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This paper proposes a two-stage system for text detection in video images. In the first stage, text lines are
detected based on the edge map of the image leading in a high recall rate with low computational time
expenses. In the second stage, the result is refined using a sliding window and an SVM classifier trained
on features obtained by a new Local Binary Pattern-based operator (eLBP) that describes the local edge
distribution. The whole algorithm is used in a multiresolution fashion enabling detection of characters
for a broad size range. Experimental results, based on a new evaluation methodology, show the promising
overall performance of the system on a challenging corpus, and prove the superior discriminating ability
of the proposed feature set against the best features reported in the literature.
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1. Introduction

The tremendous increase of multimedia content has raised the
need for automatic semantic information indexing and retrieval
systems. Many methods have been proposed for the semantics
extraction of various granularity levels from audiovisual content.
Textual information in videos proves to be an important source
of high-level semantics. There exist mainly two kinds of text occur-
rences in videos, namely artificial and scene text. Artificial text, as
the name implies, is artificially added in order to describe the con-
tent of the video or give additional information related to it. This
makes it highly useful for building keyword indexes. Scene text
is textual content that was captured by a camera as part of a scene
such as text on T-shirts or road signs and usually brings less related
to video information. In Fig. 1, yellow boxes denote artificial text
while red boxes delimit the scene text. Text can also be classified
into normal or inverse. Normal is denoted any text whose charac-
ters have lower intensity values than the background while inverse
text is the opposite [1]. In Fig. 2, ‘‘EURO” is inverse while ‘‘SPORT” is
normal text. The procedure of textual information extraction from
videos is usually split into four distinct steps: (i) detection, (ii)
tracking, (iii) segmentation and (iv) recognition. Among all steps,
detection step is the most crucial and although it has been exten-
sively studied in the past decade presenting quite promising re-
sults, there are still challenges to meet. Further down we will
discuss the different approaches used towards the text detection
problem, the corresponding drawbacks and the remaining chal-
ll rights reserved.
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lenges. In this discussion we will focus on the methods designed
for detecting artificial text in video images. For scene text detection
in camera-based images the reader should refer to the survey pa-
pers [2–4].

Most of proposed text detection methods use as representative
text features, color, edge and texture information. To exploit this
information, i.e. describe text and discriminate it from the back-
ground, some researchers apply heuristic rules derived by empirical
constraints while others use machine-learning methods trained on
real data. Recently, some hybrid approaches have been proposed.

Many existing heuristic methods, derived from document anal-
ysis research area, are based on color or intensity homogeneity of
characters. They detect character regions in the image and then
group them into words and text lines based on geometrical con-
straints. These methods, also known as connected component
(CC) methods, can perform satisfactorily only on high quality
images with simple background and known text color, assump-
tions that usually do not apply in the case of video images. More-
over, text in video images often suffers from color bleeding due to
video compression. Typical CC approaches can be found in [5,6].

Some other heuristic methods detect text based on edge informa-
tion, i.e. strength, density or distribution. Sato et al. [7] apply a 3 � 3
horizontal differential filter to the entire image with appropriate
binary thresholding followed by size, fill factor and horizontal–ver-
tical aspect ratio constraints. Xi et al. [8] propose an edge-based
method based on an edge map created by Sobel operator followed
by smoothing filters, morphological operations and geometrical
constraints. Cai et al. [9] and Lyu et al. [10] suggest the use of local
thresholding on a sobel-based edge strength map. Anthimopoulos
et al. [11] use Canny edge map followed by morphological operations
and projection analysis. Kim and Kim [12] instead of using an explicit
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Fig. 1. Example of artificial and scene text. Yellow boxes bound artificial text while
red indicate scene text.
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edge map as an indicator of overlay text, they suggest the use of a
transition map generated by the change of intensity and a modified
saturation. A heuristic rule based on the different Local Binary Pat-
terns (LBP) is used for verification. These heuristic techniques proved
to be very efficient and satisfactory robust for specific applications
with high contrast characters and relatively smooth background.
However, the fact that many parameters have to be estimated exper-
imentally condemns them to data dependency and lack of
generality.

DCT coefficients of intensity images have been widely used as
texture features and have also been used for heuristic text detec-
tion methods [13–16]. The DCT coefficients globally map the peri-
odicity of an image and can be a quite efficient solution for jpeg
and mpeg encoded images and videos. In this case, the pre-com-
puted coefficients of 8 � 8 pixel block units are used. However, this
block size is not a large enough area to sufficiently depict the peri-
odical features of a text line and the computation of DCT for larger
windows even by the fast DCT transform proves quite costly. In
addition, these methods still use empirical thresholds on specific
DCT-based features and therefore they lack adaptability.

