where H;;’s may represent known constants or random variables. S@pfransmitteri has transmit
power constraint?,, When transmittei transmits at a power level af, < P, in the capacity limit, the
transmission ratez; (bits per channel use) achieved by usés given by:

wherelog is base 2, and; is the signal to interference-plus-noise ratio (SINR) aereer:. When the

interference from the other transmitters is treated asenoie SINR at receiver is:
H;; P;

Ni+ 32 Hy Py

We assume each user has a sufficient number of packets bgeklad) the transmitter so that it is always
transmitting, and we assume is sufficiently large to allow transmission close to the atencapacity

S = 3
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Fig. 1. An AWGN wireless packet network with/ = 2 users.

limit. The completion time (humber of channel uses) of trensémission of each of usés packet is
given by:
T; = Li/ R;. (4)

For example, an AWGN wireless packet network with= 2 users is illustrated in Fid.] 1.

B. Completion Time Cost Function

We consider the problem of minimizing a convex cost functodrthe completion timed, ..., Ty
by optimally choosing the users’ transmission power subjecthe power constraintd) < P, < B,
i=1,...,M. Let J(T) be the completion time cost function, wheFe [T} .. .TM}T, and other vectors
are denoted similarly in this paper. We assuthel’) is jointly-convex inTi,...,T),; the convexity
penalizes overlong completion times. For example, theofahg completion time cost functions are
convex [10]:

J(T) = Ty +---+ Ty (5)
J(T) = (TP + -+ (Tu)?)'", p>1. 6)
In @), T|;) denotes théth largest component & . Thus the cost functiod, (T) is the sum of the: longest
completion times. As special cases= 1 represents the maximum completion timeax{7}, ..., T},

andr = M represents the sum of the completion tim§$§i1 T;. In (@), the cost function/,(T) is the
¢,-norm of the user completion times.

I11. PACKET COMPLETION TIME MINIMIZATION
A. Perfect Channd Estimation

We first consider the scenario where the channel power gdjris can be accurately estimated and
they are known by all users:

Hy=Gy, i=1....M, j=1..M, (7)

where G;;’s are known constants. In this case, the minimization of ¢bmpletion time cost function
J(T) can be mathematically formulated as the following optirticza problem:

minimize J(T) (8)
over T;, R;, P;
subject to
T; > L/ R; 9
G.. P
R; < log(l + Ll ) (20)
Ni+ 3252 Giby

0< P, <P, (11)



wherei = 1,..., M, and the problem dat&;; € R, P, N;, L; € R, are given. The constrainf (L0) in
the optimization problem is not convex [1]-[3], [5]. Howey&e show in the next sectiofl(8)=(11) can
be transformed into a convex optimization problem, and detgsolution can be efficiently computed.

B. Convex Optimization

To formulate the the completion time minimization probleiveg in (8)-{11) as a convex optimization
problem, we first rewrite the constrainig (9),1(10) as:

L
T,>— "2  i=1...M 12
~ log(1+5)) (12)
S, < G i=1,..., M. (13)

TN+ 2 Gl
Next we apply the change of variables:
S;21nS;, P, AP, i=1,...,M, (14)

whereln is the natural logarithm. The completion time minimization{8)—(11) then becomes:

minimize J(T) (15)
over T;,S;, P,
subject to
L;
T, > (16)

log(1 + exp(gi))

ln{exp(gi — 152 —In Gm + IDNZ) + Zexp(gi — 152 + pj —In G“ + In GZ])} < 0 (17)

J#
B <Inp, (18)
wherei = 1,..., M. Note that the constraint ih_(IL7) follows from rewritirig }j18s:
SPTIGN + ) SiPTPGHIGy < 1, (19)
j#i

and taking logarithm on both sides after applyihgl (14). Thange of variables is similar to the transfor-
mation techniques in geometric programming (GP) problebpslf particular, the log-sum-exp function
in constraint[(1l7) is convex [10]. The convexity 6f [16) cam \erified from its second-order conditions,
as the right-hand side of (IL6) is twice-differentiable atsdsecond derivative is positive:
2 T T x
% log(1 + 61,)}_1 ¢ In2[2e” —In(1 +e 3} (20)
x (14 e*)?[In(1 4 e7)]

