
Robust Model-free Multiclass Probability Estimation

Yichao Wu, Hao Helen Zhang, and Yufeng Liu ∗

North Carolina State University and University of North Carolina

Abstract

Classical statistical approaches for multiclass probability estimation are typically based

on regression techniques such as multiple logistic regression, or density estimation approaches

such as linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). These

methods often make certain assumptions on the form of probability functions or on the un-

derlying distributions of subclasses. In this paper, we develop a model-free procedure to

estimate multiclass probabilities based on large-margin classifiers. In particular, the new es-

timation scheme is employed by solving a series of weighted large-margin classifiers and then

systematically extracting the probability information from these multiple classification rules.

A main advantage of the proposed probability estimation technique is that it does not im-

pose any strong parametric assumption on the underlying distribution and can be applied for

a wide range of large-margin classification methods. A general computational algorithm is

developed for class probability estimation. Furthermore, we establish asymptotic consistency

of the probability estimates. Both simulated and real data examples are presented to illus-

trate competitive performance of the new approach and compare it with several other existing

methods.
∗Yichao Wu is Assistant Professor (E-mail: wu@stat.ncsu.edu); Hao Helen Zhang is Associate Professor (E-mail:

hzhang2@stat.ncsu.edu), Department of Statistics, North Carolina State University, Raleigh NC 27695. Yufeng Liu

is Associate Professor, Department of Statistics and Operations Research, Carolina Center for Genome Sciences

University of North Carolina, Chapel Hill, NC 27599-3260 (E-mail: yfliu@email.unc.edu). The authors thank the

Editor, the Associate Editor, and two referees for their helpful suggestions that lead to significant improvement

of the paper. The authors are supported in part by NSF grants DMS-0905561 (Wu), DMS-0645293 (Zhang),

DMS-0747575 (Liu), and DMS-0606577 (Liu), and NIH/NCI grant R01-CA-085848 (Zhang).

1

Key Words and Phrases: Fisher consistency, hard classification, multicategory classification,

probability estimation, soft classification, SVM.

1 Introduction

Multiclass probability estimation is an important problem in statistics and data mining. Sup-

pose we are given a sample {(xi, yi), i = 1, 2, · · · , n} consisting of i.i.d. observations from some

unknown probability distribution P (X, Y), where xi ∈ S ⊂ <d denotes the input vector,

yi ∈ {1, 2, · · · ,K} denotes the label, n is the sample size, d is the dimensionality of the in-

put space, and K denotes the number of classes. The main goal is to estimate the conditional

probabilities pk(x) = P (Y = k|X = x), k = 1, · · · ,K. This problem is also known as soft classi-

fication, since the estimated pk’s can be used to determine the classification boundary among K

classes and to predict class labels for future samples collected from the same population.

Traditionally, the probability estimation problem is commonly tackled by regression tech-

niques such as multiple logistic regression, or the density estimation approaches such as lin-

ear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). Agresti and Coull

(1998) gives a thorough review on these methods. These methods often make certain model

assumptions on the function forms of pk’s (or their transformations) or on the underlying distri-

butions of subclasses. For example, multiple logistic regression assumes that the logarithms of

the odd ratios are linear in x,

log
P (Y = k|X = x)
P (Y = 1|X = x)

= βk0 + xT βk, ∀k ≥ 2,

where class 1 is chosen as the baseline class. On the other hand, both LDA and QDA assume

that the covariates X associated with each subclass follow a multivariate Gaussian distribution

and construct the probability estimates as

P (Y = k|X = x) =
φ(x;µk,Σk)αk∑K
j=1 φ(x;µj ,Σj)αj

, k = 1, · · · ,K,

where φ(x;µ,Σ) is the density function of the multivariate Gaussian distribution associated

with the mean µ and the covariance Σ, and αk = P (Y = k) is known as the prior probability

of class k. These methods are widely used in practice. In many real applications, however, it

2

is difficult to justify the assumption of the linear effects of covariates in the multiple logistic

regression. Moreover, it is often difficult to validate the Gaussian assumption for multivariate

data. If the distribution is very skewed, some proper transformation is needed to make data

approximately Gaussian, which can be nontrivial for multivariate data. These issues become

even more challenging for high dimensional data.

In this paper, we propose a new class of model-free methods for estimating multiclass proba-

bilities. The new method does not make any assumption on the forms of pk’s or the distribution

for each subclass. Different from the traditional methods, we tackle the soft classification problem

by solving a series of hard classification problems and combining these decision rules to construct

the probability estimates. The main difference between soft classification and hard classification

is their estimation target, with the former directly estimating pk(x)’s and the latter estimat-

ing arg maxk=1,··· ,K pk(x). For many complicated problems, estimation of the classification rule

arg maxk=1,··· ,K pk(x) may be a relatively easier task than estimating the probability functions.

Many successful large-margin classifiers such as the support vector machine (SVM) can estimate

arg maxk=1,··· ,K pk(x) with high accuracy without estimating pk(x)’s at all. This motivates us

to take advantage of good classification performance of hard classifiers and try to extract the

probability information contained in them.

Wang, Shen and Liu (2008) recently explored class probability estimation for binary large-

margin classifiers. In particular, they made use of the property that the theoretical minimizer

of a consistent weighted binary large-margin loss function is sign[p1(x) − π], where π ∈ (0, 1).

Although a particular weighted binary large-margin classifier only estimates whether p1(x) is

larger than π or not, one can obtain a good estimate of p1(x) if a sequence of weighted classifiers

are calculated for many different π’s. As shown in Wang, Shen and Liu (2008), this method in-

deed works well for binary class probability estimation. However, the simultaneous generalization

from K = 2 to K ≥ 3 is nontrivial and largely unknown due to the increased level of problem

complexity. Wu, Lin and Weng (2004) proposed a pairwise coupling method for multiclass prob-

ability estimation by solving many binary problems. In this paper, we develop a new multiclass

probability estimation scheme by utilizing the proposed concept of border weight for large-margin

classifiers. As a result, the K − 1 dimensional probability estimation reduces to the search of

3

border weight. We propose two estimation schemes for probability estimation, the direct scheme

and the indirect scheme. Furthermore, we focus on the truncated hinge loss (Wu and Liu, 2007)

for demonstration of our proposed probability estimation technique. The technique is, however,

applicable to other large-margin classifiers as well.

The rest of our paper is structured as follows. Section 2 presents the idea of weighted classi-

fication and its Fisher consistency properties. Section 3 introduces the main methodology, along

with two estimation schemes and the theoretical properties of the resulting probability estimator.

Section 4 discusses the computational algorithm and tuning method. Section 5 and Section 6

contain numerous simulated and real examples to illustrate the numerical performance of the

new approach, which is followed by the concluding section. The appendix collects proofs for the

theoretical results as well as the derivation of our algorithm.

2 Weighted Classification and Fisher Consistency

In this section, we give a brief review on an important class of hard classifiers, Support Vector

Machines (SVMs, Cortes and Vapnik, 1995; Vapnik, 1998). We start with the simple binary

classification problems and then discuss the multiclass extensions. We will in particular discuss

the extension of SVMs by minimizing a weighted loss function.

2.1 Weighted Binary Classification

When K = 2, the class label y is often coded as {−1,+1} for notational convenience. The binary

SVM classifier can be fit in the following regularization framework

min
f∈F

n−1
n∑

i=1

H1(yif(xi)) + λJ(f), (1)

where the function H1(z) = (1−z)+ ≡ max{1−z, 0} is the so-called hinge loss, J(f) is a penalty

term for model complexity, and F is some functional space. Let p1(x) = P (Y = 1|X = x). Lin

(2002) showed that the SVM solution f̂ to (1) targets directly at sign
[
p1(x)− 1

2

]
. Therefore,

sign
[
f̂(x)

]
approximates the Bayes classification rule without estimating p1(x).

Since the SVM has shown good classification accuracy in many applications, a natural ques-

tion to ask is whether it is possible to extract any information about p1(x) from the SVM solution.

4

Recently, Wang et al. (2008) proposed to train a series of binary SVMs by minimizing a weighted

loss function, and then construct p̂1(x) by combining multiple SVM classification rules. In par-

ticular, by assigning a weight π to all the samples from class −1 and assigning 1 − π to all the

samples from class +1, one can solve the regularization problem based on the weighted hinge loss

min
f∈F

n−1


(1− π)

∑

yi=1

H1{yif(xi)}+ π
∑

yi=−1

H1{yif(xi)}

 + λJ(f), (2)

where 0 ≤ π ≤ 1. Wang et al. (2008) showed that the minimizer to (2) is a consistent esti-

mate of sign [p1(x)− π]. Therefore, one can repeatedly solve (2) using different π values, say,

0 = π1 < · · · < πm+1 = 1 and search ĵ such that πĵ and πĵ+1 satisfy sign
[
p1(x)− πĵ

]
6=

sign
[
p1(x)− πĵ+1

]
. The probability estimate can be estimated as p̂1(x) = 1

2(πĵ + πĵ+1). More

technical details can be found in their paper.

