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Abstract—This paper examines the performance of decision-
feedback-based iterative channel estimation and multiuser de-
tection in channel coded aperiodic direct sequence code division
multiple-access systems operating over multipath fading channels.
First, explicit expressions describing the performance of channel
estimation and parallel interference-cancellation-based multiuser
detection are developed. These results are then combined to
characterize the evolution of the performance of a system that it-
erates among channel estimation, multiuser detection and channel
decoding. Sufficient conditions for convergence of this system to a
unique fixed point are developed.

Index Terms—CDMA, channel estimation, decision feedback,
multiuser detection.

I. INTRODUCTION

DIRECT sequence code-division multiple-access (DS-
CDMA) has been selected as the fundamental signaling

technique for third generation (3G) wireless communication
systems, due to its advantages of soft user capacity limit and
inherent frequency diversity. However, it suffers from mul-
tiple-access interference (MAI) caused by the nonorthogonality
of spreading codes, particularly for heavily loaded systems.
Therefore, techniques for mitigating the MAI, namely multiuser
detection, have been the subject of an intensive research effort
over the past two decades. It is well known that multiuser de-
tection can substantially suppress MAI, thus improving system
performance. Maximum likelihood (ML) multiuser detection
[30] was proposed in the early 1980s, and achieves the optimal
performance at the cost of prohibitive computational cost when
the number of users is large. For practical implementation,
suboptimal algorithms, such as the linear minimum mean
square error (LMMSE) detector [22] or decorrelator [31], allow
a tradeoff between complexity and performance. It should be
noted that, with the development of interference cancellation
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(IC) techniques, multiuser detection is being applied in prac-
tical systems, such as the EV-DO Revision A systems [12].

In recent years, the turbo principle, namely the iterative ex-
change of soft information among different blocks in a commu-
nication system to improve the system performance, has been
applied to combine multiuser detection with channel decoding
[1], [23], [25], [27], [29], [33]. In such turbo multiuser detectors,
the outputs of channel decoders are fed back to the multiuser de-
tector, thus enhancing the performance iteratively. Turbo mul-
tiuser detection based on the maximum a posteriori probability
(MAP) detection and decoding criterion has been proposed in
[32], [33] together with a lower complexity technique based on
interference cancellation and LMMSE filtering. Further simpli-
fication is obtained by applying parallel interference cancella-
tion (PIC) [1] for multiuser detection, where the decisions of
the decoders are directly subtracted from the original signal to
cancel the MAI.

Practical wireless communication systems usually experi-
ence fading channels, whose state information is unknown to the
receiver. Thus, practical systems need to consider detection and
decoding with uncertain channel state information. Although
it is still an open problem to characterize the capacity region
of noncoherent multiaccess channels [28], some suboptimal
approaches can be adopted to assure reliable communications.
In the context of short code CDMA systems, blind multiuser
detection can be accomplished without explicit channel estima-
tion by using subspace and other techniques [34]. An alternative
receiver structure adopts an explicit channel estimation block
and carries out the decoding with the corresponding channel
estimate. In systems without decision feedback, the channel
estimation block is cascaded with the decoder and operates
as a front end for the subsequent blocks. With such a receiver
structure, the channel estimates can be obtained with training
symbols [6] or with blind estimation algorithms [35]. Explicit
expressions for the performance of such channel estimation
schemes are given in [17] and the corresponding impact on
multiuser detection is discussed in the large system limit in [9]
and [18]. In systems with decision feedback, the decisions of
the decoder are fed back to the channel estimator to enhance
its performance. In such systems, the channel estimator and
the decoder can operate either simultaneously [26] or suc-
cessively [7], [13], [24]. An example of the former strategy
applied to ML sequence detection in uncertain environments
is proposed in [26]; called per-survivor processing, tentative
decisions are immediately fed back to the channel estimation
algorithm and the corresponding estimates are used for the
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Fig. 1. CDMA system with an iterative receiver.

detection of future symbols. In the latter strategy, the decisions
are fed back only when the entire current decoding procedure
is finished. For example, in [13], an expectation maximization
(EM) channel estimation algorithm, combined with successive
interference cancellation, is proposed. Joint channel estimation
and data detection algorithms for uncoded single-antenna
and multiple-antenna systems are discussed in [8] and [7],
respectively. In channel coded systems, iteration can achieve
better performance when the turbo principle is applied, due
to the redundancy introduced by the code structure. In [24],
an iterative algorithm is proposed and analyzed for channel
estimation and decoding of low-density parity-check (LDPC)
coded quadrature amplitude modulation (QAM) systems.