Several machine learning-based approaches have been pro-
posed for the detection of text areas with great success. These ap-
proaches are based on sliding windows that scan the image and
machine learning techniques which classify each window as text
or non-text. Machine learning classifiers have proved to be an
Fig. 2. Example of inverse and normal text.
appealing solution for many problems that cannot be defined in
a strict mathematical manner. Jung [17] and Kim et al. [18] directly
use the color and gray values of the pixels as input for a neural net-
work and an SVM, respectively. Wolf and Jolion [19] use an SVM
trained on differential and geometrical features. Lienhart and Wer-
nicke in [20] used as features the complex values of the gradient of
the RGB input image fed to a complex-valued neural network. Li
et al. [21] suggest the use of the mean, second order (variance)
and third-order central moments of the LH, HL, and HH component
of the first three levels of each window to train a three-layer neural
network. Zhang et al. [22] proposed a system for object detection
based on Local Binary Patterns (LBP) and Cascade histogram
matching. They applied the proposed method to video text and
car detection. The main shortcoming of the methods attributed
to this category is the high computational complexity since a slid-
ing window is required to scan the entire image with a typical step
of 3 or 4 pixels, demanding thousands of calls to the classifier per
image.

Recently, some hybrid methods have also been proposed, that
combine the efficiency of heuristic methods with machine-learn-
ing accuracy and generalization. These methods usually consist
of two stages. The first localizes text with a fast heuristic technique
while the second verifies the previous results eliminating some de-
tected area as false alarms using machine learning. In [23], Chen
et al. use a localization/verification scheme which claim to be
highly efficient and effective. For the verification part, Constant
Gradient Variance (CGV) features are fed to an SVM classifier. Ye
et al. [24] propose a coarse-to-fine algorithm based on wavelets.
The first stage applies thresholding on the wavelet energy in order
to coarsely detect text, while the second identifies the coarse re-
sults using an SVM and a more sophisticated wavelet-based fea-
ture set. Jung et al. [25] apply as a first stage, a stroke filtering
and they also verify the result using an SVM with normalized gray
intensity and CGV features. Then, a text line refinement module
follows, consisting of text boundary shrinking, combination and
extension functions. However, the machine learning verification
task used by these methods can only take a binary decision, i.e. if
an initial result is text or not without having the capability to re-
fine it. For example, if the resulting bounding box of the first stage
contains text as well as background pixels, in the second stage it
will be either entirely verified as text, or discarded as false alarm.

Concluding the discussion of the previous works, we can say
that although the specific research area has shown a great pro-
gress, there are still challenges to be considered. Machine-learning
methods have shown important capabilities for generalization but
proved to be computationally expensive. Hybrid methods benefit
regarding efficiency but they are actually based on the initial re-
sults of heuristic methods which fail to deal with complex back-
ground. Another great challenge is the choice of the feature set
used by machine learning techniques to discriminate text from
non-text areas. The features used until now, usually inherited from
texture segmentation research area, are not capable to adapt to the
specific problem and fail to discriminate varying-contrast text
from high-contrast background. Finally, another essential factor
for the optimization of every text detection algorithm is the choice
of an objective evaluation methodology.

In this work we propose a two-stage approach with a novel ma-
chine learning refinement which cannot only verify the initial re-
sult but refine its boundaries as well. In that way the whole
system’s performance is based on this refinement, instead of rely-
ing to the initial heuristic results. This machine learning stage uses
a new, highly discriminative feature set, derived from a proposed
operator that captures the edge structure for different levels of
contrast, and has shown superior performance against other fea-
tures reported in the literature. Finally, a novel evaluation method-
ology is introduced which is based on the estimated number of
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characters and proved to be more representative in terms of tex-
tual information extraction, contrary to the existing pixel-based
or block-based approaches.

The remainder of our paper is structured as follows: In Section 2
the proposed two-stage algorithm is described, Section 3 presents
the experimental results and the corresponding discussion, and fi-
nally, in Section 4 conclusions are drawn.
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learning refinement stage is used to refine the result in every Bound-
ing Box (BB) of the initial result leading to an effective minimization
of false alarms (Fig. 3). This stage uses an edge histogram-based fea-
ture set, derived from a proposed operator and will be described in
detail in Section 2.2.1. Finally the multiresolutional manner of the
method aids in detecting characters of various sizes in different res-
olutions, although the basic method is trained in a fixed scale.

Since the basic two-stage algorithm is trained on a fixed scale, be-
fore the further description of the algorithm we have to make some
assumptions about the size range of the text to be recognized. We as-
sume that text height varies between MinH and MaxH pixels and
every text line consists of at least three characters leading to a min-
imum width of approximately MinW = 3 �MinH pixels. The choice
of the size range is crucial for the system’s performance. Generally,
smaller range leads to better detection on a fixed scale level since
characters of different sizes present different texture characteristics.
However, a narrow range would also lead to many levels for the mul-
tiresolution approach and thus more difficult combination of the dif-
ferent scales’ results. Eventually, the choice of MinH and MaxH
values has to satisfy the tradeoff between the performance of the
fixed-scale detector and the multiresolution analysis. Further down
we will demonstrate the results of the different stages of the algo-
rithm on the video images shown in Fig. 1. Fig. 1a shows an image
with a relatively low edge density background while Fig. 1b shows
a scene with very strong background edges, thus, it constitutes a
great challenge for every text detection system.