> 0, (21)

which follows from the inequalityy > In(1 + y) for y > 0. Note that the transformation if_(14) does
impose a slight loss of generality as we assufeZ 0. Nevertheless, the formulation ibh_(15)-(18) is
otherwise valid for all ranges of SINR, and its solution caneffficiently computed by standard numerical
methods in convex optimization [10]. Note that we may coesiadditional linear or convex constraints
on T, and sum power constraints on subset®ofthey can be readily incorporated in the optimization
problem without violating its convexity.




C. Fading Channels and Power Adaptation

In this section we consider fading channels, i.e., the cblgains H;;’s in (1) experience random
variations. In particular, we assume the channel gains eanhlaracterized by a set efe {1,...,S5}
discrete fading states:

G®  with probability p, S

wol | Sopo=1, (22)
G with probability ps =

whereH € R} £ [H,;] is the channel power gain matrix, af € R} £ [G;;] is defined
similarly. For example, the discrete states may represdimita set of quantized channel estimates. We
consider slow fading where the duration of a fading stateorsgylcompared to the packet completion
times. We assume the channel statean be accurately estimated and it is known by all users.

We first consider the case where each user can adapt its iem@mpower level according to the
fading state. Suppose usetransmits at power IevePi(s) in fading states, subject to the average power
constraints:

S

s=1

To minimize a cost function of the expected completion tintles optimization problem can be formulated
as:

minimize J(E[T1],...,E[Ty]) (24)
over E[T;), T, 5% PY
subject to
S
BT =Y pT (25)
s=1
Li
7 > — (26)
log(1+ 5;”)
(5) p(s)
Nit 3 i Gig B
0< P (28)
S
> pP < P, (29)

s=1

wheres =1,...,5;i=1,..., M. The optimization in[(2Z4)£(29) can then be transformed mtwonvex
optimization problem by similar techniques as describedatction[Il[-B. Note that to minimize the
expected value of the cost function, it can be handled sityiley replacing the objective function in_(24)
by:

S
E[J(T)] =Y pJ(T,... T}, (30)
s=1

where convexity is preserved in the nonnegative weighted gliconvex functions.



In the case where the user cannot adapt its transmissionrpewa to the fading state (i.e., the
transmitter is under a short-term power constraint), thinopation problem is similar to (24)=(29), but
with the average power constraint [n {29) replaced by sépgrawer constraints for each fading state:

PP <P, s=1,....8 i=1,...,M. (31)

Note that under the short-term power constraints[of (31yimmizing the expected cost functioh {30)
decomposes int& independent optimization problems: i.e., eachJoT” ... T8, for s = 1,..., S,
can be minimized separately.

IV. RELATIONS TO RATE REGION

In general, in a wireless network as defined[ih (T)—(4), miming a convex cost functiod (T) of the
completion timed/, . .., Ty, is not equivalent to maximizing a concave utility functibiiR)) of the rates
Ry, ..., Ry . In particular, maximizing/(R) over the rate region is in general non-convex [3]: at high
SINR it can be approximately formulated as a GP, and in theiumedto low-SINR regime there are
iterative approximation methods [1], [2]. Suppose the @asttion J, (T) is convex and nondecreasing in
each argumernt;, then completion time minimization is a special case of tailty maximization where
the optimization problem can be formulated as convex. Totlsaeminimizing.J, (T) can be posed as a
rate utility maximization problem, we define the correspgogdate utility function:

Ur(R) 2 —J.(Li/Ry,...,La/Ru). (32)

Note that minimizing/,.(T) is equivalent to maximizing’z(R), and the utility function/(R) is concave
in R as prescribed by the convexity composition rules [10].

