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Abstract Hyperspectral imaging, which records a

detailed spectrum of light arriving in each pixel, has many

potential uses in remote sensing as well as other application

areas. Practical applications will typically require real-time

processing of large data volumes recorded by a hyper-

spectral imager. This paper investigates the use of graphics

processing units (GPU) for such real-time processing.

In particular, the paper studies a hyperspectral anomaly

detection algorithm based on normal mixture modelling

of the background spectral distribution, a computationally

demanding task relevant to military target detection

and numerous other applications. The algorithm parts are

analysed with respect to complexity and potential for par-

allellization. The computationally dominating parts are

implemented on an Nvidia GeForce 8800 GPU using the

Compute Unified Device Architecture programming inter-

face. GPU computing performance is compared to a multi-

core central processing unit implementation. Overall, the

GPU implementation runs significantly faster, particularly

for highly data-parallelizable and arithmetically intensive

algorithm parts. For the parts related to covariance com-

putation, the speed gain is less pronounced, probably due to

a smaller ratio of arithmetic to memory access. Detection

results on an actual data set demonstrate that the total

speedup provided by the GPU is sufficient to enable real-

time anomaly detection with normal mixture models even

for an airborne hyperspectral imager with high spatial and

spectral resolution.
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1 Introduction

Hyperspectral imaging is characterized by its ability to

record detailed information about the spectral distribution

of the received light. Hyperspectral imaging sensors typi-

cally measure the energy of the received light in tens or

hundreds of narrow spectral bands in each spatial position

in the image, so that each pixel in a hyperspectral image

can be represented as a high-dimensional vector containing

the sampled spectrum. Since different substances exhibit

different spectral signatures, hyperspectral imaging is a

well-suited technology for numerous remote sensing

applications including target detection.

When no information about the spectral signature of the

desired targets is available, a popular approach for target

detection is to look for objects that deviate from the typical

spectral characteristics in the image. This approach is

commonly referred to as anomaly detection [17], and is

related to what is often called outlier detection in statistics.

If targets are small compared to the image size, the spectral

characteristics in the image are dominated by the back-

ground. An important step in anomaly detection is

therefore often to compute a metric for correspondence

with the background, which then can be thresholded to

detect objects that are unlikely to be background objects.
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Hyperspectral imaging inherently produces large vol-

umes of data which create challenges in data transfer,

storage and processing. In particular, real-time processing

of hyperspectral imagery is no trivial task. Nevertheless, it

is highly desirable in target detection and other applications

to process images in real time, usually on board the plat-

form carrying the sensor.

Several real-time anomaly detection methods suitable for

on-board processing exist, like the SSRX implemented in

the ARCHER and WAR HORSE programs [18, 19], but

these are usually based on very simple geometric or sta-

tistical representations of the image background variability.

In contrast, mixture models, such as the multivariate normal

mixture model, may be able to represent the background

variability quite accurately, resulting in statistically mean-

ingful background metrics. The characteristics of anomaly

detection based on normal mixture models are discussed in

some detail in [5]. This anomaly detector has demonstrated

good detection performance on several occasions. One of

the main criticisms of this method, however, has been that it

is computationally very expensive, and therefore poorly

suited for on-board real-time target detection.

Fortunately, some of the most time-consuming tasks in

the normal mixture model processing are easily parallel-

ized, so that the multi-core architecture in modern central

processing units (CPUs) may be exploited to speed up the

processing. An interesting recent development has been the

introduction of fully programmable graphics processing

units (GPUs) together with software interfaces like NVI-

DIA CUDA [12] and AMD CTM [1] dedicated to general

purpose processing on video cards. Because the GPU

architectures are optimized for massively parallel pro-

cessing, modern commodity video cards can achieve very

high computational performance for parallel problems,

peaking at several hundred GFLOPS or more. The high

demand for realistic graphics (and physics) in the computer

game market drives the development of increasingly

powerful GPUs at low cost, while keeping computer

architectures adapted to this technology to achieve very

high bandwidth communication between the computer

and the graphics hardware. Today, low-cost, low-weight

gaming computers are readily available with extremely

powerful parallel computing performance. This kind of

hardware is therefore very well suited for on-board pro-

cessing in a hyperspectral target detection scenario.

