
Surface Mesh Segmentation using Local Geometry

Chansophea Chuon
Computer Science and Information Management

Asian Institute of Technology
Klong Luang, Pathumthani 12120, THAILAND

chansophea.chuon@ait.asia

Sumanta Guha
Computer Science and Information Management

Asian Institute of Technology
Klong Luang, Pathumthani 12120, THAILAND

guha@ait.asia

Abstract—We present a novel algorithm to segment a 3D
surface mesh into visually meaningful regions. Our approach
is based on an analysis of the local geometry of vertices. In
particular, we begin with a novel characterization of vertices
as convex, concave or hyperbolic based upon their discrete
local geometry. Hyperbolic and concave vertices are consid-
ered potential feature region boundaries. We propose a new
region growing technique starting from these boundary vertices
leading to a segmentation of the surface that is subsequently
simplified by a region-merging method. Experiments indicate
that our algorithm segments a broad range of 3D models
at a quality comparable to existing algorithms. Its use of
methods that belong naturally to discretized surfaces and ease
of implementation make it an appealing alternative in various
applications.

Keywords-Feature extraction; hyperbolic vertex; local geom-
etry; mesh segmentation; region growing; region merging.

I. I NTRODUCTION

Polygonal meshes are the dominant mode of representing
surfaces in computer graphics. They are geometrically sim-
ple and intuitive, and lend themselves to efficient algorithms
and data structures. However, other than vertex-edge-face
adjacency data, a polygonal mesh does not intrinsically
possess any high-level semantic structure. For example, there
is no information as such in the mesh data of the hand
in Figure 1 that distinguishes the five fingers. However,
such segmentation of an object into perceptually mean-
ingful regions is important in applications such as shape
recognition [19], morphing [7], texturing [9] and collision
detection [10], amongst others.

The goal of surface mesh segmentation then is to decom-
pose the input mesh into smaller regions that are perceptually
significant. Nevertheless, as Attene et al [1] point out it is
not possible to define exactly what constitutes perceptual
significance. Not only does this lie “in the eyes of the
beholder” it may vary from application to application. The
viewer’s world knowledge is critical to segmentation as well
– in a model that a layman would segment only into heart
and lung and tissue, an oncologist may distinguish cancerous
tumors and benign growths as well.

Our contribution is a novel approach to mesh segmen-
tation that first separates vertices based on their local ge-
ometry. In particular, we distinguish between convex, con-

Figure 1. Hand model.

cave and hyperbolic vertices by examining their geometric
neighborhoods as a discrete structure. This characterization,
which seems to be new in CG applications, is not derived
from the well-known method of differentiating between
hyperbolic, parabolic and elliptic points on a smooth surface
using Gaussian curvature, though the two are not unrelated.
Following the characterization of vertices, we estimate the
potential (meaningful) region boundaries to be along the
concave and hyperbolic vertices. Regions are subsequently
grown from the boundary vertices by a novel modification of
the watershed segmentation scheme. A final region merging
step bounds the number of segments.

The rest of the paper is organized as follows. Section II
briefly reviews existing algorithms that are relevant to ours.
In Section III we discuss the background theory and our
segmentation method. Section IV shows experimental results
on various 3D models and Section V concludes the paper.

II. RELATED WORK

An approach to segmentation that splits the surface into
coherent nearly-flat patches based, typically, on a curvature
analysis is called patch-type segmentation [6], [4], [16],[19].
See Figure 2. Patch-type segmentation is used in applications



that are sensitive to geometric properties such as planarity
and convexity. These include texture mapping, re-meshing
and simplification [15].

Figure 2. Patch-type (left) and part-type (right) segmentation taken
from [15].

Part-type segmentation, on the other hand, seeks to sub-
divide the input mesh into sub-meshes that match human
perception. Algorithms of this type can assist applications
such as shape retrieval, shape recognition, collision detection
and object manipulation.

Rom and Medioni [13] in 1994 proposed a framework
to decompose 3D objects into parts using the curvature
properties of parabolic curves. Though they initiate the use
of curvature in segmentation their approach cannot directly
process triangle meshes.