2.2 Weighted Multiclass Classification

Now consider the multiclass problems with K ≥ 2. In this setup, we code y as {1, 2, · · · ,K}. A

classifier seeks the function vector f = (f1, f2, · · · , fK), where fk is a map from the input domain

S to < (the set of all real numbers) representing the class k; k = 1, · · · ,K. To ensure uniqueness

of the solution, a sum-to-zero constraint
∑K

k=1 fk = 0 is usually employed. For any new input

vector x, its label is estimated via a decision rule ŷ = argmax
k=1,2,··· ,K

fk(x). Clearly, the argmax rule

is equivalent to the sign function used in the binary case.

Various loss functions have been proposed to extend the binary SVM to multiclass problems,

such as Weston and Watkins (1999), Lee et al. (2004), and Liu (2007). Here we focus on the

notion of the 0− 1 loss. Note that a point (x, y) is misclassified by f if y 6= argmaxkfk(x), that

is, if min g(f(x), y) ≤ 0, where

g(f(x), y) = {fy(x)− fk(x), k 6= y}.

The quantity min g(f(x), y) is known as the generalized functional margin and can be reduced

to yf(x) in the binary case with y ∈ {±1} (Liu and Shen, 2006). With the generalized functional

margin, the 0 − 1 loss can be expressed as I(min g(f(x), y) ≤ 0). As in the binary case, one

can replace the indicator function in the 0 − 1 loss by some other loss `. Typically, in order to

5

assure that a misclassified sample induces a larger loss than a correctly classified sample, the loss

function ` is non-increasing and satisfies that `′(0) < 0. Once the loss `(·) is given, the decision

vector can be obtained by solving the following regularization problem

min
f

n−1
n∑

i=1

`(min g(f(xi), yi)) + λ

K∑

k=1

J(fk) (3)

subject to
K∑

k=1

fk(x) = 0.

Motivated by Wang et al. (2008), we propose a new approach to estimate the class proba-

bilities by solving a series of weighted multiclass problems and then combining multiple clas-

sification rules. In the paper, we focus on the class of losses based on the functional margin

`(min g(f(X), Y)), as they provide a natural extension from two-class to multiclass problems.

For the weighted learning, we assign a weight 0 ≤ πk ≤ 1 to samples from class k, k = 1, · · · ,K,

where π1 + · · ·+ πK = 1 to assure identifiability. Define the unit K-cube hyperplane as

AK = {(π1, · · · , πK) :
K∑

k=1

πk = 1, πk ≥ 0, k = 1, 2, · · · ,K}.

For any given π ∈ AK , we can train a weighted hard classifier by minimizing the objective

function using a weighted loss function

min
f

n−1
n∑

i=1

πyi`(min g(f(xi), yi)) + λ
K∑

k=1

J(fk) (4)

subject to
K∑

k=1

fk(x) = 0.

Compared with the binary case, extracting the probability information from the constructed

classifiers becomes much more challenging for K > 2. In particular, instead of estimating only

one probability function as in K = 2, we need to estimate multiple functions p1(x), · · · , pK−1(x)

when K > 2. As a result, a substantially different formulation from the binary case is required

for multiclass probability estimation.

In the binary case, the standard SVM is shown to be Fisher-consistent for estimating the

Bayes classification rule sign(p1(x) − 1
2). In order to estimate conditional class probabilities,

6

Wang et al. (2008)’s method requires that the weighted SVM (2) is Fisher-consistent for esti-

mating weighted Bayes classification rule sign(p1(x) − π). To proceed with the multicategory

probability estimation, we need to extend the definition of weighted Fisher-consistency. In order

to construct a good probability estimate from the classification rules, we require that the loss

function l in (4) is consistent in the following sense.

Definition 1: A functional margin based loss ` is called weighted Fisher-consistent for the

weighted classification problem if the minimizer f∗ of E[πY `(min g(f(X), Y))|X = x] satisfies

argmax
k=1,··· ,K

f∗k (x) = argmax
k=1,··· ,K

πkpk(x), ∀x,∀π ∈ AK .

In a standard multiclass classification problem, the misclassification costs are all equal, i.e.,

C(Y, f(X)) = I(Y 6= f(X)), and the Bayes rule minimizing E[C(Y, f(X))] is argmaxk=1,2,··· ,K pk(x).

A loss ` is Fisher-consistent if the decision rule induced from f∗ = arg minE[`(min g(f(X), Y))|X =

x] is the same as the Bayes rule, i.e., argmaxk=1,··· ,K f∗k (x) = argmaxk=1,··· ,K pk(x) for all x. For

a weighted learning problem, the weighted loss E[πY `(min g(f(X), Y))] implies that unequal

costs Cπ(Y, f(X)) = πY I(Y 6= f(X)) are used for incorrect decisions. It is straightforward to

show that the Bayes rule minimizing E[Cπ(Y, f(X)] is argmaxk=1,··· ,K πkpk(x). In this context,

we say ` is weighted Fisher-consistent if arg maxk=1,··· ,K f∗(x) = arg maxk=1,··· ,K πkpk(x) for

all π and x. This is also known as classification calibrated (Bartlett et al., 2006) and infinite-

sample consistent (Zhang, 2004). Therefore, the weighted Fisher-consistency can be regarded as

an equivalent formulation of Fisher-consistency for weighted classification problems.

It turns out that not all functional margin based loss `(min g(f(x), y)) satisfying `′(0) < 0 is

weighted Fisher-consistent for multicategory problems, as shown in the next proposition.

Proposition 1. Let `(·) be a non-increasing loss function satisfying `′(0) < 0. For any given

positive weights π ∈ AK , the minimizer f∗ of E[πY `(min g(f(X), Y))|X = x] has the following

properties:

(a) If maxk=1,··· ,K πkpk∑K
k=1 πkpk

> 1/2, then argmaxk f∗k = argmaxk=1,··· ,K πkpk.

(b) If `(·) is convex and maxk=1,··· ,K πkpk∑K
k=1 πkpk

≤ 1/2, then f∗ = 0 is a minimizer.

7

Proposition 1 suggests that one sufficient condition for the weighted loss πy`(min g(f(x), y))

to be weighted Fisher-consistent is maxk πkpk∑
k πkpk

> 1/2, i.e., there exists a “dominating” class in

the weighted sense. This condition is always satisfied for a binary problem except at the Bayes

boundary {x : π1p1(x) = π2p2(x)}, but not for K > 2 as we require maxk=1,··· ,K πkpk∑K
k=1 πkpk

> 1/2 to

hold for all π ∈ AK . When K > 2 and maxk=1,··· ,K πkpk∑K
k=1 πkpk

≤ 1/2, f∗ = 0 can be a minimizer and

consequently argmaxk=1,··· ,K f∗k (x) is not uniquely determined. As a result, the weighted loss

πy`(min g(f(x), y)) is not weighted Fisher-consistent in such cases. By Theorem 1, the weighted

hinge loss πyH1(min g(f(x), y)) is not weighted Fisher-consistent.

Interestingly, although the weighted loss πy`(min g(f(x), y)) may not be weighted Fisher-

consistent, the corresponding truncated version can be weighted Fisher-consistent. Specifically,

for any `(·), we define its truncated loss at a location s ≤ 0 by

`Ts(·) = min(`(·), `(s)).

The following theorem shows that the truncated loss `Ts is weighted Fisher-consistent.

Theorem 1. Let `(·) be a non-increasing loss function satisfying `′(0) < 0. Then a sufficient

condition for the weighted truncated loss πy`Ts(min g(f(x), y)) with K > 2 and s ≤ 0 to be

weighted Fisher-consistent for estimating argmaxj πjpj is that the truncation location s satisfies

sup{u:u≥−s≥0}
`(0)−`(u)
`(s)−`(0) ≥ K − 1. This condition is also necessary if `(·) is convex.

Remark 1. As pointed out by one referee, the condition `′(0) < 0 requires differentiability of `

at 0 and thus excludes non-differentiable loss functions such as the ψ loss. In the following, we

show how the condition can be relaxed for non-differentiable losses. Note that `′(0) is used to

assure

(
∑

k 6=kπp

πkpk(x))(−K)`′(0) + πkπppkπp(x)K`′(0) < 0 (5)

when πkπppkπp(x) >
∑

k 6=kπp

πkpk(x). If `′(0) does not exist, the term in (5) can be simply replaced

by

(
∑

k 6=kπp

πkpk(x))(−K)`′(0−) + πkπppkπp(x)K`′(0+) < 0, (6)

where `′(0−) and `′(0+) denote the left and right derivatives, respectively. Therefore, the condi-

tion `′(0) < 0 can be relaxed as `′(0+) < `′(0−) ≤ 0.

8

We now use two common loss examples to illustrate how to check the condition and find a

proper truncating location s to assure the weighted Fisher-consistency of a truncated loss.