Although general-purpose computing on graphics pro-

cessing units (GPGPU) has been an active area of research

for decades, the introduction of Compute Unified Device

Architecture (CUDA) and CTM has finally brought it

within reach of a broader community, giving programmers

access to dedicated application programming interfaces

(APIs), software development kits (SDKs) and GPU-

enabled C programming language variants.

This paper will consider the parallelization of an

anomaly detection algorithm based on the multivariate

normal mixture model and the resulting parallel GPU

implementations using CUDA. These implementations

will be compared to an optimized multi-core CPU

implementation, and processing performance will be

evaluated for different parameters. Finally, by performing

a simple anomaly detection experiment in a search and

rescue scenario on a real pre-recorded hyperspectral

image, it is shown that parallelization of the problem and

the latest developments in GPU design have made real-

time on-board normal mixture based anomaly detection

feasible.

The outline of the paper is as follows: in Sect. 2 the

anomaly detection algorithm is presented. Section 3 dis-

cusses the parallelization of parts of this algorithm, while

Sect. 4 considers the resulting parallel implementations.

Experimental results are discussed in Sect. 5 and the final

conclusions are presented in Sect. 6.

2 Anomaly detection algorithm

The anomaly detection algorithm used here is based on a

global multivariate normal mixture model representation of

the background clutter, as discussed in [5]. The basic steps

in this processing are:

The first two steps are the key elements in this method

and also by far the most time consuming. The last two steps

are considered here as post-processing, and will only be

performed when evaluating detection performance. Since it

is reasonable to assume that the detection and segmentation

steps give insignificant contributions to the overall

1 Morphology is discussed in most image processing textbooks, e.g.

Section 8.4 in [4].
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processing time, only the time spent on performing esti-

mation and evaluation are considered in the following

experiments.

Hyperspectral sensors usually record the images line by

line in a ‘‘pushbroom’’ scanning mode. The simplest way to

employ the above anomaly detection algorithm in a real-

time application is to process the continuously recorded

data in blocks, similar to what is done in the ARCHER

system [19]. Each newly recorded block may thus be sent

off to processing, provided that processing of the previous

block is finished. If the processing rate is faster than the

sensor acquisition rate, this results in a small latency equal

to the time it takes to record a block of data. The crucial

factor in enabling a real-time implementation of this

algorithm is therefore to ensure that the normal mixture

estimation and evaluation steps are performed faster than

the time it takes to record a block of data. The following

section will give a detailed explanation of the estimation

and evaluation steps.

2.1 Normal mixture model estimation and probability

value calculation

A hyperspectral image can be considered as a set of pixel

vectors X = {xj [ RB, j = 1, 2, ..., n}, where n is the

number of image pixels and B is the number of spectral

bands (see Fig. 1).

A multivariate normal mixture model is represented by

the probability density function:

pðxÞ ¼
XC
c¼1

xc/cðx; lc;RcÞ ð1Þ

where xc [ [0, 1] is the mixing proportion (or weight) of

component c with
PC

c¼1 xc ¼ 1; and /ðl;RÞ is the

multivariate normal density with mean l and covariance

matrix R :

/cðx; lc;RcÞ ¼ 1

ð2pÞB=2
1

jRcj1=2

� exp �1

2
ðx� lcÞTR�1

c ðx� lcÞ
� �

: ð2Þ

Estimating a multivariate normal mixture model for the

background is therefore equivalent the problem of estimat-

ing the parameters w ¼ fC;xc; lc;Rc; c ¼ 1; 2; . . .;Cg;
given a set of image data. The total number of para-

meters that must be estimated is P = (B(B ? 1)/2 ?