In this paper, we consider channel-coded CDMA systems
operating over multipath fading channels whose channel state
information is unknown to the receiver. To demodulate and
decode such systems, we apply the turbo principle to both
channel estimation and multiuser detection. As shown in
Fig. 1, we consider a receiver that feeds back decisions from
channel decoders to both an ML channel estimator and a PIC
multiuser detector. The iteration is initialized with training
symbol based channel estimation and a noniterative multiuser
detection, such as the LMMSE multiuser detection. (We chose
PIC and LMMSE for multiuser detection because they can be
implemented with smaller computational cost than the iterative
EM algorithm and ML multiuser detection: the complexities of
PIC and LMMSE are and 1 where denotes the
number of active users, while the iterative EM and ML MUD
algorithm complexities are and [20], [13], re-
spectively.) The receiver structure is similar to those proposed
in [2], [15], and [21]. However, this paper is focused mainly on
the performance analysis of such structures using semi-analytic
methods. We analyze the contributions to the variance of the
channel estimation error due to noise and decision feedback
error, and the variance of the residual MAI after PIC. We then

1O(K ) is valid for noniterative algorithms to solve linear equations; this can
be substantially reduced by adopting iterative algorithms.

use this analysis to describe the decoding process as an iterative
mapping. We also propose conditions assuring convergence
of this iterative mapping to a unique fixed point. We further
compute the asymptotic multiuser efficiency (AME) [31] of this
overall system, under some mild assumptions on the channel
decoders. It should be noted that the analysis in this paper is
based on large sample and large system analysis.

The remainder of this paper is organized as follows. Section II
introduces the signal model and the channel decoder used in our
analysis. The performance analyses of ML channel estimation
and PIC multiuser detection are given in Sections III and IV,
respectively. Based on these results, the corresponding iterative
mapping is described and analyzed in Section V. Numerical re-
sults and conclusions are given in Sections VI and VII, respec-
tively. The notations used in this paper are explained as follows.

• Throughout this paper, if no special note is given, we de-
note vectors with small letters in bold fonts, matrices with
capital letters in bold fonts and scalars with nonbold fonts.

• For any variable , we denote the corresponding estimate
from the decision feedback by and the corresponding
error by .

• Superscript denotes transposition and superscript de-
notes conjugate transposition.

• denotes the identity matrix.
• denotes the smallest integer larger than or equal to .
• denotes the modulo of with respect to , with

the convention of .

• For a matrix , is the
Frobenius norm of .

II. SIGNAL MODEL

A. Signal Model

We consider a synchronous uplink long code (aperiodic)
DS-CDMA system, with identical channel coding, binary
phase-shift keying (BPSK) modulation, active users,
spreading gain , system load , and identical trans-
mission rates for all users. The transmitted symbols experience
multipath fading. We adopt a block fading model and denote by

the coherence time, measured in the number of symbol pe-
riods, over which the channel is stationary. Within a coherence
period, the chip matched filter output of the receiver at symbol
period can be collected into an -vector given by

(1)

where denotes the number of resolvable paths per user,
denotes the channel coded binary symbols, denotes

the channel gain of the th path of user , denotes the
binary spreading code with received from user
along path at time , and is an -vector of independent
and identical distributed (i.i.d.) circularly symmetric complex
Gaussian (CSCG)2 noise variables with (normalized) variance

2A complex random variable is CSCG distributed if its real and imaginary
parts are mutually independent Gaussian random variables with zero mean and
identical variance.
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. It should be noted that although the assumption of syn-
chronicity is valid in time division duplexing (TDD) systems,
it does not hold for many frequency division duplexing (FDD)
systems. However, as it will be shown, the results from the anal-
ysis of synchronous systems are also reasonably valid, though
not exactly the same, in the case of asynchronous systems.

For the system model, we have the following assumptions.
Assumption II.1: The channel gains are independently

CSCG distributed with zero means and variances . We con-
sider only the case of large , which implies that

, ; thus all users achieve the same performance
with maximal ratio combining (MRC).