(a) The hinge loss, `(u) = [1−u]+: In this case, sup{u:u≥−s≥0}
`(0)−`(u)
`(s)−`(0) = 1−0

−s and the condition

becomes s ∈ [− 1
K−1 , 0] by noting that s ≤ 0.

(b) The logistic loss, `(u) = log(1 + eu): In this case, sup{u:u≥−s≥0}
`(0)−`(u)
`(s)−`(0) = log 2−0

log(1+e−s)−log 2
,

which leads to condition s ∈ [− log(2K/(K−1) − 1), 0].

Both of these two loss functions satisfy `′(0) < 0. Although they are not weighted Fisher-

consistent themselves, they can become weighted Fisher-consistent after truncating them at s

(with s satisfying the above condition).

Proposition 1 and Theorem 1 are weighted extensions of the results of Wu and Liu (2007).

Furthermore, we note that the truncating location s given in Theorem 1 depends on the class

number K. The larger K is, the more truncation is needed to ensure Fisher consistency. This is

due to the fact that the difficulty of no “dominating” class becomes more severe as K increases.

The more truncation is, the closer of the truncated loss is to the 0 − 1 loss. For the hinge loss

H1(u), exponential loss e−u, and logistic loss log(1+e−u), their truncated versions are guaranteed

to be weighted Fisher-consistent for s ∈ [− 1
K−1 , 0], [log(1 − 1

K), 0], and [− log(2K/(K−1) − 1), 0],

respectively. Note that the ψ loss used in ψ-learning can be viewed as special examples of trun-

cated loss functions (Shen et al., 2003; Liu and Shen, 2006). Theoretically different truncation

may give different performance. Empirically, the numerical examples in Wu and Liu (2007) in-

dicate that minimum truncation appears to work better for the unweighted case. In this paper

we proceed with the minimum truncation required to achieve weighted Fisher-consistency. By

minimal truncation, we mean truncation with the smallest s to make the corresponding truncated

loss weighted Fisher-consistent: s = − 1
K−1 , log(1 − 1

K), and − log(2K/(K−1) − 1) for the hinge

loss, exponential loss, and logistic loss, respectively. In Figure 1 we plot these three truncated

loss functions for K = 3 with the minimal truncation.

9

−2 0 2
0

0.5

1

1.5

u

T
ru

nc
at

ed
 h

in
ge

 lo
ss

−2 0 2
0

0.5

1

1.5

u

T
ru

nc
at

ed
 e

xp
on

en
tia

l l
os

s

−2 0 2
0

0.5

1

1.5

u

T
ru

nc
at

ed
 lo

gi
st

ic
 lo

ss

Figure 1: Plots of weighted Fisher-consistent truncated loss functions with minimal truncation

for K = 3. The left, middle, and right panels correspond to the hinge, exponential, and logistic

loss functions.

3 Methodology

In this section, we derive our methodology for multiclass probability estimation based on hard

classifiers. In particular, we propose to train a series of weighted classifiers and use them to

construct the probability estimates. For demonstration, we focus on the hinge and truncated

hinge loss functions. However, our estimation schemes are applicable to general large-margin

classifiers.

3.1 Direct Scheme for Probability Recovery

Define the truncated hinge loss as

HTs(u) = min (H1(s),H1(u)) ,

where s = − 1
K−1 corresponds to the minimum truncation required by Theorem 1 to guarantee

HTs to be weighted Fisher-consistent. Denote f̂
π

as the solution of the π-weighted truncated-

hinge-loss SVM, obtained by solving the following optimization problem

min
f

n−1
n∑

i=1

πyiHTs(min g(f(xi), yi)) + λ

K∑

k=1

J(fk) (7)

subject to
K∑

k=1

fk(x) = 0,

10

where π = (π1, · · · , πK) ∈ AK . By Theorem 1, we have that argmaxk=1,··· ,K f̂π
k converges to

argmaxk=1,··· ,K πkpk as n →∞ and λ → 0.

The following proposition gives a key result for estimating the probabilities for each x ∈ S.

Proposition 2. For any given x ∈ S satisfying mink pk(x) > 0, there exists a unique weight

vector π̃(x) = (π1(x), π2(x), · · · , πK(x)) ∈ AK such that

π̃1(x)p1(x) = π̃2(x)p2(x) = · · · = π̃K(x)pK(x).

Proposition 2 shows that for any x ∈ S with mink pk(x) > 0, there is a unique weight vector

so that the corresponding weighted probabilities π̃j(x)pj(x) are identical for all j. We call the

point π̃(x) ∈ AK as the border weight for x, since the K weighted probabilities meet at this

point.

Interestingly, the result in Proposition 2 can help us to estimate the conditional probabilities

pk(x). In particular, for a given point x, using the property of weighted Fisher-consistency, the

corresponding Bayes rule is argmaxk=1,··· ,Kπkpk for any π ∈ AK . Then one can vary the weight

vector π ∈ AK to search for the border weight. To illustrate this further, we consider a simple case

of K = 3. In Figure 2, we plot the classification results of a particular point x for K = 3 when we

change the weight vector. In this case, A3 is an equilateral triangle with the three vertices being

(1, 0, 0), (0, 1, 0), and (0, 0, 1). Theoretically, for any x, the weighted Bayes rule argmaxk πkpk(x)

assigns x to class k when πk is close to one, and consequently the whole region A3 can be divided

into three subregions R1, R2, and R3 with Rk = {π ∈ A3 : k = argmaxj πjpj(x)} for k = 1, 2, 3.

Since the vertex (1, 0, 0) represents imposing the weight one to points from class 1 and the weight

zero to points from the other classes, the region R1 around (1, 0, 0) corresponds to the set of π

with prediction argmaxk πkpk(x) = 1. The argument is similar for the other two vertices. Note

that there is a special point in the center that borders all the three subregions. This is the border

weight satisfying π̃1(x)p1(x) = π̃2(x)p2(x) = π̃3(x)p3(x).

11

Figure 2: A plot of the weighted Bayes classification rule for all combinations of π for a certain

point x when K = 3.

In order to estimate pj(x) it is enough to estimate π̃(x) because, once the estimate of π̃(x)

is given, we can estimate pk(x) by the following proposition.

Proposition 3. For any given x ∈ S, we assume that its associated border weight is estimated

as ̂̃π(x). Then its class probabilities can be estimated as

p̂k(x) =
ˆ̃πk(x)−1

ˆ̃π1(x)−1 + ˆ̃π2(x)−1 + · · ·+ ˆ̃πK(x)−1
, k = 1, · · · ,K.

Propositions 2 and 3 suggest that identifying the border weight for each x is a key step to

estimate the conditional probabilities pk(x) for k = 1, · · · ,K. To that end, a general scheme is

needed to search for π̃ ∈ AK for each x. Without loss of generality, we assume for the moment

that the tuning parameter λ for (7) is properly chosen. In the following, we outline the probability

estimation scheme for general cases.

Direct Scheme:

1. Define a fine grid of π within AK . Let the grid size be dπ. Any grid point π takes

the form (m1dπ,m2dπ, · · · ,mKdπ) with non-negative integers m1,m2, · · · , mK satisfying
∑K

k=1 mkdπ = 1.

2. Solve (7) over the above grid using the properly chosen tuning parameter λ.

3. Form all possible K-vertex polyhedrons of (side) length dπ using the available grid points.

Here each K-vertex polyhedron corresponds to K adjacent grid points.

12

4. For any x ∈ S, identify the K-vertex polyhedron such that its K vertices all belong to K

distinct classes. The average of the coordinates corresponding to these vertices is defined

as the estimate of the border weight π̃(x) for x. The probability estimate can then be

calculated using Proposition 3.

In the following, we demonstrate how the direct scheme works in the case of K = 3. To search

for the border weight in Figure 2, we define a fine grid of π within the triangle as in Figure 3.

Let the grid size be dπ with 1/dπ being an integer. To estimate probabilities at any point x, we

need to identify some π such that its three neighboring combinations are of the form

{π1(x) = (π1, π2, π3),π2(x) = (π1 − dπ, π2 + dπ, π3),π3(x) = (π1 − dπ, π2, π3 + dπ)} (8)

which classify Y into three distinct classes as shown on the left panel of Figure 3.

3.1.1 Numerical Challenges in Implementing Direct Scheme

Now we provide some discussions on the numerical coherence of multiple decisions resulted from

training multiple weighted classification problems. Let us start with two-class problems. Assume

that π and 1 − π are the costs for the negative and positive classes, then it is known that the

minimizer f̂π(x) of Equation (2) gives a consistent estimator of sign[P (Y = +1|X = x) − π].

When an increasing sequence of weights 0 = π1 < π2 < · · · < πm+1 = 1 are used, we expect the

decision sequence sign[f̂πj (x)] to be monotonically changed for a fixed x due to their consistency

properties. Though this is true in theory (or when n goes to infinity), the monotonic property

of sign[f̂π] may not always hold in finite sampling situations, mainly due to numerical variations.