B ? 1)C ? 1 which in typical hyperspectral anomaly

detection applications may be a quite large number. But since

the backgroundmodel estimation is based on data in the entire

image block under consideration, more than enough data are

available for the estimation process. In fact, the amount of data

available may exceed that needed to make a statistically sig-

nificant estimation of themodel parameters. To avoid wasting

time on processingmore data than necessary, a subset of pixel

vectors S = {sj [ RB, j = 1, 2,…, m}, S � X; is considered

where m is the number of pixels in the subset.

The actual estimation procedure used in this paper is an

iterative method similar to the SEM algorithm [8], as

outlined in Algorithm 2. The principal idea is to assume

that each pixel sj from subset S belongs to one of the

components c = 1, 2,…, C. Thus, on each iteration i we

obtain a partition Q1
i , Q2

i ,…, QC
i of the subset S, where Qc

i

= {xj, c
i [ RB, j = 1, 2,…, mc

i} contains the pixels

belonging to the component c on the iteration i, and mc
i is

the number of pixels in Qc
i .

Fig. 1 Structure of the hyperspectral image data
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Having estimated the multivariate normal mixture

model for the background, a metric for correspondence

with the background is calculated for each pixel in the

hyperspectral image X by evaluating the model probability

density value for each pixel spectrum, as outlined in

Algorithm 3 (see also Fig. 2, Task 8).

3 Parallelizing the anomaly detection algorithm

A block diagram of the anomaly detection algorithm is

shown in Fig. 2. One of the characteristics of the algorithm

is its regular (pipeline) structure. The figure gives the

computational complexity for each algorithm task. We

assume that the number of pixels in the original image

block, as well as the subset used for the model estimation, is

significantly larger than the number of components, number

of bands and number of iterations in the estimation step

(n,m� C, B, I). Then the overall computational complexity

for the estimation step (Tasks 1–7) is O(mCB2I), and for the

Evaluation step (Task 8) it isO(nCB2). Since in our case one

block of hyperspectral data has spatial dimensions of order

103 9 103, the total number of pixels n * 106. We assume

that m * 105 and C, B * 101. Generally, the computa-

tional cost of the anomaly detection algorithm is high. Thus,

running the algorithm in real-time requires an efficient

implementation and high-performance hardware.

Plaza et al. [13] and Setoain et al. [15] have reviewed

parallel processing of hyperspectral images. There are two

main approaches to decompose the problem into parts that

can be run concurrently: task-level decomposition and data-

level decomposition [9, 11]. Setoain et al. [15] distinguish

task-level, spatial-level and spectral-level parallelism for the

hyperspectral image processing algorithms (the last 2 levels

are the particular cases of the data decomposition patterns).

Task-level parallelism refers to different and indepen-

dent sets of instructions executing in parallel. Spatial-level

parallelism decomposes the image into subsets of pixel

vectors that are operated on independently, thus forming

data streams processed concurrently by the processing

elements (the finest level being pixel-level decomposition,

when each processing element is working on 1 pixel vec-

tor). Spectral-level parallelism refers to decomposition of

the multi-band image data into units containing subsets of

contiguous spectral bands.

Task-level parallelization is not possible here, as Fig. 2

shows that execution of each task requires the results

from the previous task. Analysing the computational

complexities of the parts of the algorithm, we can dis-

tinguish those with the highest computational cost as tasks

2, 4, 6, 8, marked by ellipses in Fig. 2. Fortunately, all

these four tasks can be parallelized, using data-level

decomposition.

The tasks that assign pixels to the components (Tasks

2, 6), and the evaluation task (Task 8) exhibit inherent

parallelism at pixel level, the finest level of spatial paral-

lelism. This results in simple, robust, scalable and easily

understandable parallel implementation of these tasks. The

number of threads that can be run concurrently is equal to

the number of pixels (n, m). As the values of n, m are high,

the amount of concurrency is significant. We note that all

2 The original SEM algorithm uses the stochastic component

assignment instead, a slower but more robust approach.
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the concurrent threads of these tasks will require the

common parameter data (like weights, means, inverse

covariance matrices etc.). These data remain constant and

can be efficiently shared between threads.