Assumption II.2: We ignore intersymbol interference (ISI)
and assume that the spreading codes received along different
paths of a given user are mutually independent (independent
model).

Assumption II.3: Based on Assumption II.2, the crosscorrela-
tions (note that ) satisfy
the following:

• , if ;
• , if ;
• , if .
The above assumptions simplify the performance analysis

substantially. Moreover, these assumptions are reasonable for
practical systems due to the following reasons.

• Assumption II.1 is based on the fact that more propagation
paths are resolvable in CDMA systems than narrow band
systems, particularly in environments with abundant scat-
tering (e.g., indoor environment). With this assumption, we
ignore the impact of the fluctuation of received power in-
curred by the multipath fading, and consider only the im-
pairment caused by the channel estimation error.

• Assumption II.2 is unrealistic since these sequences are
shifted versions of each other (shifted model). However, the
accuracy of the results dependent upon this assumption is
validated with numerical results in Section VI and asymp-
totic analysis given in Appendix 1.

B. Receiver Structure

The structure of receiver is shown in Fig. 1. The channel co-
efficients are estimated in the channel estimator, which operates
in a “semi-blind” way. Training symbols are available to ob-
tain an initial estimate in the first iteration. In the further itera-
tions the information symbol decisions from channel decoders
are assumed to be correct. Then, both the training symbols and
fed back decisions are considered as training symbols and used
for ML channel estimation. A multiuser detector is used to mit-
igate the MAI and its outputs are deinterleaved and decoded
in the channel decoder. In the multiuser detector, we use the
LMMSE algorithm in the first iteration and the PIC algorithm
with the aid of hard decision feedback in the succeeding itera-
tions. We follow the standard procedure in turbo multiuser de-
tection [1], [13], [23], [32] to reconstruct the channel symbols
from the channel decoder output. Then these channel symbol
estimates are interleaved and fed back to the multiuser detector
and channel estimator to enhance the performance iteratively.

We denote by the estimated binary channel symbol of
user at symbol period that is fed back from the channel de-

coder. For simplicity, we use hard decision feedback and de-
note the feedback symbol-error rate by . The decision feed-
back error is denoted by . Supposing that
both and are symmetrically distributed, it is easy to
check that

• ;
• ;
• ;
• , when .
It should be noted that, in practical systems, soft decision

feedback will achieve better performance than hard decision
feedback. However, the performance of channel estimation with
soft decision feedback is determined by both the first and second
moments of the decision feedback error [17]. Thus, the cor-
responding analysis of performance evolution is more compli-
cated than the case of hard decision feedback. Therefore, we
adopt hard decision feedback in order to simplify the system
performance analysis.

For the decision feedback from channel decoders, we have the
following reasonable assumption, which simplifies the analysis
and is also used in [1].

Assumption II.4: The codeword length is assumed to be large
enough so that the transmitted symbols are coded over many co-
herence periods. The decision feedbacks are mutually
independent for different or .

III. PERFORMANCE ANALYSIS OF CHANNEL ESTIMATION

In this section, we discuss the performance of channel esti-
mation. First, we explain the training symbol based ML channel
estimation algorithm that is used in the first iteration. Then, we
consider the estimation of the channel coefficients with only
hard decision feedback from the channel decoders. Finally, we
extend the performance results to channel estimation with both
training symbols and decision feedback, the latter of which is
used in the further iterations.

In applying the turbo principle, to avoid the reuse of infor-
mation, only observations are used in the channel es-
timation for multiuser detection in symbol period . Thus, the
corresponding channel estimation error is independent of .
However, for simplicity of discussion, we still assume that all

received signals are used for the channel estimation while
retaining this independence assumption. For large , this re-
sults in only a small error in the analysis.

In the following discussion of channel estimation and PIC, we
regard the channel gains and the spreading codes as
realizations of random variables. Only the transmitted symbols,
decision feedback errors and noise are considered as random
variables. Throughout this paper, all expectations, denoted as

, are over the distributions of these three random variables.
Thus, our results are conditioned on the realizations of
and . However, by the strong law of large numbers, we will
see that we can obtain identical results for almost every realiza-
tion of and in the large system limit ( ).

A. Training Symbol Based ML Channel Estimation

First we assume that there are training symbols, channel
symbols known to the receiver, within a single coherence period.
For simplicity in deriving the channel estimate, we stack the
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chip matched filter output of the signal corresponding to these
training symbols, rewriting (1) as

(2)

where

...
...