Sacchi et al [14] and Mangan and Whitaker [11] propose
approaches to segmentation using curvature that can apply
to a mesh object. They use total curvature as the key
to segmenting parts from an input mesh. However, their
segmentation of large models often fails to match viewer
perception.

Page et al [12] in 2003 introduced a method called
Fast Marching Watershedsthat splits a triangle mesh into
segments that fit the definition of visual parts according to
theminima ruleproposed by Hoffman and Richards [8]. The
minima rule is an elegant theory from computer vision which
propounds that human perception decomposes a 3D object
into visual constituents at contours of negative Gaussian
curvature – bands of hyperbolic points in other words.

Zhang et al [18] proposed a segmentation algorithm that
estimates the Gaussian curvature at a vertex, identifies the
hyperbolic vertices as potential region boundaries, applies
the watershed technique to grow regions, and completes
finally with a curvature-driven region merging phase. Re-
cently, Chen and Georganas [3] improved the algorithm of
Zhang et al. [18] by extending the boundary detection step
to additionally identify concave vertices and prevent them
from breaking segment integrity.

Our segmentation algorithm is inspired by that of Chen
and Georganas. However, we do not invoke Gaussian cur-
vature. Instead, we apply our new classification scheme to

distinguish concave and hyperbolic vertices, which subse-
quently serve as region boundaries. Our region growing
algorithm is a modification of the watershed technique that
seems to better allow growth into intuitively separate parts.

III. T HEORY AND ALGORITHM

A. Vertex classification

To simplify the theoretical development we assume that
the input mesh is a topologically closed surface, implying
that it has a meaningful interior. This assumption is not es-
sential, however, and our code works for non-closed meshes
as well. We assume that mesh faces are all triangular. We
begin with a characterization of vertices as convex, concave
or hyperbolic.

Definition 1. A vertex V of a mesh M is hyperbolic if it is
contained in the interior (as a subspace ofR

3) of the convex
hull C of its neighbors. A vertex V that is not hyperbolic is
convex if there exists a (flat) disc D centered at V which does
not intersect the interior of M; otherwise, it is concave.

V

D

W2

W3

W1

(a)

V

(b)

V

D

(c)

Figure 3. Illustrations of convex, hyperbolic and concave vertices.

For example, the convex hull of the neighbors ofV in
Figure 3(a) is the triangleW1W2W3, which has empty interior
in R

3. Therefore,V is trivially non-hyperbolic; moreover, the
discD proves thatV is convex. The vertexV on the saddle-
shaped surface in Figure 3(b) is hyperbolic. The reader may
check in Figure 3(c) that all the vertices on the L-shaped
solid are non-hyperbolic, and that only vertexV is concave,
while all the rest are convex. The discD at a corner of the
L-shaped solid indicates the reason why we cannot replace
the disc in the definition of convexity with its containing
plane – a plane may intersect the mesh at a distant point.

Our characterization of a mesh vertex is not unrelated to
that of a point of a smooth surface as hyperbolic, parabolic
or elliptic by means of Gaussian curvature, but we’ll not
explore the connection here. It should be observed though



that our use of the discrete local geometry to classify vertices
seems more natural for a meshed surface than computing
pseudo-curvature values, as some authors do, on a smooth
approximation.

Whether a vertexV is hyperbolic or not is a local decision
depending on its disposition with respect to its neighbors.
However, distinguishing a non-hyperbolic vertexV as either
convex or concave necessitates one to determine the side of
the surface nearV that the interior ofM lies, which requires
global knowledge ofM.

B. Region Growing

Our strategy to find features is to first presume hyperbolic
and concave vertices as potential feature region boundaries.
The motivation is simple. A surface whose vertices are all
convex, e.g., the box of Figure 3(a), is likely featureless.On
the other hand, the two legs of the L-surface of Figure 3(c)
appear to be features that are separated by the edge at the
crook between them – all vertices in the interior of this edge
being concave. Vertices along the circular region where the
stem meets the cap of the mushroom of Figure 4 appear to
be hyperbolic.

Figure 4. Mushroom model.