A more challenging step is the calculation of what we

call the covariance sums in task 4: Zi
c ¼ mi�1

c Ri
c: Here

CB(B ? 1)/2 elements must be estimated (symmetric

covariance sum for each of the components). Several

approaches to parallelize this task are possible. We con-

sider two approaches.

3.1 Covariance sums: chunking approach (CH)

The first approach splits the hyperspectral image subset S

into K parts (chunks), and calculates the covariance sums

for all the parts in parallel. Subsequently, covariance sums

for the whole subset are calculated by summing in par-

allel the covariance sums for its parts (see Algorithm 4).

Figure 3b represents schematically these two branching

steps.

Fig. 2 Block diagram of the

anomaly detection algorithm

(n number of image pixels, m
number of pixels in the

estimation subset S, B number

of bands, C number of

components in the mixture,

I number of iterations). Red
ellipses indicate tasks with the

highest computational cost. The

diagram also summarizes the

structure of GPU-based

algorithm implementations, as

discussed in the text
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Regarding the scalability of the chunking approach, with

the increase of the number of chunks K, more memory is

needed to store intermediate covariance sums. Thus, there

is an upper bound on K, and the scalability of the first step

of the considered approach depends on the memory

available and the memory bandwidth. The scalability of the

second step is limited by the CB(B ? 1)/2 concurrent

threads. However, as the first step includes multiplication

operations and in total more arithmetic operations per

thread than the second step (for the typical configuration of

values n, K and B), the complexity of the chunking

approach is dominated by the first step.

3.2 Covariance sums: spectral-level parallelism (SP)

Another way to parallelize the covariance sums estimation

is to calculate in parallel the covariance between bands q

and r (Z(q, r), q = 1, 2, ..., B; r = 1, ..., q). Each thread will

calculate C elements Zc
i (q, r), c = 1, 2, ..., C (see Fig. 3c).

The algorithm consists of two branching steps: centering

of the input subset S (in m parallel threads) and covariance

sums calculation (see Algorithm 5).

The complexity of this algorithm is dominated by the

second step, where T = B(B ? 1)/2 threads are executed

concurrently. As B * 101, the scalability here is seriously

limited. This approach is interesting when the number of

bands is significant.

In Sect. 5.3 below, we compare the execution speed and

scalability of the two approaches for computation of

covariance sums.

4 GPU-based parallel implementation

The previous section has shown that several tasks of the

anomaly detection algorithm possess a significant amount

of data-level concurrency, suitable for a ‘‘single instruction

multiple data’’ architecture that allows massively parallel

processing.

We have chosen to implement the parallel anomaly

detection algorithms on an NVidia GeForce 8800 Ultra

GPU, exploiting the new CUDA technology [12]. Through

CUDA, the GPU (device) operates as a highly multi-

threaded coprocessor to the main CPU (host). This means

that the part of the program executed many times inde-

pendently on different data can be isolated into a function

(kernel), compiled to the device instruction set and exe-

cuted concurrently on the device. The GPU is capable of

running a very high number of threads in parallel.

The host and the device have their own DRAM

(host memory and device memory, respectively). The data

can be copied from one memory to another, by using

the device’s high-performance Direct Memory Access

engines. This improves significantly the data transmission

performance, when compared to the previous GPU pro-

gramming models.

(a)

(b)

(c)

Fig. 3 Different approaches for calculation of the covariance sums:

a sequential algorithm; b parallel algorithm—chunking approach;

c parallel algorithm—spectral-level parallelism. The figure assumes

B = 5, C = 2 and K = 3. The numbers in the covariance sums’

matrix cells correspond to different parallel threads
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Two main conditions must be fulfilled to achieve a good

performance gain:

• Overlapping of memory accesses with arithmetic

operations. GPU-based implementation is well suited

for problems with high arithmetic intensities (ratio of

arithmetic operations to memory accesses).