. . .
...

Applying the ML criterion and the normality of the noise, we
can obtain the ML channel estimate, which is given by

(3)

where and .
It follows directly that the channel estimation error is

from which it is obvious that this error has zero mean and co-
variance .

For a finite , we can compute in the large
system limit (i.e., when while keeping the system
load, , constant). For a system with system load ,

it is well known that as , converges
to the multiuser efficiency of a decorrelator, namely [31].

is equivalent to the covariance matrix of a system with
equivalent system load . Thus, as

, we have

Therefore, for sufficiently large and , the variance of
channel estimation error is given by

(4)

which can be approximated by when is suffi-
ciently large.

It should be noted that, in asynchronous systems, we can
remove part of the chips in the first and the last symbol periods
to obtain a similar matrix , where denotes
the largest time offsets of different users, measured in chips.
Since the training symbols have been incorporated into the
spreading codes, we can consider the columns of as random

– vectors, regardless of the time offsets of
different users. Therefore, the variance of channel estimation
error in asynchronous systems is similar to that of synchronous
systems when is sufficiently large.

B. Channel Estimation With Decision Feedback

Algorithm: When decision feedback is used in place of
training symbols to derive the “ML” channel estimates,3 a
process that assumes that the decision feedback is free of error,
the channel estimation error is caused by both the thermal noise
and the decision feedback error. On applying (3), the channel
estimate with decision feedback is given by

where , , and is the version of
in (3) obtained from the decision feedback, which is given by

...
...

. . .
...

Hence, the channel estimation error can be decomposed into
two parts

(5)

where and denote the
channel estimation error due to the decision feedback error and
the thermal noise, respectively. It is reasonable to assume that

and are mutually independent. (Recall our assumption
concerning the use of only measurements in estimating
channel gains at time .)

It is difficult to tackle the calculation of due to the ma-
trix inversion . However, we can approximate by

when is sufficiently small. This approximation
is justified by the following lemma.

3By “ML” estimates, we mean using the expression obtained from the training
symbol based estimation, but with symbols obtained from decision feedback. It
is not an exact ML estimate since the distribution of the decision feedback error
is not considered.
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Lemma III.1: When fixing and , we have

almost surely4 as and .
Proof: According to the definition of , we have

where . According to the error anal-
ysis of matrix inversion in [11], we have5

which tends to 0 as . Thus, we have

as . Therefore, converges to almost surely as
.

Applying the strong law of large numbers and the fact that the
diagonal elements in

are and the off-diagonal elements in
are independent for dif-

ferent values of and have zero mean, we obtain that, while
keeping and fixed, almost surely, as

. Since the elements of are continuous functions
of those in in a neighborhood of , we also
have as . This completes the
proof.

Therefore, we can further approximate by
for large and small . For simplicity, our further discus-
sion of will be based on this approximation, which will be
validated by numerical results. Consequently, in the following
discussions, we use the approximations

4Here, a matrix is considered as a point in the probability space and the metric
is induced by a matrix norm.

5x = O(P ) means x=P < 1 as P ! 0.

1) Covariance Matrix of Channel Estimation Error: We de-
note the covariance matrices of , and by , and

, respectively, which satisfy . We first con-
sider the channel estimation error incurred by decision feedback
errors. The following lemma shows that the channel estimation
error is asymptotically biased. The proof is given in Ap-
pendix II.

Lemma III.2: When keeping and fixed, we have

(6)

almost surely, as .
It should be noted that this bias cannot be removed a priori

in the estimator since it is dependent on the channel gain .
However, this bias vanishes as .

An asymptotic expression for the elements in is given in
the following proposition, whose proof is given in Appendix III,
where we also explain that the conclusion also applies to asyn-
chronous case when is sufficiently small.

Proposition III.3: For all and , when fixing and ,
we have that (recall that is the channel gain of use and
path ), shown in (7) at the bottom of the page, almost surely, as

.
For , which is caused by thermal noise, the corresponding

analysis is identical to that of training symbol based estimation.
Then, we have

(8)

almost surely, as . Then the covariance matrix of
channel estimation error can
be obtained from (7) and (8).

2) Variance of Channel Estimation Error: The variance of
the channel estimation error can be obtained as a corollary of
the previous subsection.