2.1. Heuristic coarse text detection

For the first, coarse stage of text detection, we use an approach
based on a previous work by Anthimopoulos et al. [11]. This ap-
proach exploits the fact that text lines produce strong vertical edges
horizontally aligned with a high density. The use of edge information
Fig. 4. Example of text area detection in a low edge density image. (a) Edge map, (b) d
analysis.
for text detection is justified by the fact that every kind of text pre-
sents strong edges, in order to be readable. Moreover, using edges
as the prominent feature of our system gives us the opportunity to
detect normal or inverse characters of any color.
2.1.1. Text area detection
As a first step of the heuristic coarse detection stage, we pro-

duce the edge map of the video image. Several methodologies
are used in the literature for computing the edge map of an image
[26]. For our algorithm we use Canny edge detector. Canny [27]
uses Sobel masks in order to find the edge magnitude of the image
intensity and then uses non-maxima suppression and hysteresis
thresholding. Ideally, the created edge map is a binarized image
with the contour pixels set to one (white) and the remainder pixels
equal to zero (black) (Figs. 4a and 5a). After computing the Canny
edge map, a dilation is performed to link the character edges of
every text line (Figs. 4b and 5b). The structuring element in the
dilation is horizontal and its size depends on the estimated maxi-
mum distance between the characters. A 3 � (MaxH/2) cross-
shaped element found to be satisfactory for characters up to MaxH
pixels height. Then a morphological opening is used, removing the
noise and smoothing the candidate text areas (Figs. 4c and 5c). The
element used here is also cross-shaped with size equal to Min-
H �MinW which is actually the size of the smallest text line to
be detected. Every component created by the previous dilation
with height less than MinH or width less than MinW is suppressed.

Unfortunately, this operation may suppress the edges of text
lines with height less than MinH pixels. However, this is not so
devastating since very small characters are either way not recog-
nized in the stage of recognition. At this phase, every connected
component represents a candidate text area for which we have
to compute the bounding box (Figs. 4d and 5d).
ilated edge map, (c) opening on the edge map, (d) initial bounding boxes after CC



Fig. 6. (a) Initial detection result (b) horizontal projection, (c) results of horizontal projection, (d) vertical projection, (e) result of vertical projection.

Fig. 5. Example of text area detection in a high edge density image. (a) Edge map, (b) dilated edge map, (c) opening on the edge map, (d) initial bounding boxes after CC
analysis.
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Fig. 8. Bounding boxes after projection analysis of the high edge density image.
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2.1.2. Text line detection
The previous stage has a high detection rate but relatively low

precision due to many false positives. This means that most of
the text lines are included in the text area boxes while at the same
time some bounding boxes may include more than one text line as
well as noise. The noise usually originates from objects with high
intensity edges that connect to the text lines during the dilation
process. The low precision also originates from detected bounding
boxes which do not contain text but objects with high vertical edge
density. To improve precision by rejecting the false alarms we use
a method based on horizontal and vertical projections.

Firstly, the horizontal edge projection of every box is computed
and lines with projection values below a threshold are discarded.
In this way, boxes with more than one text line are split and some
lines with noise are also discarded (Fig. 6b). Nevertheless, boxes
which do not contain text are usually split in a number of boxes
with very small height and discarded by the next stage due to size
constraints.

A box is discarded if:

� Height is lower than MinH.
� Width is lower than a MinW.
� Ratio width/ height is lower than a threshold (set to 1.5).

Then, a similar procedure with vertical projection follows
(Fig. 6d). This method would actually break every text line in
words or even in characters. However, this is not an intention of
the algorithm so finally the vertically divided parts are reconnected
if the distance between them is less than a threshold which de-
pends on the height of the candidate text line (set to 1.5 � height).
In this way, a bounding box will split only if the distance between
two words is larger than the threshold which means that actually
belong to different text lines or if a part of the candidate text line
contain only noise. The whole procedure with horizontal and ver-
tical projections is repeated until no changes occur. Examples of
projection analysis results are presented in Figs. 7 and 8.

The final results of the coarse stage for the two examples lead us
to some observations. The video image with the smoothest back-
ground presents a quite satisfactory result (Fig. 7) while the high
edge density image produces many false alarms (Fig. 8).
2.2. Machine learning refinement

Edge-based heuristic methods detect text based mainly on the
edge density. However, in many cases, non-text regions present
Fig. 7. Bounding boxes after projection analysis of the low edge density image.
edge density values adequate to produce false alarms that human
optical perception system would have avoided. This fact motivated
the research of larger feature sets which capture not only the
abrupt intensity changes of the image, but their spatial distribu-
tion, as well. The large number of features and the great general-
ization capability of Support Vector Machines (SVM’s) [28] led us
to use an SVM and a sliding window model followed by a region
growing algorithm to refine the result. This approach was initially
proposed in our previous work [29]. However the features used in
[29] proved to be much weaker than the new proposed feature set,
which will be described in the next section.

2.2.1. Feature extraction
The majority of the features used for text detection originate

from texture segmentation research area since a text area as a peri-
odic repetition of similar objects with specific alignment presents
some of the fundamental characteristics of texture. Local Binary
Pattern (LBP) has proven to be highly discriminative for texture
segmentation and its advantages, namely, its invariance to mono-
tonic gray-level changes and computational efficiency, make it
suitable for demanding image analysis tasks. This fact motivated
us to use the concept of LBP for text detection and adjust it to
the specific problem.

LBP was originally introduced by Ojala et al. [30] as a non para-
metric operator measuring the local contrast for efficient texture
classification. The LBP operator consists of a 3 � 3 kernel where
the center pixel is used as a threshold. Then the eight binarized
neighbours are multiplied by the respective binomial weight pro-
ducing an integer in the range [0 . . . 255] (Fig. 9). Each of the 256
different 8-bit words is considered to represent a unique texture
pattern.