In this case, the probability p(x) can be estimated by taking the average of π∗ = min{πj :

sign[f̂πj (x)] = −1} and π∗ = max{πj : sign[f̂πj (x)] = 1} (Wang et al., 2008).

For multiclass problems, the similar issue can occur even more frequently due to the increased

complexity of the optimization problem. Take the three-class problem as an example. Each

non-negative weight vector is π = (π1, π2, π3) satisfying
∑3

k=1 πk = 1. It is known that the min-

imization of Equation (5) satisfy that arg maxk f̂k(x) = argmaxk πkpk(x) asymptotically. This

suggests that the weight vectors change (partially) monotonically, the decision rule arg maxk f̂k(x)

should satisfy some constraints. For example, for a given x, if π = (π1, π2, π3) satisfies π1p1(x) >

13

max(π2p2(x), π3p3(x)), then we have arg maxk f̂k(x) = 1 asymptotically. Now if the weight is

changed to π′ = (π′1, π
′
2, π

′
3) = (π1+d, π2−d, π3), the inequality π′1p1(x) > max(π′2p2(x), π′3p3(x))

still holds, implying that arg maxk f̂ ′k(x) = 1 asymptotically as well. Though this is true in the-

ory, the relationship arg maxk f̂k(x) = arg maxk f̂ ′k(x) does not necessarily hold in finite-sample

results. Therefore, in practice, with a finite sample, those three neighboring combinations do not

always take the form (8). Other variations are possible. For example, it can also be of the form

{π1(x) = (π1, π2, π3),π2(x) = (π1 − dπ, π2, π3 + dπ),π3(x) = (π1, π2 − dπ, π3 + dπ)}

as shown on the right panel of Figure 3. This corresponds to the monotonicity violation in

the binary case as discussed in the first paragraph of Section 2.2 of Wang et al. (2008). Our

selection criterion is to select three neighboring combinations corresponding to three distinct

classes. The average (π1(x)+π2(x)+π3(x))/3 of these three neighboring combinations, denoted

by π̂(x) = (π̂1(x), π̂2(x), π̂3(x)), serves as our estimate of the border weight. Using the estimated

border weight π̂(x), our estimate is given by

p̂k(x) =
π̂k(x)−1

π̂1(x)−1 + π̂2(x)−1 + π̂3(x)−1
.

For the finite-sample case, it is possible to have more than one possibility of three neighboring

combinations corresponding to three distinct classes. Each possibility leads to one estimated

border weight. When this happens, averaging all the estimated border weights is necessary to

proceed our probability estimation. The non-uniqueness of border weights encountered in practice

adds some challenges in the implementation of the direct scheme. As the number of classes gets

larger, this may become more severe. Furthermore, the border weights are identified through

counting multiple decisions. The process is discrete and tends to be slow and unstable. These

challenges motivate us to develop another scheme which is more continuous and of high stability.

14

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

π1(x)

π2(x)
π3(x)

π

π

π

π

π

π

π

π

π

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

π1(x)
π2(x)

π3(x)
π

π

π

π
π

π

π
π

π

Figure 3: Left: Classification rule over a grid of π for a point x for K = 3, where the circle

◦ denotes being classified as class 1, the square ¤ denotes being classified as class 2, and the

asterisk∗ denotes being classified as class 3. Right: Another possible configuration of neighboring

three-class classifiers.

3.2 Indirect Scheme for Probability Estimation

In this section, we provide an alternative scheme to recover probabilities. Instead of directly tar-

geting on the probabilities as the direct scheme does, the new scheme estimates some continuous

functions of probabilities, which can be easier to estimate, and then inverts those functions to

recover probabilities.

Note that the total volume (or area when K = 3) of AK is given by
∫ 1

0
dπ1

∫ 1−π1

0
dπ2 · · ·

∫ 1−π1−···−πK−2

0
dπK−1

√
K =

√
K

(K − 1)!
.

(0, 0, 1)

(0, 1, 0)(1, 0, 0)

r
3

21
r
3

12

r
2

13

r
2

31
r
1

32

r
1

23

Figure 4: Demonstration of the partition of A3.

15

The collection of π representing class k is given by Rk = {π : πkpk ≥ πjpj for j 6= k}, which can

be represented as

Rk = ∪ rk
j1j2···jK−1

,

where rk
j1j2···jK−1

= {π : πj1pj1 ≤ πj2pj2 ≤ · · · ≤ πjK−1pjK−1 ≤ πkpk} and the union is over all

permutations (j1, j2, · · · , jK−1) of {1, 2, · · · ,K}\k. When K = 3, Figure 4 demonstrates how A3

is partitioned into different parts using the notation rk
j1j2···jK−1

corresponding to Figure 2. For

permutation (j1, j2, · · · , jK−1), the volume (or area) of rk
j1j2···jK−1

is given by

√
K

∫ Bj1

0
dπj1

∫ Bj2

pj1
πj1

/pj2

dπj2 · · ·
∫ BjK−1

pjK−2
πjK−2

/pjK−1

dπjK−1 ,

where Bji = (1−∑k−1
m=1 πjm)(1/pji)/((1/pk) +

∑K−1
m=i (1/pjm)); i = 1, . . . , K − 1 with the conven-

tion
∑0

m=1 πjm = 0. We can then sum over the area (volume) according to all permutations

(j1, j2, · · · , jK−1) of {1, 2, · · · ,K} \ k to give a formula for the volume (or area) of Rk.

Naturally the proportion of grid points of π leading to prediction of k, denoted by propk,

estimates the volume (or area) ratio of Volume(Rk)

Volume(AK)
, which is a function of p1, p2, · · · , pK and

denoted by hk(p1, p2, · · · , pK). Then by solving the equation system of K equations:

propk = hk(p1, p2, · · · , pK); k = 1, 2, · · · ,K, (9)

we can obtain the estimated probabilities. In particular when K = 3, area of A3 is
√

3/2 and area

of R3 is
√

3
2

p2
3(p2p3+p1p3+2p1p2)

(p1+p3)(p2+p3)(p1p2+p1p3+p2p3) . Consequently h3(p1, p2, p3) = p2
3(p2p3+p1p3+2p1p2)

(p1+p3)(p2+p3)(p1p2+p1p3+p2p3) .

The indirect scheme can be summarized as follows:

Indirect Scheme:

1-2. Same as those of the Direct Scheme.

3. For any x ∈ S, calculate the grid percentage propk for k = 1, 2, · · · ,K.

4. Solve the equation system (9) to recover the estimation of (p1(x), p2(x), · · · , pK(x)).

In Section 5, we will illustrate the performance of both schemes. Our empirical results suggest

that the indirect scheme is indeed faster and more accurate.

16

3.3 Theoretical Properties

The next theorem establishes the consistency of our class probability estimation.

Theorem 2. For any non-increasing loss function `(·) with `′(0) < 0, if the truncation location

s is chosen such that sup{u:u≥−s≥0}
`(0)−`(u)
`(s)−`(0) ≥ K − 1. When λ → 0 and the grid size dπ → 0

as n → ∞, our estimate p̂k(x) based on the truncated loss `Ts is asymptotically consistent, i.e.,

p̂k(x) → pk(x) for k = 1, 2, · · · ,K as n →∞.

The consistency result in Theorem 2 provides theoretical justification of our proposed method.

It can be straightforward to extend the consistency to our indirect probability recovery scheme

as Theorem 1 implies that propk is consistent for estimating hk(p1, p2, · · · , pK) and inversion will

inherit the consistency. Although our probability estimation method is model-free, it converges

to the true probability asymptotically. As shown in our simulation studies in Section 5, our

method indeed provides competitive probability estimation compared to several other existing

techniques.

4 Computation Algorithms

As shown on the right panel of Figure 5, the function HTs(·) is not convex, thus solving (7)

involves a non-convex minimization problem. However, we note that HTs(u) can be decomposed

as the difference of two convex functions,

HTs(u) = min (H1(u),H1(s)) = H1(u)−Hs(u),

where Hs(u) = (s− u)+. Figure 5 displays the three functions H1(u), Hs(u), and HTs(u).

17

−3 0 1 3
0

1

2

3

4

u

H
1

−3 s 0 3
0

1

2

3

4

u

H
s

−3 s 0 1 3
0

1

2

3

4

u

H
T

s

Figure 5: The left, middle, and right panels display functions H1(u), Hs(u), and HTs(u), respec-

tively.

Using this property of the truncated hinge loss function, we apply the difference convex (d.c.)

algorithm (An and Tao, 1997; Liu et al., 2005; Wu and Liu, 2007) to solve the nonconvex op-

timization problem of the weighted truncated-hinge-loss SVM. The d.c. algorithm solves the

nonconvex minimization problem via minimizing a sequence of convex subproblems (see Algo-

rithm 1). We derive the d.c. algorithm for linear learning in Section 4.1 and then generalize it

to the case of nonlinear learning via kernel mapping in Section 4.2.