Nevertheless, in the converse, some rate utility maxinargiroblems can be formulated as minimizing
convex functions of the completion times. Suppose we mirgma positively weighted sum of the
completion times:

Jo(T) =w Ty + - +wyTy, w=0,1Tw=1, (33)

where > denotes component-wise inequality, then it is equivalenmhaximizing:

w w
UR)=—-L - — M 34
d( ) Rl RM7 ( )
where Uy(R) is the utility function that corresponds to minimum potehtdelay fairness [11], with
w; = w;L;, i = 1,..., M. In addition, minimizingJ,,(T) in (33) is also equivalent to maximizing the
weighted harmonic mean of the rates:
W' W' -1
U(R)= [ =L 4+...40 =M ) 35
(R = (e ) (@)
Note that by applying Jensen’s inequality on the convex tioncl /x for x € R, we have
1 w) why
< L4 : 36
OB+t Wy Ry Rus (36)
which implies:
Hence maximizingU,(R) provides a lower bound tmax w|R; + --- + w), Ry, Which represents a
weighted throughput of the wireless network. In particutae bound is tight whemR; = --- = Ry, as

equality is achieved if_(36); therefore, maximizing the imiam rate in [(38) below can be formulated as
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Fig. 2. Completion time region®; = P, = 0dB).

a minimization of the convex cost functiofy.(T) as given in[(3B), which corresponds to the maximum
completion time:

Un(R) = min{Rl, ey R]\/[} (38)
Jo(T) = max{Ty,..., Ty} (39)

Moreover, the entire rate region achievable undel (LO)-¢&h be characterized in terms of the
corresponding completion time region. Specifically, thenptetion time region as characterized [nl(16)—
(18) is convex, and its boundary are given by the minimizef gfT) in (33) over allw = 0, 17w = 1. In
turn, from the monotonicity of (4), each minimal completiime vectorT* = arg min J,,(T) corresponds
to a maximal rate vectoR* on the boundary on the rate regidnl(10)4(11), with = L,/T*, for
1=1,..., M. As a numerical example, we consider the following 2-userGMWvireless packet network:

0.42 0.89 10
G= [0.63 0.15] ’ L= {10} (40)
_ 0 0
P — M dB, N = [0] dB, (41)

with maximum completion time constraints; < 100L;. The completion time region and its corresponding
rate region are shown in Figl 2 and Fig. 3, respectively. Nlo& the power constraints as given [nl(41)
belong to the low SINR regime, where the high-SINR GP appnation does not readily apply. The

completion time region is convex in Figl 2; however, notet fkmrate region counterpart is non-convex
as can be observed in Fig. 3.

V. RoBUST POWER CONTROL
A. Outage Probability Constraints

In Section[Ill, we assume that the channel power gdifpss can be accurately estimated. However,
in a fading environment where the channel estimates aretegdet as fast as the channels vary, the
transmitters may not know th&,;’s perfectly. In this section, we consider the scenario wtbe channel
gains are modeled as random variables:

H=W =2 [W,], (42)

where the users know the joint probability distribution1df;’s but do not know their realization. As in
Section 1I-C, we assume the duration of a fading state ig loompared to the packet completion times.
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Based on the channel distribution, each usehooses a target SINR;. Should the realized channel
SINR fall below the targets;, the receiver cannot decode the transmitter's messagejt aedults in
an outage event. To ensure the network operates with an acceptabé déwreliability, we extend the
completion time minimization framework in Sectiénllll to @itlonally consider constraints imposed on
the permissible probability of outage. Specifically, we imize the completion time cost function subject
to a set of outage probability constraingsc [0,1],7 = 1,..., M, where we stipulate that the probability
of useri’s transmission in outage not exceegd

Incorporating the outage probability constraimts, the minimization of the completion time cost
function is described by the following stochastic programg12] problem:

minimize J(T) (43)
over T;.S;, P,
subject to
. (44)
~ log(1+5;)
PW;
Pr{Ni n Z#inWij < SZ} < q (45)
0< P <P, (46)

wherei = 1,..., M. We show that the minimization ih_(4#3)—(46) can be posed asnaex optimization
problem for a wide class of channel fading distributions ommly considered in wireless communications.