The next stage in our strategy is, therefore, to treat the
hyperbolic and concave vertices as ”seeds”, from which to
grow the feature regions. In particular, we shall grow the
regions in a scattershot manner as the local geometry at
a seed does not in general suggest a best direction. The
plan is as follows. Seeds are initially all labeled differently.
They are next processed iteratively to label their neighbors.
Vertices adjacent to each seed, which have not already been
labeled, are given new and different labels. In the following
rounds vertices already labeled are processed iterativelyto
propagate their labels in a breadth-first manner.

For example, say the labels after the first round of the
verticesw1,w2, . . . ,wk, adjacent to a seedv are l1, l2, . . . , lk,
respectively. Then, vertices adjacent tow1, that have not
already been labeled, are labeledl1; then, those adjacent
to w2, that have not already been labeled, are labeledl2;

and so on. Figure 5 illustrates the idea. The process of
growing feature regions in this manner from each seed is
repeated iteratively until all the vertices of the mesh have
been labeled.

ω1 ω2

ω3
ω4

l1
l2

v

l3l4

l1

l1

l2

l2

l3l3
l4

Figure 5. Region growing.

Our region growing method, though inspired by the
watershed technique, is different in that the latter labels
regions with the names of the seeds themselves, while our
method adds one layer of growth in every possible direction.
This idea suggested itself from experimentation with various
models and seems to actually work better than the straight
watershed scheme in practice.

C. Region Merging

Vertices having like labels form a feature region, but
there is likely great over-segmentation at this point, so we
begin a third stage of region merging. In this final stage,
the feature region with the smallest number of vertices is
iteratively merged with a neighboring region. We choose the
neighboring region to merge with as the one – borrowing a
heuristic from Chen and Georganas [3] – that shares the
longest border with the candidate for merging. Figure 6
shows the idea. Region merging continues until a preset
threshold is reached in the number of segments.

Figure 6. Region merging.

D. Complexity

Leaving out details in this version, it is still fairly straight-
forward to see that the complexity of our segmentation
procedure is linear in the size of the mesh, because: (a)



the classification of vertices as convex/concave/hyperbolic
requires examination only of each vertex’s link, and, more-
over, each edge of a surface mesh can appear in the link of
at most two vertices, for a total cost linear in the number
of edges; (b) region growing is a breadth-first procedure
requiring time linear in the number of vertices; (c) region
merging costsO(1) at most per vertex for a total linear cost
as well.

IV. EXPERIMENTAL RESULTS

We have implemented our segmentation algorithm, coding
it in C++ with the STL on an Intel platform with 2Ghz CPU
and 1GB RAM. We used several pre-packaged routines from
the CGAL library [2], the Qt toolkit [17] to build the GUI,
and the libQGLViewer [5] as a rendering engine.

Figures 7-11 show experimental results on fairly large
meshes. The quality of the output compares well with that
of existing methods.

Figure 7. Mushroom model (240 triangles) segmented to 2 regions.

Figure 8. Goblet model (510 triangles) segmented to 4 regions.

Figure 9. Elk model (10K triangles) segmented to 7 regions.

Figure 10. Hand model (50K triangles) segmented to 8 regions.

Figure 11. Octopus model (34K triangles) segmented to 15 regions.



V. CONCLUSIONS ANDFUTURE WORK

We have proposed a novel algorithm for segmenting
meshed surfaces into smaller visually meaningful parts. We
apply a discrete and local characterization, itself new, of
vertices into hyperbolic, convex and concave, to find region
boundaries. This method seems a more natural fit for a mesh
structure than the popular Gaussian curvature estimation
method, the latter being a transplant from smooth surfaces.
Our method of region growing is a novel modification as
well of the watershed method.

There are specific improvements that can be made. For
example, the region growing method is not robust and is
sensitive to the initial labeling of the boundary vertices.We
hope to address this problem by “inverting” the labeling
procedure so that it starts from the non-boundary vertices,
each such finding a nearest (according to an appropriate
distance metric) boundary vertex and adopting the latter’s
label. We would also like to replace the user-set threshold
for the number of regions at which the merging process
stops, with automatic termination based upon some measure
of the quality of the current segmentation. After these
modifications are done, and experimental results satisfactory,
we plan to make the software available freely.

We have as yet to make a systematic comparison of our
algorithm with existing ones. We would like to do this
following the schema of Attene et al [1]. Further, we intend
to make at least an empirical observation of the processing
time on large meshes.