Algorithm 1: The Difference Convex Algorithm for minimizing Q(Θ) = Qvex(Θ) + Qcav(Θ)

1. Initialize Θ0.

2. Repeat Θt+1 = argminΘ(Qvex(Θ) +
〈
Q′

cav(Θt),Θ−Θt

〉
) until convergence of Θt.

4.1 Linear Learning

Let fk(x) = wT
k x + bk; wk ∈ <d, bk ∈ <, and b = (b1, b2, · · · , bK)T ∈ <K , where wk =

(w1k, w2k, · · · , wdk)T , and W = (w1,w2, · · · ,wK). With ` = HTs , (7) becomes

min
W ,b

1
2

K∑

k=1

‖wk‖2
2 + C

n∑

i=1

πyiHTs(min g(f(xi), yi)) (10)

subject to
K∑

k=1

wjk = 0; j = 1, 2, · · · , d;
K∑

k=1

bk = 0,

18

where the constraints are adopted to avoid non-identifiability issue of the solution. Note that

(10) is equivalent to the other representation (4) by setting C = 1/λ. Thus we will use them

interchangeably.

Denote Θ as (W , b). Applying the fact that HTs = H1 −Hs, the objective function in (10)

can be decomposed as

Qs(Θ) =
1
2

K∑

k=1

‖wk‖2
2 + C

n∑

i=1

πyiH1(min g(f(xi), yi))− C

n∑

i=1

πyiHs(min g(f(xi), yi))

= Qs
vex(Θ) + Qs

cav(Θ),

where

Qs
vex(Θ) =

1
2

K∑

k=1

‖wk‖2
2 + C

n∑

i=1

πyiH1(min g(f(xi), yi))

and

Qs
cav(Θ) = −C

n∑

i=1

πyiHs(min g(f(xi), yi))

denote the convex and concave parts, respectively.

Define

βik =





Cπyi if k = argmax(f t
k′ : k′ 6= yi), f t

yi
− f t

k < s

0 otherwise
,

where f t = (f t
1(·), f t

2, · · · , f t
K)T denotes the solution at the t-th iteration. It is shown in the

appendix that the dual problem of the convex optimization at the (t + 1)-th iteration, given the

solution f t at the t-th iteration, is as follows

minα
1
2

K∑

k=1

‖
∑

i: yi=k

∑

k′ 6=yi

(αik′ − βik′)xT
i −

∑

i: yi 6=k

(αik − βik)xT
i ‖2

2 −
n∑

i=1

∑

k′ 6=yi

αik′

subject to
∑

i: yi=k

∑

k′ 6=yi

(αik′ − βik′)−
∑

i: yi 6=k

(αik − βik) = 0, k = 1, 2, · · · ,K

0 ≤
∑

j 6=yi

αij ≤ Cπyi , i = 1, 2, · · · , n

αik ≥ 0, i = 1, 2, · · · , n; k 6= yi.

This dual problem is a quadratic programming (QP) problem similar to that of the standard SVM

and can be solved by many optimization software. Once the solution is obtained, the coefficients

19

wk’s can be recovered as follows,

wk =
∑

i: yi=k

∑

k′ 6=yi

(αik′ − βik′)xi −
∑

i: yi 6=k

(αik − βik)xi. (11)

It is interesting to note that representation of wk’s given in (11) automatically satisfies that
∑K

k=1 wjk = 0 for each 1 ≤ j ≤ d. Moreover, we can see that coefficients wk’s are determined

only by those data points whose corresponding αik − βik is not zero for some 1 ≤ k ≤ K and

these data points are the SVs of the weighted truncated-hinge-loss SVM. The set of SVs of the

weighted truncated-hinge-loss SVM using the d.c. algorithm is only a subset of the set of SVs

of the original weighted SVM. Basically the weighted truncated-hinge-loss SVM tries to remove

points satisfying f t
yi
− f t

k < s with k = argmax(f t
k′ : k′ 6= yi) from the original set of SVs and

consequently eliminate the effects of outliers. This provides an intuitive algorithmic explanation

of the robustness of the weighted truncated-hinge-loss SVM to outliers. Similar conclusion was

provided by Wu and Liu (2007) for the unweighted version.

After the solution of W is derived, b can be obtained via solving either a sequence of KKT

conditions as used in the standard SVM or a linear programming (LP) problem. Denote f̃k(xi) =

xT
i wk. Then b can be obtained through the following LP problem:

min
η,b

C
n∑

i=1

πyiηi +
K∑

k=1

(
∑

i: yi=k

∑

k′ 6=yi

βik′ −
∑

i: yi=k

βik)bk

subject to ηi ≥ 0, i = 1, 2, · · · , n

ηi ≥ 1− (f̃yi(xi) + byi) + f̃k(xi) + bk, i = 1, 2, · · · , n; k 6= yi

K∑

k=1

bk = 0.

4.2 Nonlinear Learning

For nonlinear learning, each decision function fk(x) is represented by hk(x)+bk with hk(x) ∈ HR,

where HR is a reproducing kernel Hilbert space (RKHS). Here the kernel R(·, ·) is a positive defi-

nite function mapping from S×S to <. Due to the representer theorem of Kimeldorf and Wahba

(1971) (also see Wahba, 1999), the nonlinear problem can be reduced to finding finite dimensional

coefficients vik’s and hk(x) can be represented as
∑n

i=1 R(x,xi)vik; k = 1, 2, · · · ,K.

20

Denote vk = (v1k, v2k, · · · , vnk)T , V = (v1,v2, · · · ,vK), and R to be an n× n matrix whose

(i1, i2) entry is R(xi1 ,xi2). Let Ri be the i-th column of R, and denote the standard basis of the

n-dimensional space by ei = (0, 0, · · · , 1, · · · , 0)T with 1 for its i-th component and 0 for other

components.

A similar derivation as in the linear case leads to the following dual problem for nonlinear

learning

minα
1
2

K∑

k=1

〈 ∑

i: yi=k

∑

k′ 6=yi

(αik′ − βik′)Ri −
∑

i: yi 6=k

(αik − βik)Ri,

∑

i: yi=j

∑

k′ 6=yi

(αik′ − βik′)ei −
∑

i: yi 6=k

(αik − βik)ei

〉
−

n∑

i=1

∑

k′ 6=yi

αik′

subject to
∑

i: yi=k

∑

k′ 6=yi

(αik′ − βik′)−
∑

i: yi 6=k

(αik − βik) = 0, k = 1, 2, · · · ,K

0 ≤
∑

k 6=yi

αik ≤ Cπyi , i = 1, 2, · · · , n

αij ≥ 0, i = 1, 2, · · · , n; k 6= yi,

where βik’s are defined similarly as in the linear case. After solving the above QP problem, we

can recover the coefficients vk’s as follows

vk =
∑

i: yi=k

∑

k′ 6=yi

(αik′ − βik′)ei −
∑

i: yi 6=k

(αik − βik)ei.

The intercepts bk’s can be solved using LP as in the linear learning.

4.3 Parameter Tuning

So far we assume that we have selected the optimal tuning parameter λ. In practice, the tuning

parameter selection can be done using an independent validation set or cross validation. In

this paper, we choose to select the parameter using an independent set of size ñ. Theoretically

speaking, the larger ñ is, the better tuning effect and the better classifier we may obtain. This

is related to Shao (1993)’s results on cross validation in the context of linear model selection:

the proportion of tuning set size over the size of all available data points, namely ñ/(n + ñ),

should go to 1 as (n + ñ) →∞ to ensure the asymptotically correct selection. However, how to

split the data set into the training part and the tuning part is always a trade-off between model

21

training and parameter tuning, since a large training set is also desired for better model fitting.

A commonly accepted procedure is to use one half for training and the other half for tuning, i.e.

n = ñ.

Now we detail the approach using an independent tuning set of size ñ. We first obtain prob-

ability estimates p̂
(λm)
j (x̃i), j = 1, 2, · · · , k for any x̃i in the tuning set {(x̃i, ỹi) : i = 1, 2, · · · , ñ}

over a grid {λ1, λ2, · · · , λM} of the tuning parameter. Then we can evaluate the log-likelihood

L(λm) =
∑ñ

i=1 log(p̂(λm)
yi (x̃i)) of the tuning set for each λm. Let m̂ = argmaxm L(λm). The

optimal tuning parameter is selected to be λm̂.

5 Simulations

In this section we use four simulation examples to illustrate the methodological power of our new

multiclass probability estimation scheme by comparing it to some existing methods. We consider

five alternative methods: cumulative logit model (CLM), baseline logit model (BLM), kernel

multi-category logistic regression (KMLR), classification tree (TREE), and random forest (RF).

Both CLM and BLM make certain assumptions on the forms of the transformed probabilities.