Formally, the decimal form of the resulting 8-bit word (LBP
code) can be expressed as follows:

LBPðxc; ycÞ ¼
X7

n¼0

Sðin � icÞ2n ð1Þ

where ic corresponds to the grey value of the center pixel (xc, yc), in
(n 2 ½0;7�) to the grey values of the eight surrounding pixels, and
function S(x) is defined as:

SðxÞ ¼
1; x P 0
0; x < 0

�
ð2Þ

When local binary pattern is applied in a greyscale image, another
8-bit greyscale image is created in which each pixel value repre-
sents the texture pattern of the respective pixel in the original im-
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age. Thus, the 256 histogram values of an image region depict its
texture structure.

Although the original LBP operator has shown satisfactory per-
formance for many kinds of texture classification it faces two
important problems in capturing the characteristics of textual tex-
ture. The first is that in text detection normal and inverse text is
considered as one class although LBP produce quite different histo-
grams for the two cases. The second problem is related to the fact
that LBP cannot capture the pattern of equal neighbours since it
treats them with the same manner with higher valued neighbours.
If we also consider the noise, we come to the conclusion that an
equal neighbour could arbitrary produce 0 or 1 to the binary pat-
tern. To solve these problems we propose the edge Local Binary Pa-
tern (eLBP) that is a modified LBP operator which actually
describes the local edge patterns appeared in an image.

In eLBP, a neighbouring pixel is represented by 0 if it is close to
the center pixel or 1 if not. In that way, we solve the first problem
mentioned above by capturing only the fact that there is an edge
between the center pixel and a neighbouring pixel. Since the oper-
ator does not consider if it is a positive or negative edge, it recog-
nises normal and inverse text as the same texture. In order to solve
the second problem, we require a minimum absolute distance e
from the center to give to the pixel the binary value one (Fig. 10).

Formally, the new eLBP operator is defined as:

eLBPðxc; ycÞ ¼
X7

n¼0

Seðin � icÞ2n ð3Þ

where function Se(x) is defined by:

SeðxÞ ¼
1; jxjP e

0; jxj < e

�
ð4Þ

The value of e has to be large enough in order to avoid the arbi-
trary intensity variations caused by noise and small enough to de-
tect all the deterministic intensity changes of texture. In [29] a
value near 20 was proved to be satisfactory, after relative experi-
mentation. Although this value was optimal for the discrimination
of most text and non-text patterns there were still problems. Some
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Fig. 10. Example of eLBP computation.
text patterns of low contrast images presented edges that did not
exceed the specified threshold and thus, were classified as non-text
while non-text patterns of high contrast images presented strong
enough edges to be classified as text. In order to solve this problem
we propose the generation of multilevel eLBP edge histograms
with different values for e, which will describe the edge distribu-
tion in different detail levels. However, this will increase dramati-
cally the dimension of the feature set.

In order to reduce the number of histogram bins, namely the
number of features, we split the neighbours of every pixel in two
groups, the vertical–horizontal and the diagonal neighbours gener-
ating two different operators (5) and (6), and thus two different
maps with depth equal to 24 = 16 (Fig. 11). In that way, the feature
set is reduced from 256 to 32 features, with a slight decrease of the
set’s discrimination ability. However, the new reduced eLBP
descriptor (Eqs. (5) and (6)) can now be used with different values
for e, achieving multilevel edge description with impressive perfor-
mance. By using eight different levels, as will be described in the
results section, the final dimension will be 256 instead of 2048 of
the full eLBP set. In order to choose the number of different levels
and the relative threshold values which will give the best perfor-
mance with regard to dimensionality, we have to examine the dis-
tribution of the gradient values in the vertical, horizontal and
diagonal direction. The gradient values are considered as the abso-
lute distance in gray levels, between adjacent pixels in an image.

eLBPv�hðxc; ycÞ ¼
X3

n¼0

Seði2�nþ1 � icÞ2n ð5Þ

eLBPdiagðxc; ycÞ ¼
X3

n¼0

Seði2�n � icÞ2n ð6Þ

It is well-known [31], and easily verified, that the probability
density function (PDF) of an image’s wavelet-transform sub-bands,
has a Laplacian distribution. The gradient values used here actually
resemble to the absolute value of the Haar wavelet coefficients and
since the distribution of wavelet coefficients is Laplacian, the PDF
of these gradient values will be exponential. Fig. 12 shows a typical
PDF of an image gradient. As it can be seen, the probability falls for
high distance values. The threshold e at Eq. (4) would actually
binarize this distribution in order to distinguish edge from non-
edge pixels and then operators (5) and (6) will consider the local
spatial distribution of these edge pixels to generate the edge histo-
grams. The optimal set of thresholds for the multilevel edge
description will have to cluster the PDF in clusters with equal prob-
ability. To this end, we fit the distribution of the image gradient
values to the exponential distribution:

PDFexpðxÞ ¼ k � e�k�x ð7Þ

To achieve that, we calculate the histogram of the gradient val-
ues and set its mean value equal to k�1. An example of PDF fitting
can be seen in Fig. 12.