Corollary III.4: On defining , we
have

(9)

almost surely, as .
Thus, when are sufficiently large, we have the fol-

lowing approximation:

(10)

if

if and

if

(7)
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It should be noted that the channel estimation error cannot be
removed by increasing although the variance vanishes as

, since the estimate is biased and the bias cannot be
removed a priori.

C. Estimation With Both Training Symbols and
Decision Feedback

We denote the number of training symbols by and the cor-
responding percentage by . When the training sym-
bols and decision feedback are combined for channel estima-
tion, the performance is determined by (10), with replaced by

. Decision feedback should only be used along with the
training symbols if the resulting variance is smaller than that ob-
tained when only the training symbols are used. Then it is easy
to check that, when and are sufficiently large, ,
the maximum assuring performance improvement when de-
cision feedback is used, is determined by

which results in

(11)

from which we observe that decreases with and
while increasing with and .

IV. PIC AND CHANNEL DECODER

A. Performance Analysis of PIC

For convenience of analysis, the performance of PIC is ana-
lyzed based on matched filter (MF) outputs. We drop the index
of the symbol period for notational simplicity throughout this
section. For a given symbol period, the MF outputs, which form
sufficient statistics for multiuser detection, are given by

In PIC-based multiuser detection, the MAI reconstructed from
the channel estimates and the decoder output is subtracted di-
rectly from the MF output of the desired user. Without loss of
generality, we take the th path of user 1 as an example; then the
MF output after PIC, which is contaminated by residual MAI
and thermal noise , is given by

(12)

where

which is the sum of the residual interference and the thermal
noise. It is obvious that . And the corre-
sponding variance is given by (13), shown at the bottom
of the page, as , where we have applied the fact
that ,

, . It is easy to check that is
identical for asynchronous systems since different time offsets
do not affect the interference power.

It is difficult to apply the central limit theorem to show the
asymptotic normality of the PIC output since the variables

are mutually correlated across different users and
paths. However, numerical results in Section VI will show that
the output distribution of PIC can be well approximated by
a Gaussian distribution. Thus, in the subsequent sections, we
assume that the output of PIC is Gaussian distributed.

According to the properties of the crosscorrelation given in
Section II-A, almost surely, as . Thus,
for large spreading gain, the interference across different paths
of the same user can be ignored. With the normality assump-
tion of the residual MAI, it is easy to show that the variables

are mutually independent as , which
means that channel coded symbol is transmitted through
independent channels. This assumption simplifies the analysis
although it does not hold exactly when is finite. Thus, we use
MRC to collect these replicas, resulting in the output

(14)

Applying Lemma III.2, we obtain that, as

(13)
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Moreover, we can obtain that, as

Therefore, when and are sufficiently large, (14) can be
approximated by

(15)

where is a CSCG random variable with variance of
.

B. Performance of Channel Decoder

At the channel decoder, is a function of the input signal-to-
interference-plus-noise ratio (SINR) at the input to the channel
decoder given by

(16)

where the function can be estimated using Monte Carlo simu-
lations. For most practical channel codes, the following assump-
tion is reasonable.

Assumption IV.1: Within a closed interval ,
function satisfies

• monotonically increases with , and ;
• is continuously differentiable and .

V. ANALYSIS OF SYSTEM PERFORMANCE

In this section, we analyze the overall iterative system shown
in Fig. 1. We consider only the case of small , moderate
and moderate and note that the analytic results become more
precise as and decrease and increases. This configura-
tion is reasonable for the decision feedback based systems since
if is large, training symbol based channel estimation can be
adopted with marginal loss of spectral efficiency; if is small,
it is difficult to carry out coherent detection; and if is large,
the iteration diverges. Although the performance analysis of the
channel estimation in Section III is based on large , numerical
results in Section VI indicate that expression (10) is still valid
for moderate . We adopt the expressions (10) and (13) in large
system limits ( ).