• Optimization of memory accesses. The device has on-

chip shared memory (that threads can use for data

sharing) with very fast read and write access and off-

chip constant and texture cached memories. The high-

bandwidth memory use must be maximized (like shared

memory, cached accesses), while minimizing the

accesses to uncached memory.

From the analysis in the previous section, the anomaly

detection algorithm appears to fulfill these requirements

reasonably well.

The most computationally demanding tasks of the

algorithm have been implemented into seven GPU kernels

as summarized in Fig. 2. A brief overview of the GPU/

CUDA implementation for Tasks 2, 4, 6, 8 is given below:

• Task 2—First component assignment kernel: Each

thread determines the normal mixture component with

the minimal Euclidian distance between its center and

the current pixel (each thread operates on one pixel),

and stores the index of this component to the compo-

nent membership array. Before executing the kernel,

vectors of the C component centers are copied to the

device constant memory. These values are cached once

and afterwards they are used by each thread from the

constant cache, thus optimizing the memory access

time. In total T = m threads are executed in this task.

• Task 4:

CH approach (refer Algorithm 4):

1. Partial covariance sums kernel: Each thread

calculates the covariance sums (for C compo-

nents) for one (current) chunk of the subset S (in

total T = K threads), taking as input the com-

ponent membership array and the means for

normal mixture components. Before the kernel

execution, the component means are mapped

into the device texture memory (as a 2-dimen-

sional CUDA array). These values are cached

during the kernel execution. For each pixel, first

a thread calculates its centered vector and store

this vector to the shared memory. Then, this

vector is used to calculate and add the contribu-

tion of the pixel to the covariance sum of the

component, to which this pixel belongs. Each

element of the vector will be read from the

memory B ? 1 times; therefore, the use of the

shared memory optimizes the memory access

time.

2. Partial sums merging kernel: This kernel calcu-

lates covariance sums for C components, by

summing the K partial covariance sums vectors,

produced by the previous kernel. Each thread

calculates one element of the covariance sums

vector (which contains CB(B ? 1)/2 elements).

Thus, in total T = CB(B ? 1)/2 threads are

executed.

SP approach (refer Algorithm 5):

1. Subset centering kernel: Each thread calculates

the centered vector for one pixel (in total T = m

threads), taking as input the means for normal

mixture components (mapped into the device

texture memory) and the component member-

ship array.

2. Covariance sums SP kernel: Each thread calcu-

lates C elements Zc
i (q, r), c = 1, 2, ..., C of the

covariance sums vector (see Sect. 3 for details).

The kernel takes as inputs the array of centered

pixel vectors, produced by the previous kernel,

and the component membership array. The

elements Zi(q, r) are kept in the shared memory

during their calculation. In total T = B(B ? 1)/2

threads are executed.

• Task 6—Component assignment kernel: Each thread

operates on one pixel of the subset S (in total T = m

threads), and assigns component membership according

to (6). The kernel requires as inputs the parameters of

the normal mixture model (weights, means and covari-

ance matrices for C components). These parameters are

stored in the device texture memory. The kernel’s

output is the component membership array. The

intermediary vectors of centered pixel values (each

vector is local for each thread) are kept in the local off-

chip memory. They could be put in the shared memory

as well, but as the size of the shared memory is limited

(16 KB per multiprocessor for an NVidia GeForce

8800 Ultra), this will limit the number of threads

running concurrently. Keeping these vectors in the local

memory allows to run many threads in parallel, and the

memory latencies (due to the access to the off-chip

memory) are hidden by multithreading.

• Task 8—Probability map kernel: Each thread calculates

for one pixel of the hyperspectral image X a back-

ground probability value (1), in total T = n threads.