In particular, the CLM assumes that log
∑k

i=1 pi(x)

1−∑k
i=1 pi(x)

= βk0 + xT βk for k = 1, 2, · · · ,K − 1

while the BLM assumes that log pk(x)
pK(x) = βk0 + xT βk for k = 1, 2, · · · ,K − 1. KMLR refers

to the one proposed by Zhu and Hastie (2005) with Gaussian kernel R(x1,x2) = e−‖x1−x2‖22/σ2
.

Ten separate data sets are generated to tune the data width parameter σ among a grid of

{1/4, 1/2, 3/4, 1, 5/4, 3/2}σm, where σm is the median pairwise Euclidean distance defined as

median{‖ xi − xj ‖: yi 6= yj}. Among these methods, CLM and BLM are essentially parametric

models while our methods, KMLR, Tree, and random forest are nonparametric. Denote the size

of the training set by n. Five-fold cross validation is used to select the tuning parameter. For

the TREE based method, we use the R package “Tree” and its build-in cross validation function

is used to prune trees with fold number set as 10. Similarly we use the build-in tuning for RF

provided in the R package.

In simulations, the true conditional probability functions pk(·), k = 1, 2, · · · ,K are known. In

order to measure the estimation accuracy of the conditional probabilities, we use various scores

22

evaluated on the testing set (of size 10n):

• 1-norm error 1
10n

∑10n
i=1

∑K
k=1 |p̂k(x̄i)− pk(x̄i)|,

• 2-norm error 1
10n

∑10n
i=1

∑K
k=1(p̂k(x̄i)− pk(x̄i))2,

• Empirical generalized Kullback-Leibler (EGKL) loss 1
10n

∑10n
i=1

∑K
k=1 pk(x̄i) log pk(x̄i)

p̂k(x̄i)
.

Here x̄i denote the predictor vector of the ith observation in the testing set. The average errors

over 100 replications and the corresponding standard deviations (in parentheses) are reported.

Whenever appropriate, our method is employed with minimal truncation with s = −1/(K − 1).

We implement our method using linear learning for Examples 1, 3, and 4 while using the Gaussian

kernel R(x1,x2) = e−‖x1−x2‖22/σ2
for Example 2. The grid size dπ is chosen to be 0.02 for our

three-class examples and 0.05 for the five-class example. In addition to tuning parameter λ and

truncation location s, different grid size gives different performance. See Table 5 for the effect of

different grid sizes in the discussion following these numerical examples.

5.1 Numerical Examples

Example 1: We consider a three-class linear learning example. Our data is generated in

two steps: 1) Y is uniformly distributed over {1, 2, 3}; 2) Conditional on Y = y, the two-

dimension predictor X is generated from N(µ(y),Σ), where µ(y) = (cos(2yπ/3), sin(2yπ/3))T

and Σ = 0.72I2 with I2 being the 2 × 2 identity matrix. The sample size n is 400. Table 1

reports the average test errors and the corresponding standard deviations (in parentheses) over

100 replications for various methods. Note that in this example, the BLM specifies the correct

parametric model and hence fits the true (oracle) model, while the CLM corresponds to a model

misspecification. A tuning of σ in Gaussian kernel for the KMLR selects σm as the best. As

shown in Table 1, the oracle BLM performs the best while the CLM performs the worst. Except

the oracle BLM, our method with either the direct probability recovery scheme or the indirect

probability recovery scheme consistently outperforms all the other methods with significant im-

provement. Between these two different probability recovery schemes, the indirect scheme works

much better. Hence in our later examples, we will only report results of our new method with

23

Table 1: Probability estimation errors on the test set for Example 1

Our Method
CLM KMLR TREE RF BLM

Direct Indirect (Oracle)

1-norm 18.46 (3.83) 11.03 (2.29) 57.35 (1.06) 52.92 (2.80) 27.48 (3.34) 24.02 (1.40) 6.19 (1.95)

2-norm 3.34 (1.74) 0.90 (0.34) 20.53 (0.19) 11.68 (1.20) 5.99 (1.21) 5.01 (0.64) 0.36 (0.23)

EGKL 6.73 (2.21) 2.56 (0.79) 31.28 (0.33) 23.72 (1.77) Inf (NaN) Inf (NaN) 0.78 (0.48)
Note: all table entries are multiplied by 100. Numbers in parentheses are the corresponding

standard deviations. See the description at the end of Example 1 for the meaning and reasons

for Inf (NaN). The same explanation applies to results of other examples.

the indirect scheme. Here the TREE based methods (TREE or RF) lead to infinity (denoted by

Inf in Table 1) for EGKL because it returns zero probability for some point x and some classes.

The corresponding standard deviation does not make sense and we denote by NaN, which stands

for Not A Number. This is one property of TREE-type methods.

Example 2: In this example, we study a three-class nonlinear example. For any x =

(x1, x2)T , define f1(x) = −x1 + 0.1x2
1 − 0.05x2

2 + 0.1, f2(x) = −0.2x2
1 + 0.1x2

2 − 0.2, and f3(x) =

x1 + 0.1x2
1 − 0.05x2

2 + 0.1. Set pk(x) = P (Y = k|X = x) = exp(fk(x))/(
∑3

m=1 exp(fm(x)))

for k = 1, 2, 3. Each pair of data point (x, y) is generated in two steps: we first generate

x1 ∼ Uniform[−3, 3] and x2 ∼ Uniform[−6, 6]; conditional on X = x, the class response Y takes

value k with probability pk(x) for k = 1, 2, 3. The sample size is chosen to be n = 100. A similar

example was previously used by Zhang et al. (2008).

In this example, we consider basis expansion for the parametric methods CLM and BLM by

also including the quadratic terms x2
1 and x2

2. Consequently the BLM is again the oracle model.

Results over 100 repetitions in the same format of Example 1 are reported in Table 2. Column

Indirect corresponds to our method with the indirect probability recovery scheme. The tuning

of σ in Gaussian kernel selects 5σm/4 and σm/2 as the best for KMLR and our new method,

respectively. Similar to Example 1, we again observe that the new method gives the smaller

errors than all the other methods except RF for the 1-norm error and the oracle.

Example 3: In Examples 1 and 2, the BLM takes the true model form, so it is not surpris-

24

Table 2: Probability estimation errors on the test set for Example 2

Indirect CLM KMLR TREE RF
BLM

(Oracle)

1-norm 36.37 (4.35) 45.42 (2.38) 46.41 (9.82) 60.08 (10.57) 34.10 (3.68) 19.38 (5.21)

2-norm 7.85 (2.06) 13.46 (1.07) 10.08 (3.78) 22.23 (4.75) 8.84 (1.90) 3.19 (1.90)

EGKL 13.60 (2.91) 19.91 (2.04) 18.88 (6.00) Inf (NaN) Inf (NaN) 9.11 (9.23)
Note: all table entries are multiplied by 100.

Table 3: Probability estimation errors on the test set for Example 3

Indirect CLM KMLR TREE RF BLM

1-norm 21.78 (2.20) 67.88 (0.82) 59.31 (1.94) 24.44 (3.29) 24.47 (1.20) 31.02 (1.07)

2-norm 4.47 (1.04) 25.80 (0.29) 14.42 (0.88) 7.69 (1.35) 5.55 (0.54) 6.85 (0.27)

EGKL 11.79 (2.58) 38.51 (0.28) 28.48 (1.32) Inf (NaN) Inf (NaN) 12.72 (0.40)
Note: all table entries are multiplied by 100.

ing that the BLM shows better performance than our method. In this example, we design an

experiment so that none of the parametric methods corresponds to the oracle. This will provide

a fair comparison between them.

The two-dimension predictor X is uniformly distributed over the disc {x : x2
1 + x2

2 ≤ 100}.
Define functions h1(x) = −5x1

√
3 + 5x2, h2(x) = −5x1

√
3 − 5x2, and h3(x) = 0. Apply a

transformation fk(x) = Φ−1(T2(hk(x))), where Φ(·) and T2(·) are the cumulative distribution

functions of the standard normal distribution and t distribution with degrees of freedom 2, re-

spectively. We set probabilities pk(x) = P (Y = k|X = x) = exp(fk(x))/(
∑3

j=1 exp(fj(x))) for

k = 1, 2, 3 as in Example 2. Because of the nonlinear transformation Φ−1(T2(·)), BLM is no

longer the oracle model. Our multiclass probability with linear kernel is not the oracle model

either. The training set size is n = 600. The tuning of KMLR selects σ = σm/4 as the data

width parameter. Table 3 shows clearly that our method is consistently better than the BLM

and performs best among all the approaches under comparison.

25

Table 4: Probability estimation errors on the test set for Example 4

Indirect CLM KMLR TREE RF
BLM

(Oracle)

1-norm 22.61 (2.52) 81.71 (0.29) 57.91 (2.14) 38.05 (1.90) 42.54 (1.10) 7.33 (1.72)

2-norm 2.64 (0.64) 24.00 (0.25) 9.77 (0.74) 6.78 (0.70) 8.93 (0.50) 0.28 (0.13)

EGKL 7.36 (0.97) 49.05 (0.23) 27.02 (1.49) Inf (NaN) Inf (NaN) 0.63 (0.27)
Note: all table entries are multiplied by 100.