A. Iterative Mapping

In this section, we consider the th iteration and couple the
results from Sections III and IV to analyze the overall system

performance. We can regard the decoding process as an iterative
mapping in terms of the error probability of the
decoder output after the th iteration which is given by
[recall that is defined as the function characterizing the output
error probability in terms in input SINR in (16)]

(17)

where we ignore terms of a smaller order than and since
we assume small and large (or moderate) . Based on (10),
(13), and (15), the coefficients and are given by

B. Condition for Convergence

A reasonably good initialization, which results in sufficiently
small channel estimation error and MAI in the first iteration, is
necessary to guarantee the convergence of the iterative mapping
described in (17). In the initial stage, only training symbols are
used for the channel estimation since no decision feedback is
available then. Any noniterative multiuser detection technique
can be applied to the initializing stage. For practical applica-
tions, we can use the LMMSE detector, whose performance
using imperfect channel estimation can be obtained using the
replica method [18].

For convergence, the variance of input interference and noise
of the initializing stage, denoted by and obtained from
the SINR of the LMMSE detector, must satisfy the following
conditions.

• is located within the interval defined in Sec-
tion IV-B, namely

(18)

This condition assures a reasonably good initial perfor-
mance of the iterations.

• The variance of interference and noise decreases with iter-
ation time, namely

(19)

This condition assures that the iterations do not diverge.

C. Condition Assuring the Uniqueness of the Fixed Point

If there exists more than one fixed point, the iteration may
become stuck at a suboptimal fixed point and not converge to
the optimal one. The following proposition provides a sufficient
condition for the uniqueness of the fixed point and the corre-
sponding convergence rate.
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Proposition V.1:
1) If there exists a , such that

(20)

then there exists only one fixed point for the iterative
mapping , and for every initial point

, the mapping converges to with an exponential rate,
namely .

2) If there exists an such that
, then there exists a such that there is more

than one fixed point for .
Proof:

1) The condition implies that
. Then is a

contraction mapping, and the conclusions follow due to
Banach’s fixed point theorem [14].

2) Letting and setting , we
can show that due to the assumption that

. It is easy to check that is a fixed
point and . Hence,
there exists an such that for all ,

. However,
for due to condition (19). If ,
there exists at least one fixed point within since

; if , there exists at least one fixed
point different from within .

It should be noted that condition (20) is sufficient but not nec-
essary for the uniqueness of the fixed point. This condition is
more stringent than the condition of convergence in (19) since
it assures both the uniqueness of the fixed point and the expo-
nential convergence rate. The second part shows that a moderate

may cause multiple fixed points. A useful conclusion drawn
from (20) is that this iterative procedure does not work well for
those channel codes, such as powerful turbo codes or LDPC
codes, that have a steep performance curve (bit-error rate versus
SINR) which implies a large value of . This will
be demonstrated in numerical simulations in Section VI.

D. Asymptotic Multiuser Efficiency

As is described in [31], the asymptotic multiuser efficiency
measures the slope at which the bit-error-rate goes to zero in log-
arithmic scale, giving intuition into the performance loss from
multiuser interference.

Suppose that there is only one fixed point for the iterative
mapping , and let be this fixed point when the noise
power is . Similarly, let and be the corre-
sponding values of and in (17). It is obvious that

and .
The asymptotic multiuser efficiency is given by

If , then is
the unique solution of . Applying the assump-
tions that and , we have

Thus

(21)

From (21), we can see that the loss of AME is due to the channel
estimation error incurred by the thermal noise. The impact of the
decision feedback error vanishes as , while that of the
channel estimation error remains.

E. Computational Issues

The main computational cost of the iterative channel estima-
tion and multiuser detection includes the following:

• solving the linear equation for ML channel esti-
mation;

• reconstructing the channel symbols and cancelling the in-
terference;

• channel decoding.
Since the channel symbol reconstruction is similar to the en-
coding procedure and the interference cancellation requires only
subtractions, this is not a bottleneck of the whole procedure and
the corresponding computational cost is of complexity .
Real-time channel decoding can also be accomplished in a way
similar to turbo codes. Therefore, the main bottleneck is solving
the linear equation for channel estimation.

Direct Gaussian eliminatation, which is of complexity
, can be applied to solve the equation when

is small. When is large, iterative techniques of solving linear
equations, such as the Jacobi method and the Gauss–Seidel
method, can be applied. For assuring the convergence, we cite
the following lemma from [10].

Lemma V.2: The sufficient and necessary condition for the
convergence of iterations in solving the linear equation
is that

• and are both positive definite in the
Jacobi method;6

• is positive definite in the Gauss–Seidel method.