The parameters of the normal mixture model (weights,

means and covariance matrices for C components)

stored in the texture memory are used as inputs. The

vectors of centered pixel values are kept in the local
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off-chip memory (the same reasoning as for the

Component assignment kernel). The resulting probabil-

ity map is an important intermediate result of the

anomaly detection algorithm.

The memory usage has been carefully optimized for all

kernels, so that the fast shared memory and cached mem-

ories are used intensively. However, the device memory

filling will depend on the size of the hyperspectral image

X, and the chosen subset size.

It can be noted that while CPU parallel code can be

more easily adapted to different ranges of user parameters

and data characteristics, the GPU code must ideally be

designed for a specific problem size to have optimal per-

formance. In our experiments, we use the same program for

different ranges of parameters. Our code allows a range of

reasonable parameters in the anomaly detection problem,

but the performance may be sub-optimal for particular

configurations of parameters.

5 Experimental results

5.1 Executing platforms and implementations

Our experiments were performed on a 2006-model HP

xw8400 Workstation based on dual Quad-Core Intel Xeon

processor E5345 running at 2.33 GHz with 1.333 MHz bus

speed and 3 GB RAM. The computer was equipped with a

XFX GeForce 8800 Ultra video card with 128 stream

processors, 768 MB memory, 612 MHz core clock,

1,511 MHz shader clock and 2.16 GHz memory clock.

This video card served as the primary display as well as a

CUDA device.

Three different implementations of the anomaly detec-

tion algorithm have been made, one for the multi-core CPU

and one GPU-based implementation for each of the

covariance sum approaches (GPU-CH and GPU-SP). The

CPU implementation is our performance reference, and

also serves to check the precision and correctness of the

GPU-based implementations.

Programs are built and run under the Windows XP 32-

bit operating system. The CPU implementation is built with

the Intel C?? Compiler 9.1 using OpenMP [3], BLAS [7]

and LAPACK [2] libraries, while the GPU implementa-

tions has been made using the CUDA compiler driver nvcc

[12] (CUDA Toolkit 1.0 and CUDA SDK 1.0 are used).

For all implementations, the code has been carefully opti-

mized including the mathematical representations, memory

use and threading.

The dual Quad-Core Intel Xeon processor has eight

cores, and therefore, up to eight threads can be executed in

parallel on CPU. The parallel implementation on CPU is

efficient when a few concurrent threads execute relatively

large number of operations (whereas GPU parallel imple-

mentations are efficient for executing a very high number

of threads concurrently).

In our reference CPU-based implementation, Tasks 6

and 8 are implemented in parallel by means of OpenMP, so

that each thread operates on one pixel (the same spatial-

level parallelism as for the GPU-based implementations).

As the anomaly detection algorithm includes a lot of

operations on vectors, BLAS functions are used intensively

throughout the program to optimize the processing time.

Furthermore, the determinants and inverses of covariance

matrices were computed using LAPACK functions. We

also tried to run in parallel other parts of the program, but

for the typical range of parameters in the anomaly detec-

tion problem the processing time was not reduced.

It can be also noted that the scalability of the CPU-based

implementation is seriously limited by the number of

processing cores available for the program execution.

Currently, the number of CPU cores cannot be increased

much beyond our eight-core desktop system before weight

and power consumption becomes unacceptable for on-

platform processing in many important cases such as air-

borne applications. Furthermore, the increase of

performance through the generations of recent GPUs is

faster than for CPUs.

5.2 Hyperspectral image data set

The hyperspectral data used here originate from a real

airborne hyperspectral recording of a forest scene east of

Oslo, Norway. The image was captured by a HySpex [10]

visual and near infrared (VNIR) hyperspectral camera from

an altitude of about 1,500 m above ground level. The

HySpex VNIR module is a push-broom imager covering

the spectral range from 0.4 to 1.0 lm in 160 spectral bands

with 1,600 spatial pixels over a 17� cross-track field of

view. The acquisition rate of the camera is about 100 lines/

s or 0.16 Mpixels/s.