Fig. 14. Example of machine learning refinement. (a) Text block detected heuris-
tically, (b) saliency map, (c) region growing result, (d) refined result.

Fig. 15. The refined result of the coarse outcome shown in Fig. 8.

Fig. 12. Typical distribution of image gradient values (blue-dotted), fitted expo-
nential distribution (red-solid).
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The quantile function (inverse cumulative distribution function)
of PDFexp is denoted as:

FexpðpÞ ¼ �k�1 � lnð1� pÞ ð8Þ

where 0 6 p < 1. The quantile function returns the value below
which random draws from the given distribution would fall,
p � 100% of the time. Therefore, in order to cluster our distribution
in equal probability clusters we use as thresholds the values of Fexp

for equally spaced values of p in [0,1). That is,

p ¼ i=ðLþ 1Þ ð9Þ

where i = 1 . . . L and L is the number of different levels. In that way,
the selected threshold values will be denser close to zero where the
PDF shows higher values. This PDF fitting will be done for every im-
age portion detected by the heuristic stage, re-establishing the
threshold set and giving to the feature set the ability to adapt to
cases with different contrast profile.
2.2.2. Saliency map generation
Every sub-image that is detected heuristically as a text line is

scanned by a 20 � 10 sliding window and the responses of the clas-
sifier (text = 1, non-text = 0) are accumulated in a saliency map
from which the final bounding boxes will be extracted (Fig. 13).
The step of the moving window was set to 6 pixels horizontally
and 3 pixels vertically, since this values showed a good tradeoff be-
tween accuracy and efficiency. Meanwhile another map is gener-
ated, in which every value represents the number of visits by the
sliding window to the corresponding pixel. This map is used for
the normalization of the saliency map from 0 to 1. After normaliza-
tion, every value of the map represents the estimated by the sys-
tem probability of the respective pixel, to belong to text area.
Fig. 13. Example of saliency map generation. (a) Tex
2.2.3. Region growing algorithm – refined bounding boxes generation
After the saliency map generation a region growing algorithm

is applied in order to produce the final result. Two thresholds th1
and th2 (with th1 > th2) are used to define whether an area of the
map belongs to text. All the pixels of the map with value over th1
are considered to belong to text and therefore they are used as
seeds. Also, if the value of a pixel is below th1 but over th2 and
has a neighbouring pixel already classified as text it is also con-
sidered as a text pixel. The values of th1 and th2 are experimen-
tally estimated to 0.8 and 0.4, respectively which means that a
text region must contain at least one pixel classified as text by
the 80% of the sliding windows (usually in the center of text)
but all pixels have to be classified as text by at least 40% of sliding
windows. A connected component analysis follows to output one
bounding box for every text region. Fig. 14 provides an example
of the refinement method while Fig. 15 presents the final result
of the refinement step.

The contribution of this stage is the capability of refining in-
stead of just verifying the initial results like the previous hybrid ap-
t block detected heuristically, (b) saliency map.
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proaches proposed [23–25]. This means that while an image is re-
fined, the machine learning algorithm can:

� Discard a part of the text image as false alarm.
� Discard the whole image.
� Split the image into different text lines.
2.3. Multiresolution analysis

Using differential features in order to detect text gives to the
method independence from text color. However, this method
clearly depends on the size of the characters. The size of the ele-
ments for the morphological operations and the geometrical con-
straints give to the algorithm the ability to detect text in a
specific range of character sizes. Moreover the classifier of the ma-
chine learning stage is trained on the same narrow range of font
sizes since characters of different sizes present different texture
characteristics.

To overcome this problem, we adopt a multiresolution ap-
proach. Both coarse and refinement stages of the algorithm are ap-
plied to the images in different resolutions and finally the results
are combined to the original resolution. This combination might
be quite difficult if we consider that the same text might be de-
Fig. 16. Multiresolution analysis. (a) Original resolution edge map, (b) result at original
found text), (d) result at low resolution, (e) final result.
tected in different resolutions so bounding boxes will overlap. To
avoid that, the algorithm suppresses the edges of the already de-
tected characters in a resolution before the edge map is passed
to the next resolution. Figs. 16 and 17 give examples of the algo-
rithm performance using multiresolution framework for our two
examples.

3. Experimental results and discussion

For our experiments we used a corpus consisting of two video
image sets. The first one contains 214 frames from athletic events
with 2963 text occurrences while the second one includes 172
frames from news and advertisements with a total of 672 text
occurrences. These sets have been generated by selecting video
images from 10 different videos, containing artificial and scene
text, and constitute a much more general and thus difficult corpus
than the one used in [11]. For our experiments, we chose MinH = 9
and MaxH = 30 since the height of the smaller character found in
the corpus was equal to nine and the range of sizes considered rea-
sonable for the fixed-scale detector. For the multiresolution analysis,
we used two resolutions: the initial, and the one with a scale factor of
0.5. In this way the system can detect characters with height up to 60
pixels which was considered to be satisfying. Taking into account
resolution, (c) low resolution edge map (gray pixels denote the area of the already



Fig. 17. Multiresolution analysis. (a) Original resolution edge map, (b) result at original resolution, (c) low resolution edge map (gray pixels denote the area of the already
found text), (d) result at low resolution, (e) final result.