−2 0 2

−2

0

2

x
1

x 2

Example 1

−2 0 2

−5

0

5

x
1

x 2

Example 2

−10 0 10
−10

−5

0

5

10

x
1

x 2

Example 3

−2 0 2

−2

0

2

x
1

x 2

Example 4

Figure 6: Plots of a randomly selected training set from each simulation example. The solid lines

indicate Bayes boundaries for unweighted classification.

Example 4: In this five-class example, the data is generated similarly as in Example 1.

Response Y is uniformly distributed over {1, 2, 3, 4, 5}. Conditional on Y = y, the two-dimension

predictor X is generated from N(µ(y),Σ), where µ(y) = (cos(2yπ/5), sin(2yπ/5))T and Σ =

0.72I2. The sample size n is 1000. The tuning of KMLR selects 5σm/4 as the best. Simulation

results are reported in Table 4. Similar improvement is observed for our new method.

Among the six procedures considered above, BLM and CLM are parametric methods, while

26

our method, KMLR, TREE and RF are nonparametric procedures which do not make explicit

assumptions on the form of the true probability functions. Our simulated results suggest that

if the parametric assumption is correct, then the associated parametric estimator is essentially

the oracle and performs best among all. This explains why BLM gives the smallest errors in

Examples 1, 2, and 4. However, if the parametric assumption is incorrect, then the paramet-

ric estimators can perform poorly, as shown for the BLM in Example 3 and the CLM in all

the settings. By contrast, model-free methods do not rely on the model assumption and show

more robust performance. For complicated problems, some of the nonparametric methods can

outperform the parametric ones. As shown in Example 3, our method and RF are the top two

performers. Furthermore, it is noticed that our method performs competitively among the three

nonparametric procedures.

In practice, sometimes it is difficult to determine or validate the parametric assumption on

the function forms, especially when data is complicated or high dimensional, then a good non-

parametric procedure will provide a useful alternative tool for estimating multiclass probabilities.

5.2 Empirical Computation Cost

The total computation cost of the proposed procedure is mainly determined by three factors:

the computation cost of solving one weighted optimization problem, the number of optimization

problems corresponding to different weight vectors, and the scheme for recovering probabilities

from multiple decision rules. As shown in the paper, each optimization problem involves a

non-convex minimization problem, and the proposed DCA-based algorithm seems quite efficient.

For example, it takes 0.4827, 5.4086, 0.5118, 2.3549 seconds on average to solve an individual

optimization problem for Examples 1, 2, 3, and 4 respectively. Since Example 2 deals with more

complicated nonlinear classification problems, it takes a little longer.

The second factor is controlled by the size of dπ. In a three-class problem, if dπ = 0.02, we

need to solve 1,176 optimization problems; and if dπ = 0.1, we only need to solve 24 problems.

The effects of dπ is important: the smaller dπ is, the better estimation result will be. On the

other hand, this accuracy gain is obtained at the cost of computational time. To illustrate the

effects of dπ on the procedure, we now present the performance of our procedure in Example 1

27

Table 5: Probability estimation errors on the test set for Example 1 with different dπ

dπ = 0.1 dπ = 0.04 dπ = 0.02 dπ = 0.01

1-norm 17.26 (2.55) 12.49 (2.50) 11.03 (2.29) 11.76 (2.18)

2-norm 2.37 (0.81) 1.31 (0.56) 0.90 (0.34) 0.93 (0.33)

EGKL 12.50 (2.67) 4.81 (1.63) 2.56 (0.79) 2.43 (0.64)

with different values of dπ = 0.1, 0.04, 0.02.0.01 used.

From Table 5, it is clear that smaller dπ values in general lead to better accuracy in probability

estimation. However, this accuracy gain levels off as dπ becomes very small. For example, the

accuracy improvement from dπ = 0.1 to dπ = 0.04 is substantial, but the difference among

dπ = 0.04, 0.02, 0.01 is quite small. It is worth to point out that the computational time grows

fast as dπ gets smaller. For example, the computation time for dπ = 0.01 is about twenty-five

folds of that for dπ = 0.04 and about four folds of that for dπ = 0.02. So there is a trade-off

between computational cost and estimation accuracy when choosing dπ. In our simulations, we

find dπ = 0.02 works pretty well in various three-class problem settings.

To recover the probabilities, we propose two schemes in the paper. The numerical results

suggest that the indirect scheme is faster and produces better estimation accuracy. In practice,

we recommend to use the indirect scheme.

To conclude our simulation studies, we plot in Figure 6 a randomly chosen training set from

each example to show how our training data look like. Note that the sample size is 1000 for

Example 4. However to make Figure 6 look nicer, we only use a random sample of size 200 while

plotting the right bottom panel for Example 4.

6 Real data

In this section, we apply our new multiclass probability estimation scheme to the wine data

by comparing it to those four alternative methods considered in the previous section. The

wine data is available online at the UCI Machine Learning Repository by following the URL

http://archive.ics.uci.edu/ml/datasets/Wine. In addition to the categorical response vari-

28

Table 6: Results of Wine Example

Direct Indirect CLM KMLR TREE RF BLM

Test log-likelihood −9.5487 −6.4817 −Inf −26.7858 −Inf −11.2876 −12.7390

Test error 2/58 1/58 8/58 0/58 5/58 0/58 3/58

able Wine Type, it has 13 attributes available. They are Alcohol, Malic acid, Ash, Alcalinity

of ash, Magnesium, Total phenols, Flavanoids, Nonflavanoid phenols, Proanthocyanins, Color

intensity, Hue, OD280/OD315 of diluted wines, and Proline. All these 13 attributes are contin-

uous. Before applying any probability estimation scheme, we standardize each attribute to have

mean zero and standard deviation one. Wine Type belongs to one of three classes with class

distribution of 59 in class 1, 71 in class 2, and 48 in class 3. The total number of observations

is n = 178. We randomly select 19 observations from class 1, 23 from class 2, and 16 from class

3 to be set aside as the testing set. The remaining 120 observations are used as the training

data set. We randomly divide those 120 observations in the training set into 8 folds with each

fold containing 5 observations in class 1, 6 in class 2, and 4 in class 3 so that an eight-fold cross

validation is used to select any tuning parameter over a grid if necessary. The tuning selects σm

as the best data width parameter for KMLR. For simplicity, our method is implemented with

the linear kernel.

For any estimate p̂j(·), we define its log-likelihood over the testing set as
∑58

i=1 log p̂yi(xi),

where (xi, yi), i = 1, 2, · · · , 58 denote observations of the testing set. The corresponding test

error is defined by
∑58

i=1 I(yi 6= argmaxj p̂j(xi)), where I(.) is the indicator function taking value

1 if its argument is true and 0 otherwise. We report both the log-likelihood of the testing set

and the test error in Table 6 for all five methods we include for comparison. Same reason as in

simulation examples applies to why both CLM and TREE lead to negative infinity. According

to Table 6, our new method with linear learning performs competitively in terms of either the

log-likelihood of the testing set or the test error.

29

7 Conclusion

In this work, we propose a model-free multiclass probability estimation approach. It is achieved

by solving a series of weighted hard classification problems and then combining these decision

rules to construct the probability estimates. Both theoretical and numerical results are provided

to demonstrate the competitive performance of our estimation procedure. Our numerical results

show favorable performance of our new probability estimation procedure in comparison to several

other existing approaches.

Our probability estimation procedure requires computation of weighted classifiers over a fine

grid of the K-vertex polyhedron. The computational cost can be high when the class number K

gets large. To further improve the computational efficiency, one possible solution is to investigate

an efficient solution path over the grid. Further investigation is needed.

Appendix

Proofs of Proposition 1 and Theorem 1. For any x and any π ∈ AK , define p̃k = πkpk(x)/(
∑K

m=1 πkpk(x)).

Then p̃k satisfies p̃k ≥ 0 and
∑K

k=1 p̃k = 1. Thus we can treat p̃k as new conditional class prob-

ability and, as a result, Fisher-consistency implies weighted Fisher-consistency in that p̃k covers

all possibilities as we vary x in the whole domain. Proofs of Proposition 1 and Theorem 1 will

be parallel to the proofs of Proposition 2 and Theorem 1 of Wu and Liu (2007). Thus we skip

them to save space.

Proof of Proposition 2. The unique vector π̃(x) is given by (π̃1(x), π̃2(x), · · · , π̃K(x)) with π̃k(x) =

1/pk(x)/(
∑K

m=1 1/pm(x)).

Proof of Proposition 3. The result is straightforward by Proposition 2.

Proof of Theorem 2. Note that, as n → ∞ and λ → ∞, the penalty consequently does not

contribute to the objective function. Thus asymptotically we are solving

min
f

1
n

n∑

i=1

πyi`Ts(min g(f(xi), yi)) subject to
K∑

k=1

fk(x) = 0

30

for each π.