B. Robust Convex Optimization
In terms of the transformed variables [n (14), we first defimeréliability function as:

®;(S;, P) £ Pr{useri not in outage
- Pr{Wn‘ > lﬂ{eXp(gi — P, +InN;) + Zexp(gi ~ P+ P+ Wzg)}}, (48)
ji
where [(48) follows from rearranging (45) with the additibohange of variables:
W, 2ImW,, i=1,...,M, j=1,...,M. (49)

(47)



Next, we characterize the reliability function in terms b@ktchannel distribution. LeW,; be an M-
component non-negative random vector that correspondsetiitt row of the channel matri¥w:

W s Wy . W', (50)

andw; € ]RM a realization ofW,. Under [49), the transformed vectov¥;, w; are defined similarly. Let
fw,(w;) denote the joint probability distribution function (pdfj ;. TheorenilL below describes the
sufficient condition that establishs the log-concavityefS;, P), under which[(4B)-£(46) can be posed as
the following convex optimization problem:

minimize J(T) (51)
over T,,5; P,
subject to
T>— (52)
log(l + exp(Si))
In ®;(S;, P) > In(1 — ¢) (53)
]5- <P, (54)
wherei =1,..., M. Let exp(w;) denote component-wise exponentiation of the veetar

Theorem 1 The reliability function®;(S;, P) is log-concave inS;, P if fw;, (exp(w;)) is log-concave
in w;.
The proof is given in the appendix. For example, the abovalition is satisfied when each user expe-
riences independent fading distributed as [13]: i) Rayldigchly scattered environments), ii) Nakagami
(significant line-of-sight propagation), or iii) log-noah(shadowing due to signal attenuation). Therefore,
in all these cases, completion time minimization subjecitage probability constraints can be formulated
as convex optimization problerh (51)—(54).

VI. CONCLUSIONS

In this paper we consider minimizing a convex function of ttenpletion times of user packets by
optimally allocating transmission power in a wireless ratw We first focus on the scenario where the
channel gains can be estimated accurately and are knownl lngeals. We show that completion time
minimization can be formulated as a convex optimizatiorbfgm, and hence the corresponding optimal
power allocation can be efficiently computed. The optimaratormulation is valid for all ranges of SINR,
which is especially pertinent for wireless sensor netwankdelay-insensitive data applications where the
users may transmit at moderate or low SINRs. Under fadingroéla with transmission power adaptation
across fading states, an average power constraint can bgparated into the optimization problem. We
show that completion time minimization is a special case até rutility maximization for which the
optimization problem can be posed as convex. In particulaa wireless network, although the feasible
rate region is non-convex, the corresponding completior tiegion is shown to be convex. Finally, we
consider robust power control under imperfect channel kadge in fading channels. Completion times
are minimized subject to outage probability constraintsrdfie fading distribution, and we show that for
a wide class of commonly used fading distributions, e.gyl&gh, Nakagami, and log-normal, robust
power control can be posed as a convex optimization problem.

APPENDIX
Proof of Theorem
We first introduce, in terms of the transformed variables@8)( the notation ofW_;, € RM-!
representing the interfering channel random vector:

W—i £ m/n V[Vu'—1 VT/M—H VT/Z’M]Ta (55)
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andw_; is a realization ofW_;. The pdf of W_; is given by the marginal:

fw_ (W) = . o, (W) dW. (56)

Next, conditioning oW _; = w_;, the reliability function in [4B) is given by:

®,(5;, P) = ¢:(S;, P, W_;) dW_;. (57)

W,

For notational convenience, we Wrizte( S;,P,Ww_;) as a composition of:
P wW_

6i(S5, P, W) £ Fyy, (9:(59, P, W) fyy (W) (58)

Fyy, () =1 = Fw (i) (59)

g:/(S;, P,w_;) & 1n{exp(§,- —Pi+InN)+ ) exp(S;— P+ P+ )}, (60)
J#i

where Fy;, () in (G9) is the cumulative distribution function (cdf) &F;;, and Fm (w;;) is referred to
as its complementary cdf, which is a nonincreasing functiot;;.