6diag(X) denotes a diagonal matrix constituted by the diagonal elements in
matrix X.
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Fig. 2. Average variance of channel estimates versus the coherence time M .

The Gauss–Seidel method always converges when
since is positive definite when . For the Jacobi
method, it is easy to check that . Since the
largest eigenvalue of converges to [3] almost
surely as , the eigenvalues in are
less than almost surely in the large system limit.
Therefore, is a sufficient condition for the almost sure
convergence of Jacobi iteration in the large system limit. Then,
when and are sufficiently large and , we can use
either Gauss–Seidel or Jacobi iterations to estimate the channel
coefficients efficiently.

VI. NUMERICAL RESULTS

A. Channel Estimation

Fig. 2 shows the average variance of the channel estimates
versus the coherence time with the configuration of ,

, , , and the signal-to-noise ratio
dB.7 The asymptotic results obtained from (10)

and the simulation results for finite systems ( ) with
spreading codes for the shifted model are represented by solid
and dotted curves, respectively. In this figure, the estimation error
variance caused by decision feedback and noise are denoted by

and , respectively. The corresponding asymptotic results
are obtained from the first and the second terms in (10), respec-
tively. We can observe that the asymptotic results match the
simulation results well even when is small. This figure also
demonstrates the validity of results based on the independence
assumption of the spreading codes given in Section II-A.

B. Normality of PIC Output

Fig. 3 shows the channel symbol-error rate8 with the configura-
tion of dB, and and . The
solid curves represent the results obtained from numerical sim-
ulations and the dashed curves represent the results with the as-
sumption that the output of PIC is CSCG distributed. The gap be-

7Note that P and SNR are not mutually independent; however, we set these
two parameters arbitrarily to test the validity of asymptotic results.

8This channel symbol-error rate is equivalent to bit-error rate when the output
of PIC is used directly for the detection (without channel decoding).

Fig. 3. Comparison of simulated bit-error rates and those obtained using a
Gaussian approximation.

Fig. 4. Performance of channel codes used in the numerical results, where the
input SNR = 1=� .

tween the numerical results and CSCG based prediction is small,
thus justifying the normality assumption of the PIC output.

C. User Capacity

We define the user capacity to be the maximum system load
with which the system can achieve the information bit-

error rate of 10 . Two types of channel codes, the convolu-
tional code and a turbo code (with two constituent
codes ), with bit rate and codeword length
1024 are used in this paper and their error rates for both infor-
mation bits and extrinsic information based channel symbols are
shown in Fig. 4. The corresponding ’s for various values of
coherence time , denoted by “iterative,” are given in Figs. 5
and 6 for convolutional codes and turbo codes, respectively,
with the configuration , dB, and .
The ’s of the noniterative LMMSE detector, denoted by
“LMMSE,” are given for comparison. We can see that the it-
erative system achieves substantially higher user capacity than
the noniterative one. The performance of systems with ideal ini-
tialization, where actual channel parameters are provided by a
genie in the initialization stage, denoted by “perfect initializa-
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Fig. 5. Maximum load of systems with convolutional codes.

Fig. 6. Maximum load of systems with turbo codes.

tion,” implies that a good initialization can improve the per-
formance considerably. Thus, blind or semi-blind noniterative
techniques, which make use of information symbols, can be ap-
plied to obtain a better initialization. For comparison, the user
capacities of both iterative and noniterative systems with per-
fect channel state information are also given in both figures. An
interesting observation is that the relative performance gain of
iterative systems over the noniterative ones is smaller for turbo
codes than for convolutional codes. This is due to the steeper
waterfall region in turbo codes.

VII. CONCLUSION

In this paper, we have analyzed the performance of decision
feedback based iterative channel estimation and multiuser de-
tection in multipath DS-CDMA channels. The decoding process
has been described as an iterative mapping in terms of the vari-
ance of the channel decoder output, and conditions assuring the
convergence and uniqueness of a fixed point have been pro-
posed. Numerical results show that the initialization is impor-
tant to the iterations, thus necessitating the use of noniterative
blind or semi-blind channel estimation algorithms for initializa-
tion purposes. Another observation of interest is that the gain
of the iterative process over a noniterative one is small when a
near-optimal channel coding scheme is used.