1422 M. Anthimopoulos et al. / Image and Vision Computing 28 (2010) 1413–1426
that text in videos usually does not contain very large characters and
from the experience of related experiments, we can assume that
these values are typical and adequately generic.

Before discussing the evaluation of the whole system, we pres-
ent the results of the experiments that compare the proposed fea-
ture set with some widely used features and prove its superior
discrimination ability. For the experiments, we used as classifier
a Support Vector Machine with a Radial Basis Function (RBF) ker-
nel, trained on 3500 text and 6500 non-text patterns selected from
150 representative video images from the videos mentioned above.
Examples of text and non-text patterns can be seen in Fig. 18. Each
pattern is a 20 � 10 image that is either entirely contained in a
ground truth bounding box (text) or not at all (non-text). Text pat-
terns were taken from textlines with height in the range of 9–30
pixels. All training patterns are taken from the results of the
first-heuristic stage so even the non-text patterns belong to areas
that were erroneously labelled as text. The comparative results of
the feature experimentation are presented in Table 1. For the eval-
uation of classification we use cross-validation with 10 folds. For
our tests, we used the raw values of LH, HL and HH components
of the first two levels of Haar decomposition since they have
shown better performance than any other wavelet-based feature
set. Also, the first coefficient of DCT transform is omitted since it
is proportional to the intensity mean and does not contain any fre-
quency information. For the proposed multilevel reduced eLBP
descriptor we chose eight levels generating 256 features.

From Table 1 we can see that the proposed feature set achieved
much better performance against the best feature sets found in lit-
erature. Moreover, we can notice the remarkable performance of
the reduced eLBP feature set without sub-pixel information which
achieved over 95% accuracy with only 32 features.

The evaluation of the whole text detection system is an aspect not
as trivial as it might seem. Most researchers use for their experimen-
tation simple methods such as pixel-based or box-based recall, pre-
cision and accuracy measures [10,20,23,25]. Very few works have
focused on the problem of evaluation. Moreover these works pro-
pose evaluation strategies with several drawbacks and require great
effort for the generation of the ground truth ([32–34]).

In [34,33] Kasturi and coworkers propose as overall measure of
text detection in a frame, a box-based measure called Frame Detec-
tion Accuracy (FDA):

FDA ¼ Overlap Ratio
NGþND

2

ð10Þ



Fig. 18. (a) Text samples, (b) non-text samples.

Table 1
Results of text/non-text classification using different feature sets.

Features Feature
dimension

Classification
accuracy

Text
recall

Text
precision

Text F-
measure

LBP 256 93 89.5 89.6 89.6
CGV 200 93.1 89.8 90.2 90
Grayscale raw

values
200 93.6 91 90 90.5

Grayscale
gradient

400 94.1 90.3 91.9 91.1

Color gradient 400 94.8 94.3 90.6 92.4
Reduced eLBP

(e = 20)
32 95.1 91.3 93.9 92.6

Haar 180 95.3 92.9 93.2 93.2
eLBP (e = 20) 256 96.7 94.8 95.2 95
DCT 199 96.7 95.3 95.2 95.3
Multilevel

reduced
eLBP (L = 8)

256 98 97 97 97
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where NG are the ground truth objects, ND the detected objects
and

Overlap Ratio ¼
XNmapped

i¼1

jGi \ Dij
jGi [ Dij

ð11Þ

here Nmapped is the number of mapped object pairs, where the cor-
respondence is established between objects, which have the best
spatial overlap. Like many other previous approaches, the authors
also propose a thresholding of the overlap ratio in order to forgive
minor inconsistencies between the boundaries of the system’s out-
put and the ground truth boxes. Thus, the thresholded overlap ratio
is defined by:

Thresholded Overlap Ratio ¼
XNmapped

i¼1

FDA TðiÞ
jGi [ Dij

ð12Þ
where

FDA TðiÞ ¼

jGi [ Dij; if jGi\Di j
jGi[Di j

P th

jGi \ Dij; if jGi\Di j
jGi[Di j

< th; and non binary thresholding

0; if jGi\Di j
jGi[Di j

< th; and binary thresholding

8>>><
>>>:

ð13Þ

The evaluation methods of this kind are based on the mapping
between ground truth and detected objects. Especially for the text
detection problem, text lines are considered to be the objects
where a text line is usually defined as an aligned series of charac-
ters with a small intermediate distance relative to their height.
However, this subjectively small distance can result arbitrarily in
bounding box splits or merges among annotators and detectors
making the object mapping inappropriate. In addition, the number
of correctly retrieved boxes is not generally a measure of the re-
trieved textual information since the number of characters in dif-
ferent boxes may vary considerably. Driven by the problem of
the text object inexplicit definition, instead of using one-to-one
mapping, we based our evaluation method on the overall overlap
between the resulted and the ground truth areas.