Proof: In the construction of;(.S;, P) in (84), with the application of Lemnid 1 below, log-concgvit
is preserved [10], [12] in the integration in_(57]), [56); tiplication in (58); complementary cdf in_(59);
and composition of a logarithmically concave, nonincneggunction with a convex function in_(60)m

Lemma 1: Under transformatior (49) (W) is log-concave inw;.

Proof: Consider the logarithm of the pdf of transformed random we®;:

M
In fog, (%;) = ln{exp (Z w]> fw, (exp((fvi))} (61)
j=1
M
= iy + In fw, (exp(W;)), (62)
j=1
where log-concavity offw, (exp(w;)) in w; follows from assumption from Theorel 1. [ |
REFERENCES

[1] M. Chiang, C. W. Tan, D. P. Palomar, D. O’Neill, and D. aulj “Power control by geometric programmindgBEE Trans. \reless
Commun., vol. 6, no. 7, pp. 2640-2651, Jul. 2007.

[2] L. Qian, Y. J. A. Zhang, and J. Huang, “MAPEL: Achievingoplal optimality for a non-convex wireless power control igem,”
http://arxiv.org/abs/0805.2675v2, Jun. 2008.

[3] H. Boche and S. Stahczak, “Convexity of some feasibl&S@egions and asymptotic behavior of the minimum total poweZDMA
systems,”|EEE Trans. Commun., vol. 52, no. 12, pp. 2190-2197, Dec. 2004.

[4] ——, “Log-convexity of minimal feasible total power in QWA channels,” inProc. IEEE Int. Symp. Personal, Indoor and Mobile
Radio Commun., vol. 2, Beijing, China, Sep. 2003, pp. 1456-1460.

[5] D. O'Neill, A. J. Goldsmith, and S. Boyd, “Optimizing apgtve modulation in wireless networks via utility maximizm,” in Proc.
IEEE Internat. Conf. Commun., Beijing, China, May 2008, pp. 3372-3377.

[6] C. W. Tan, D. P. Palomar, and M. Chiang, “Solving nonconp®wer control problems in wireless networks: Low SIR regiand
distributed algorithms,” irProc. IEEE Globecom Conf., vol. 6, St. Louis, MO, Nov. 2005, pp. 3445-3450.

[7] W. Yu, G. Ginis, and J. M. Cioffi, “Distributed multiuseropier control for digital subsriber linesfEEE J. Sal. Areas Commun.,
vol. 20, no. 5, pp. 11051115, Jun. 2002.

[8] Y.-D. Yao and A. U. H. Sheikh, “Investigations into cocireel interference in microcellular mobile radio system&EE Trans. Veh.
Technal., vol. 41, no. 2, pp. 114-123, May 1992.

[9] S. Kandukuri and S. Boyd, “Optimal power control in irference-limited fading wireless channels with outagebphility specifica-
tions,” IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 46-55, Jan. 2002.

[10] S. Boyd and L. Vandenbergh€onvex Optimization. Cambridge University Press, 2004.

[11] R. Srikant,The Mathematics of Internet Congestion Control. Birkhauser, 2003.

[12] A. Prékopa,Sochastic Programming. Kluwer Academic Publishers, 1995.

[13] G. L. Stuber,Principles of Mobile Communication. Kluwer Academic Publishers, 2000.



	Introduction
	System Model
	Wireless Channels
	Completion Time Cost Function

	Packet Completion Time Minimization
	Perfect Channel Estimation
	Convex Optimization
	Fading Channels and Power Adaptation

	Relations to Rate Region
	Robust Power Control
	Outage Probability Constraints
	Robust Convex Optimization

	Conclusions
	Appendix
	References