Another important direction for future work that we wish
to pursue is to extend the algorithm to process point cloud
data, where there is no connectivity information.

ACKNOWLEDGEMENTS

We are grateful to the AIM@SHAPE Project for the mesh
models that we used. We thank Nguyen Tan Khoa for initial
contributions.

REFERENCES

[1] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo,
and A. Tal. Mesh segmentation - a comparative study. In
SMI ’06: Proceedings of the IEEE International Conference
on Shape Modeling and Applications 2006 (SMI’06), page 7,
Washington, DC, USA, 2006. IEEE Computer Society.

[2] http://www.cgal.org/.

[3] L. Chen and N. D. Georganas. An efficient and robust
algorithm for 3d mesh segmentation.Springer Science +
Business Media, LLC, 2006.

[4] D. Cohen-Steiner, P. Alliez, and M. Desbrun. Variational
shape approximation. InSIGGRAPH ’04: ACM SIGGRAPH
2004 Papers, pages 905–914, New York, NY, USA, 2004.
ACM Press.

[5] G. Debunnes. http://artis.imag.fr/˜Gilles.Debunne/
QGLViewer/.

[6] M. Eck, T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery,
and W. Stuetzle. Multiresolution analysis of arbitrary meshes.
In SIGGRAPH ’95: Proceedings of the 22nd annual confer-
ence on Computer graphics and interactive techniques, pages
173–182, New York, NY, USA, 1995. ACM Press.

[7] A. D. Gregory, A. State, M. C. Lin, D. Manocha, and M. A.
Livingston. Interactive surface decomposition for polyhedral
morphing. The Visual Computer, 15(9):453–470, 1999.

[8] D. D. Hoffman and W. Richards. Parts of recognition. Tech-
nical Report AIM-732, Massachusetts Institute of Technology
- Artificial Intelligence Laboratory, 1983.

[9] B. Levy, S. Petitjean, N. Ray, and J. Maillot. Least squares
conformal maps for automatic texture atlas generation.ACM
Trans. Graph., 21(3):362–371, 2002.

[10] X. Li, T. W. Toon, and Z. Huang. Decomposing polygon
meshes for interactive applications. InI3D ’01: Proceedings
of the 2001 symposium on Interactive 3D graphics, pages
35–42, New York, NY, USA, 2001. ACM Press.

[11] A. P. Mangan and R. T. Whitaker. Partitioning 3d surface
meshes using watershed segmentation.IEEE Transactions on
Visualization and Computer Graphics, 5(4):308–321, 1999.

[12] D. L. Page, A. F. Koschan, and M. A. Abidi. Perception-
based 3d triangle mesh segmentation using fast marching
perception-based 3d triangle mesh segmentation using fast
marching watersheds.Proceedings of International Confer-
ence on Computer Vision and Pattern Recognition, II:27–32,
June 2003.

[13] H. Rom and G. Medioni. Part decomposition and description
of 3d shapes. InPattern Recognition, pages 629–632, 1994.

[14] R. Sacchi, J. F. Poliakoff, P. D. Thomas, and K. H. Hafele.
Curvature estimation for segmentation of triangulated sur-
faces. InDigital Imageing and Modeling, pages 536–543,
1999.

[15] A. Shamir. A formulation of boundary mesh segmentation.
In 3DPVT ’04: Proceedings of the 3D Data Processing, Vi-
sualization, and Transmission, 2nd International Symposium
on (3DPVT’04), pages 82–89, Washington, DC, USA, 2004.
IEEE Computer Society.

[16] A. Sheffer. Model simplification for meshing using face
clustering. InComputer Aided Desgin, pages 925–934, 2001.

[17] TrollTech. Qt 4.2.2 community version
http://www.trolltech.com.

[18] Y. Zhang, J. Paik, A. Koschan, M. A. Abidi, and D. Gorsich.
A simple and efficient algorithm for part decomposition of
3-d triangulated models based on curvature analysis.IEEE
ICIP, 2002.

[19] E. Zuckerberger, A. Tal, and S. Shlafman. Polyhedral surface
decomposition with applications. InComputer & Graphics,
pages 733 – 743, 2002.