The 1,600 by 1,200 pixel (1.92 Mpixel) block used in

the following experiments is extracted from the original

hyperspectral image and is spectrally downsampled to 2–

50 bands by averaging over neighbouring bands. In cor-

respondence with several investigations into the number of

bands required to obtain good target detection performance

[6, 16], we expect to achieve good detection results in the

lower half of this interval.

The targets used in the experiments are objects consid-

ered relevant in a search and rescue scenario. They are

comprised of a green canvas textile similar to that one

would find in some tents, and four sets of different coloured

clothing laid on the ground in the direction of the four

cardinal points north, east, south and west. The targets were
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placed in plain view on a small marsh. Figure 4 shows

photographs of the targets and the surrounding environ-

ment, while Table 1 describes each target in more detail.

5.3 Basic performance assessment

We evaluate the performance of the CPU and GPU-based

implementations by measuring the execution time as a

function of several parameters: the number of bands B, the

number of components in the mixture C, the number of

pixels m in the training set S and number of iterations I.

Thus for our basic performance testing, the number of

iterations is an input parameter and not controlled by a

convergence criterion.

In the experiments we vary one parameter at a time,

keeping the others fixed at the following standard config-

uration: B = 15 bands, C = 10 components, I = 10

iterations and a subset size of m = 192,000 pixels (10% of

the whole image block). The execution time is measured

for the complete execution as well as for individual parts.

Here we report separately the contributions of the initiali-

zation part (Tasks 1–2) and the covariance matrix

calculation part (Task 4) of the estimation step, and the

time spent on the evaluation step (Task 8).

To determine the program execution time, the C func-

tion clock() was used for the CPU implementation and the

CUDA timer was used to measure time for the GPU

implementations. The total time measurement is started

right after the hyperspectral image file is read to the CPU

memory and stopped right after the resulting probability

map is obtained and stored in the CPU memory. For timing

of the individual parts, memory transfers related to these

parts are included.

The measurements were found to be repeatable within

about 1% for the GPU implementations. For the CPU

implementation the variation was somewhat larger, prob-

ably due to interrupts and task scheduling by the operating

system, although there is still good consistency across the

explored range of parameters. For real-time applications it

is interesting to note that the GPU execution time mea-

surements are very stable. This means that the GPU may be

run closer to its peak performance, with less needs for time

margins compared to the CPU.

Figure 5 shows the measured total execution time when

varying the different parameters. Not surprisingly, the

execution time scales approximately linearly with the

number of components C, iterations I, and subset size m.

With increasing band count B, the increase in execution

time is somewhat faster than linear. The overall result is

that the GPU increases computing speed by a significant

factor. The gain is particularly large for lower band counts,

for example more than 20 times faster for 5 bands. At 15

bands the speedup is a factor 10, while at 50 bands a more

modest factor of 3 is obtained.

The lower gain at high band count is essentially due to

the covariance sums computation which becomes more

memory intensive and hence less adapted to GPU pro-

cessing for increasing covariance matrix dimensionality.

As Fig. 6 shows, the CPU implementation performs com-

parable to or better than the GPU-CH implementations for

most band counts during the covariance sum processing,

while the GPU-SP is much slower than the other imple-

mentations below 25 bands.

Analysing the algorithms of covariance sums computa-

tion, several reasons can be suggested why the GPU-CH

implementation for this task is slower than the CPU-based

one. For a small number of bands the calculation time is

spent mostly to run through all the array of pixel vectors.

Fig. 4 Target layout and the names used to refer to them in the following experiments. See Table 1 for more information

Table 1 Target descriptions

Name Description

A Green canvas, about 1.5 9 2.5 m

B Jeans jacket and pants

C Grey coat

D Red jacket and pants

E Green jacket and pants
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When we split this array of pixel vectors into several parts

(chunks) in the CH approach, the GPU execution time for

this parallel approach becomes faster. But when the num-

ber of bands increases, the running through bands becomes

more computationally demanding. In this case:

1. More memory is needed to store covariance sums for K

chunks. As they are stored in the device global

memory, memory bandwidth causes the increase of

the processing time, when compared to CPU imple-

mentation. The processing on CPU allows data

caching, which becomes especially advantageous

when the number of bands increases.