APPENDIX I
VALIDITY OF INDEPENDENCE MODEL FOR SPREADING CODES

In (1), for different values of and , and are gen-
erated by the same binary sequence with different offsets. Our
purpose is to show that if and are large enough, we can
regard the shifted spreading codes of different paths of a given
user as independent sequences. The properties based on this as-
sumption, which are used for the system performance analysis
in this paper, include the following:

• the properties of crosscorrelation in Section II-A;
• the distribution of the eigenvalues of the matrix , when

developing the expression of for finite and large
in Section III-C. Our assumption means that the cor-

responding distribution of the shifted model is asymptoti-
cally identical to that of the independent model.

It is easy to check the first item using the symmetry of the
binary distribution. However, the validity of the second one is
nontrivial and is of considerable importance when applying the
theory of large random matrices to multipath fading channels.
We can tackle this problem by showing that the moments of
the eigenvalues in both models are the same via the following
lemma.

Lemma I.1: Denote a generic eigenvalue of by .
Then the th moment of in the shifted model is given by

as

which is the same expression of that of the independent model,
and where the definition of is given in [19] and

.
Proof: Using similar arguments to those in [19], we have

(22)

where .
For any , when and

equals the offset difference between these two shifted
sequences. However, the probability of such events vanishes as

since

as

Thus, as , the term involving ’s of different users,
which are mutually independent, dominates the summation in
(22). The remaining part of the proof is the same as in [19].

The following lemma ([5, Theorem 30.1]) provides a suf-
ficient condition for the equality of two probability measures
when their moments are identical .

Lemma I.2: Let be a probability measure on the real line
having finite moments of all orders. If the
power series has a positive radius of conver-
gence, then is the only probability measure with the moments

.
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For applying Lemma I.2, we need the following lemma which
provides an upper bound for the moments of the eigenvalues.

Lemma I.3: For any eigenvalue of , there exists a
constant such that for

(23)

Proof: The result follows by induction on .
It is easy to verify that (23) holds when . Suppose

, for . Use the following
recursive formula [19] to evaluate , which is given
by

Then we have

where the first inequality is based on the assumption on
and the fact that ; the third inequality ap-

plies the condition that and
for . This concludes the proof.
Applying Stirling’s formula and Lemmas I.1,2,3, we can ob-

tain the conclusion that the eigenvalue distribution of in the
shifted model is identical to that of the independent model, thus
assuring the assumption that the columns of can be regarded
as independent in the large system limit.

APPENDIX II
PROOF OF LEMMA III.2

Proof: From the definition of , we have

(24)

We consider the term first. It is easy to check
that (recall that denotes the spreading code of user along
path )

if

if

where , , , .
It should be noted we applied the fact that
in the second equality.

According to Assumption II.3, the spread codes are mutually
independent for different users or different paths. Thus, by ap-
plying the strong law of large numbers, we have

if
if

Therefore, we have

if
if almost surely, as

Similarly, we can show that

if
if almost surely, as

This completes the proof.

APPENDIX III
PROOF OF PROP. III.3

Proof: The covariance matrix is given by

(25)
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The elements in are given by

where , namely the
spreading code (incorporating the channel symbol) of
the th path of user at symbol period ,

and is the th ele-
ment of vector and equals . To compute the
corresponding expectation, we apply the following properties,
which are based on Assumption II.4:

• when , if ,
, since and are determined by the

same decision feedback;
• when , if ,

, since and are determined by deci-
sion feedback from different users;

• when , , since
and are determined by decision feedback

from different symbol periods;
• when , .
Thus the expectation of th element of

is given by

where , , and represent the corresponding three summa-
tions, respectively.

Applying the strong law of large numbers and the assumption
on the spreading codes that are independent for different
values of or , we can obtain that, as , the following
conclusions hold almost surely:

if

if and

if

if ,

if

We can apply the same manipulation and obtain that

as . Therefore, we can obtain (7) since the sum
of the middle three terms in (25) is zero and cancels

.
It should be noted that the above analysis is also valid for

asynchronous case when is sufficiently small. Similar to the
discussion in Section III-A, we can remove part of the chips in
the first and the last symbol periods to obtain a similar matrix

, where denotes the largest time offsets of
different users, measured in chips. When is sufficiently small
and is sufficiently large, we can ignore the terms scaled by

and the edge effect in the first and last symbol period. Then,
we have

where is the th column of matrix , which converges to
as .
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