Wolf and Jilion [35] used the main idea of Liang et al. [36] which
was oriented to document page segmentation evaluation and ad-
justed it to video text detection evaluation. Liang et al. proposed
the creation of match score matrices with the overlap between
every possible pair of blocks in order to evaluate document struc-
ture extraction algorithms. The benefit of this kind of algorithms is
their ability to consider the possible splits or merges of the bound-
ing boxes besides one-to-one matching. However, in order to
match two ground truth boxes with one resulting box, the total
overlap threshold (as described in Wolf et al. paper) has to be very
low (�40%). This will have as a result accepting as correct, a box
with size even higher than the double size of the ground truth
box. Wolf et al. also mentioned the low threshold problem due
to the growth of a rectangle area to the square of its side lengths.
The same problem is not so intense in the document page segmen-
tation field, since for classic documents the text areas are much
bigger compared to the interval created by splits and merges.
Moreover Yanikoglu et al. [37] proposed the use of only the text
(black) pixels for the computation of overlaps overcoming the
low threshold problem for printed documents. However, this ap-
proach could not be applied to video text detection since a binari-
zation result is lacking and text pixels cannot be distinguished
from background pixels.

Many researchers have used the overall overlap to compute pix-
el-based recall and precision measures [12,20,23].

Recallpixel ¼
jG \ Dj
jGj ð14Þ
Precisionpixel ¼
jG \ Dj
jDj ð15Þ

where G is the ground truth area and D the detected area.
However the main drawback here similarly to the box-based

approaches is the fact that the number of retrieved pixels does
not correspond to proportional textual information since different
textlines may contain characters of various sizes.

Ideally a text detection method as a part of a text extraction sys-
tem should not be evaluated on the size of detected areas nor the
number of detected boxes but on the number of the detected char-
acters. Unfortunately, the number of characters in a bounding box
cannot be defined by the algorithm but it can be approximated by
the ratio width/height of the box, if we assume that this ratio is
invariable for every character, the spaces between different words
in a text line are proportional to its height and each textline con-
tains characters of the same size.



Table 2
Evaluation values for images of Fig. 19 without thresholding.

(%) Recallecn Precisionecn Fecn Recallpixel Precisionpixel Fpixel FDA

Fig. 19a 70 79.5 74.4 32.5 80.3 46.3 54.7
Fig. 19b 81.9 100 90 81.9 100 90 36.3
Fig. 19c 7.3 100 13.6 10.6 100 19.2 50
Fig. 19d 85.7 44 58.1 85.7 44 58.1 29

Table 3
Evaluation values of Wolf and Jolion [35] for images of Fig. 19 (with default
parameters).

(%) Recallecn Precisionecn F-measure

Fig. 19a 33.3 50 40
Fig. 19b 80 100 88.89
Fig. 19c 33.3 100 50
Fig. 19d 100 100 100
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Let wi, hi, ri be the width, the height, and the ratio width to
height respectively, with i = c, s, t denoting characters, spaces and
textlines. Obviously we can assume that hc = hs = ht. A textline con-
taining nc characters will have a width wt = ncwc + nsws, where ns is
the number of spaces. The number of spaces between nc characters
is ns = nc�1. Assuming that there are also spaces at the ends of the
text line, approximately equal to ws/2, the number of spaces be-
comes equal to the number of characters: ns = nc.

Thus, wt ¼ ncwc þ ncws ¼ ncðwc þwsÞ ¼ ncðhcrc þ hsrsÞ ¼ ncht

ðrc þ rsÞ ) nc ¼ rt
ðrcþrsÞ where rc and rs are constants. In other

words, the number of characters in a text line is proportional to
the ratio rt.

Based on that, we define that the contribution of every box to
the overall evaluation will be rt ¼ wt=ht and therefore the contri-
bution of every pixel that belongs to the box will be wt ht

wt�ht
¼ 1

h2
t
. In

that way, the evaluation will be based on the recall and precision
of the area coverage, normalized by the approximation of the num-
Fig. 19. Examples of text detection (yellow =
ber of characters for every box (see Eqs. (16) and (17)). The overall
metric will be the weighted harmonic mean of precision and recall
also referred as the F-measure (18). The normalization of a ground
truth bounding box obviously estimates the actual number of char-
acters contained in the box, while the same technique for the de-
tected boxes estimates the number of characters of the
recognition system’s output, since before recognition text images
are normalized according to their height.

Recallecn ¼

PN
i¼1

GDIij j
hg2

iPN
i¼1

GBij j
hg2

i

ð16Þ

Precisionecn ¼

PM
i¼1

DGIij j
hd2

iPM
i¼1

DBij j
hd2

i

ð17Þ

Fecn ¼
2 � Precisionecn � Recallecn

Precisionecn þ Recallecn
ð18Þ

where GBi is the ground truth bounding box number i and hgi is its
height, while DBi is the detected bounding box number i and hdi is
its height. N is the number of ground truth bounding boxes and M is
the number of detected bounding boxes and GDI, DGI are the corre-
sponding intersections:

GDIi ¼ GBi \
[M
i¼1

DBi

 !
ð19Þ
ground truth, green = supposed output).



Table 4
Evaluation values for images of Fig. 19 with non-binary thresholding (th = 80%).

(%) Recallecn Precisionecn Fecn Recallpixel Precisionpixel Fpixel FDA

Fig. 19a 70 88.4 78.1 32.5 91.7 48 61.7
Fig. 19b 100 100 100 100 100 100 36.3
Fig. 19c 7.3 100 13.6 10.6 100 19.2 50
Fig. 19d 100 44 61.1 100 44 61.1 29

Table 5
Performance of different text detection algorithms without thresholding.