Note first that, for any x with positive probability density within a small neighborhood

B(x, r) = {x̃ :‖ x̃−x ‖≤ r} of radius r > 0 (i.e., PX(x̃) > 0 for any x̃ ∈ B(x, r)), the average of

πyi`Ts(min g(f(xi), yi)) over xi ∈ B(x, r) converges to E(πY `Ts(min g(f(X), Y))|X = x) as n →
∞ and the radius r shrinks to zero. Thus, by Theorem 1, it is guaranteed that there exists a set

of neighboring π1(x) = (π1(x), π2(x), · · · , πK(x)), π2(x) = (π1(x)− dπ, π2(x)+ dπ, · · · , πK(x)),

· · · , πK(x) = (π1(x)−dπ, π2(x), · · · , πK(x)+dπ) such that the weighted truncated large-margin

classifiers with π1(x), π2(x), · · · , and πK(x) classify x to class 1, 2, · · · , and K, respectively,

for some π(x) = (π1(x), π2(x), · · · , πK(x)). Consequently our π̂(x) =
∑K

k=1 πk(x)/K is well

defined for any x.

For any π = (π1, π2, · · · , πK), ‖ π ‖1=
∑K

k=1 |πk| denotes its 1-norm. Next we prove consis-

tency by contradiction. If there exists an x such that π̂(x) does not converge to π̃(x) satisfying

π̃k(x)pk(x) = π̃k′(x)pk′(x) for 1 ≤ k 6= k′ ≤ K, then, as dπ → 0 and n → ∞, the classification

rules for π1(x),π2(x), · · · ,πK(x) do not union to the set {1, 2, · · · ,K} due to the consistency

established in Theorem 1 and the fact that maxK
k=1 ‖ πk(x)− π̂(x) ‖1= dπ/K → 0. This violates

our criterion on selecting π1(x), π2(x), · · · , πK(x). As a result π̂(x) → π̃(x) for any x, which

in turn implies that p̂k(x) → pk(x) for k = 1, 2, · · · ,K for any x.

Derivation of the Dual Problem in Section 4.1:

Note that ∂
∂wk

Qs
cav(Θ) and ∂

∂bk
Qs

cav(Θ) can be written respectively as follows

−C


 ∑

i: yi=k

πyi(−I{min g(f(xi),yi)<s})xT
i +

∑

i: yi 6=k

πyi(I{j=argmax(fk′ (xi): k′ 6=yi),fyi (xi)−fk(xi)<s})xT
i


 ,

−C


 ∑

i: yi=k

πyi(−I{min g(f(xi),yi)<s}) +
∑

i: yi 6=k

πyi(I{k=argmax(fk′ (xi): k′ 6=yi),fyi (xi)−fk(xi)<s})

 ,

where I{A} = 1 if event A is true, and 0 otherwise.

Using the definition of βij , we have

∂

∂wk
Qs

cav(Θ) =
∑

i: yi=k

(
∑

k′ 6=yi

βik′)xT
i −

∑

i: yi 6=k

βikx
T
i ,

31

and

∂

∂bk
Qs

cav(Θ) =
∑

i: yi=k

(
∑

k′ 6=yi

βik′)−
∑

i: yi 6=k

βik.

Applying the first order approximation to the concave part, the objective function at step

(t + 1) becomes

Qs(Θ) =
1
2

K∑

k=1

‖wk‖2
2 + C

n∑

i=1

πyiH1(min g(f(xi), yi))

+
K∑

k=1

〈
∂

∂wk
Qs

cav(Θt),wk

〉
+

K∑

k=1

bk
∂

∂bk
Qs

cav(Θt),

where Θt is the current solution.

Using slack variable ξi’s for the hinge loss function, the optimization problem at step (t + 1)

becomes

minW ,b,ξ
1
2

K∑

k=1

‖wk‖2
2 + C

n∑

i=1

πyiξi +
K∑

k=1

〈
∂

∂wk
Qs

cav(Θt),wk

〉
+

K∑

k=1

bk
∂

∂bk
Qs

cav(Θt)

subject to ξi ≥ 0 i = 1, 2, · · · , n

ξi ≥ 1− [
xT

i wyi + byi

]
+

[
xT

i wk + bk

]
, i = 1, 2, · · · , n; k 6= yi.

The corresponding Lagrangian is

L(W , b, ξ) =
1
2

K∑

k=1

‖wk‖2
2 + C

n∑

i=1

πyiξi −
n∑

i=1

uiξi

−
n∑

i=1

∑

k′ 6=yi

αik′(xT
i wyi + byi − xT

i wk′ − bk′ + ξi − 1)

+
K∑

k=1

〈
∂

∂wk
Qs

cav(Θt),wk

〉
+

K∑

k=1

bk
∂

∂bk
Qs

cav(Θt), (8)

subject to

∂

∂wk
L = wT

k −

 ∑

i: yi=k

∑

k′ 6=yi

(αik′ − βik′)xT
i −

∑

i: yi 6=k

(αik − βik)xT
i


 = 0 (9)

∂

∂bk
L = −


 ∑

i: yi=k

∑

k′ 6=yi

(αik′ − βik′)−
∑

i: yi 6=k

(αik − βik)


 = 0 (10)

32

∂

∂ξi
L = Cπyi − ui −

∑

k 6=yi

αik = 0, (11)

where the Lagrangian multipliers are ui ≥ 0 and αik′ ≥ 0 for any i = 1, 2, · · · , n, k′ 6= yi.

Substituting (9)-(11) into (8) yields the desired dual problem in Section 4.1.

References

Agresti, A. and Coull, B. (1998). Approximate is better than ’exact’ for interval estimation

of binomial proportions. The American Statistician, 52 119–126.

An, L. T. H. and Tao, P. D. (1997). Solving a class of linearly constrained indefinite quadratic

problems by d.c. algorithms. Journal of Global Optimization, 11 253–285.

Bartlett, P. L., Jordan, M. I. and Mcauliffe, J. D. (2006). Convexity, classification, and

risk bounds. Journal of the American Statistical Association, 101 138–156.

Cortes, C. and Vapnik, V. (1995). Support vector networks. Machine Learning, 20 273–297.

Kimeldorf, G. and Wahba, G. (1971). Some results on Tchebycheffian spline functions.

Journal of Mathematical Analysis and Applications, 33 82–95.

Lee, Y., Lin, Y. and Wahba, G. (2004). Multicategory support vector machines, theory, and

application to the classification of microarray data and satellite radiance data. Journal of the

American Statistical Association, 99 67–81.

Lin, Y. (2002). Support vector machines and the bayes rule. In Classification, Data Minning

and Knoweldge Discovery. 259–275.

Liu, Y. (2007). Fisher consistency of multicategory support vector machines. Eleventh Interna-

tional Conference on Artificial Intelligence and Statistics 289–296.

Liu, Y. and Shen, X. (2006). Multicategory ψ-learning. Journal of the American Statistical

Association, 101 500–509.

33

Liu, Y., Shen, X. and Doss, H. (2005). Multicategory ψ-learning and support vector machine:

computational tools. Journal of Computational and Graphical Statistics, 14 219–236.

Shao, J. (1993). Linear model selection by cross-validation. Journal of the American Statistical

Association, 88 486–494.

Shen, X., Tseng, G., Zhang, X. and Wong, W. (2003). On ψ-learning. Journal of the

American Statistical Association, 98 724–734.

Vapnik, V. (1998). Statistical Learning Theory. Wiley, New York.

Wahba, G. (1999). Support vector machines, reproducing kernel hilbert spaces and the ran-

domized GACV. In Advances in Kernel Methods Support Vector Learning (B. Schoelkopf,

C. Burges and A. Smola, eds.). MIT Press, 69–88.

Wang, J., Shen, X. and Liu, Y. (2008). Probability estimation for large margin classifiers.

Biometrika, 95 149–167.

Weston, J. and Watkins, C. (1999). Support vector machines for multi-class pattern recogni-

tion. In Proceedings of the 7th European Symposium on Artificial Neural Networks (ESANN-99)

(M. Verleysen, ed.). Bruges, Belgium, 219–224.

Wu, T. F., Lin, C. J. and Weng, R. C. (2004). Probability estimates for multi-class classifi-

cation by pairwise coupling. Journal of Machine Learning Research, 5 975–1005.

Wu, Y. and Liu, Y. (2007). Robust truncated-hinge-loss support vector machines. Journal of

the American Statistical Association, 102 974–983.

Zhang, H. H., Liu, Y., Wu, Y. and Zhu, J. (2008). Variable selection for the multicategory

svm via adaptive sup-norm regularization. Eletronic Journal of Statistics, 2 149–167.

Zhang, T. (2004). Statistical analysis of some multi-category large margin classification methods.

Journal of Machine Learning Research, 5 1225–1251.

Zhu, J. and Hastie, T. (2005). Kernel logistic regression and the import vector machine.

Journal of Computational and Graphical Statistics, 14 185–205.

34