Frames # Text
boxes #

Method Recall
(%)

Precision
(%)

F-measure
(%)

Set1 214 2963 Proposed without
refinement

93.5 48.9 64.2

[18] 66.9 66.7 66.8
[23] 65.4 75.6 70.1
[21] 81.1 70.5 75.4
Proposed with
refinement

83.9 79 81.4

Set2 172 672 [18] 63.3 69.2 66.1
[23] 68.2 71.1 69.6
Proposed without 93.3 61.6 74.2
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DGIi ¼ DBi \
[N
i¼1

GBi

 !
ð20Þ

In order to avoid penalizing minor inconsistencies by non-bin-
ary thresholding similarly to (13), the definitions (19) and (20)
become:

GDIi ¼
GBi; if

GBi\
SM
i¼1

DBi

� �
GBi

P th

GBi \
SM
i¼1

DBi

� �
; if

GBi\
SM
i¼1

DBi

� �
GBi

< th

8>>>>>><
>>>>>>:

ð21Þ
refinement
[21] 80.6 71.5 75.8
Proposed with
refinement

82.7 83.5 83

Table 6
Performance of different text detection algorithms with thresholding (th = 80%).

Frames # Text
boxes #

Method Recall
(%)

Precision
(%)

F-measure
(%)

Proposed
without
refinement

94 49.9 65.2

Set1 214 2963 [18] 68.3 68.6 68.4
[23] 68.9 80.5 74.2
[21] 85.5 73.3 78.9
Proposed with
refinement

86.8 84.5 85.6

Set2 172 672 [18] 65 69.8 67.3
[23] 69.5 72.8 71.1
Proposed without
refinement

95.4 65.5 77.7

[21] 84.2 74 78.8
Proposed with
refinement

87 88.2 87.7
DGIi ¼
DBi; if

DBi\
SN
i¼1

GBi

� �
DBi

P th

DBi \
SN
i¼1

GBi

� �
; if

DBi\
SN
i¼1

GBi

� �
DBi

< th

8>>>>>><
>>>>>>:

ð22Þ

In Tables 2 and 3 we can see the results of the different evalu-
ation measures presented above for the four examples of Fig. 19.
Looking at the images and the corresponding values we can notice
that the proposed estimated character-based measures were the
most representative. In Fig. 19a the true character recall was 21/
30 = 70% (with the spaces between words counted) exactly equal
to the proposed recall while the pixel-based recall was 32.5% and
Wolf’s recall was 33.3%. Fig. 19b presents an obviously good detec-
tion result, however FDA was only 36.3% due to compulsory one to
one matching. On the other hand, although in Fig. 19c the result
was quite poor, FDA and Wolf’s F-measure scored 50% deceived
by the box-based strategy. Moreover, the evaluation method of
Wolf will score 100% for the unsatisfactory result of Fig. 19d due
to the low threshold values enforced by the multi-to-multi match-
ing policy. Table 4 presents the corresponding results to Table 2
with non-binary thresholding and th = 80. Using thresholding we
can see that the system forgive the non perfect detection of the
third text line in Fig. 19a, increasing the precision. FDA is also in-
creased. However, for the Fig. 19b although the pixel based and
the proposed evaluation strategy give 100%, FDA still fails due to
one to one mapping.

Table 5 provides the results of the whole text detection system
before and after the use of the machine learning refinement stage,
as well as the performances of three state-of-the-art methods pre-
sented in Section 1. The refinement stage of the proposed method-
ology increases the precision rate and combined with the high
recall of the initial result makes the overall system performance
to improve from 64.2% and 74.2% to 81.47% and 83%, for the first
and the second set respectively. Table 6 presents the corresponding
results using non-binary thresholding (see Eqs. (21) and (22)).
From Table 6 we can see that the results after the refinement stage
have improved much more, compared to Table 5, than the coarse
results. This means that the refined bounding boxes tend to resem-
ble to the ground truth bounding boxes. The better performance of
the system for Set2 was expected because of the smoother back-
ground in these kinds of videos. Table 7 shows the average process-
ing time of the proposed, and the state-of-the art algorithms for
images with resolution 768 � 576. The experiments were con-
ducted on an Intel single core CPU at 3.2 GHz. Regarding computa-
tional complexity, the most time consuming part of text detection
methods are the prediction calls to the classifier for the machine
learning stage. Although SVM proved to be the most time consum-
ing classifier, it is chosen because of its superior performance.
4. Conclusion

In this paper we presented a two-stage system for text detec-
tion in video images. The system consists of a very efficient,
edge-based, first stage with high recall and a second machine
learning refinement stage which improves performance by reduc-
ing the false alarms. The main contributions of this work are the
highly discriminating feature set based on a new texture operator,
and the incorporation of the refinement stage which is based on a



Table 7
Average processing time per frame of the different text detection algorithms.

Method Average processing time per frame (s)

Proposed without refinement 0.33
[18] 8
[23] 3.35
[21] 1.5
Proposed with refinement 2
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sliding window, an SVM classifier and a saliency map. The system’s
performance evaluation is based on the intersection of the ground
truth and the resulted bounding boxes, normalized by the esti-
mated number of contained characters. Experimental results
showed great robustness on the detection of horizontal textlines
in very complex backgrounds even for scene text. The method does
not take into consideration any temporal information in order to
separate the text detection from a text tracking stage that may
be used to track text lines between periodical spatial detections.
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