2. As was mentioned before, the GPU code must be

designed for a specific problem size and thread

configuration to have optimal performance. A GPU

kernel is executed in parallel by the batch of threads,

organized as a grid of thread blocks [12]. The number

of blocks and threads per block must be chosen to

maximize performance. Furthermore, for the CH

approach of covariance sums computation the number

of chunks K must be chosen. The GPU code was

optimized for the standard configuration of parameters

(B = 15 bands, C = 10 components, I = 10 iterations

and m = 192,000 pixels). In particular, the number of

chunks K = 512 was chosen by the experimental

tuning and fixed in the program. As can be seen from

Fig. 6, the GPU-CH implementation is the fastest for

this configuration of parameters (when B = 15 bands,

the processing time for the GPU-CH implementation is

570 versus 720 ms for the CPU implementation). If the

GPU-code is adapted for another configuration of

parameters, the processing speed may be increased for

this particular configuration.

3. It must be noted that we varied the number of bands B,

while keeping the estimation subset size m constant.

However, with increasing B, the number of parameters

of the multivariate normal mixture model increases,

and larger subset of pixels is needed to obtain an

accurate estimate of parameters. When varying the

subset size m together with the number of bands B, the

Fig. 5 Total execution time for the three implementations when

varying different parameters. The plots show the execution time for

different choices of number of bands (top left), number of components

(top right), subset size (bottom left) and number of iterations (bottom
right). Here, the default configuration used is 15 bands, 10 compo-

nents, 10 iterations and a subset size of 192,000 pixels
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GPU-CH implementation is likely to become more

efficient, relative to CPU, for higher number of bands.

The GPU-SP implementation becomes interesting when

the number of bands B[ 25. The reason can be deducted

from the algorithm, which explores a spectral-level paral-

lelism. The GPU-SP implementation is faster than both

other implementations when B = 40. However, for B = 50

it is slower than the CPU implementation. The probable

reason is that the GPU-code is not well tuned for this

problem size.

It is also evident that the gain in GPU-based evaluation

processing is decreasing with higher band counts, although

it is still significant for 50 bands. Interestingly, the GPU

implementations of the initialization part achieves a speed-

up gain of around 100. Since most of the initialization

corresponds to significant parts of the K-means clustering

algorithm, this result also demonstrates that parallel

implementations of K-means on GPUs can give a signifi-

cant increase in computing speed.

5.4 Real-time anomaly detection demonstration

After establishing that the parallel GPU implementations

are significantly faster than the CPU implementation, we

will now demonstrate the impact this has on anomaly

detection processing. This experiment will consider the

anomaly detector described in Sect. 2 applied in a search

and rescue context. While a typical application would

process the data in several consecutive blocks, we will here

consider the processing of only one such block, and assume

that the results obtained are representative for a string of

blocks in average over time. Real-time performance is

evaluated by comparing the block processing time with the

actual time it took to record the block with the hyper-

spectral camera.

As opposed to the previous experiment, the iterative

procedure involved in the estimation process will here stop

only when the convergence criterion is satisfied. For this

demonstration a convergence threshold of d = 3% was

Fig. 6 Execution time for important parts of the implementations.

The plots show the difference between the implementations in

execution time for the initialization tasks (top), the covariance sums

processing task (bottom left) and the evaluation processing task

(bottom right). Here, the bands are varied while keeping the other

parameters fixed at 10 components, 10 iterations and a subset size of

192,000 pixels
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chosen. In addition, the number of components was chosen

to be Cmax = 10 and the size of the estimation subset was

set to be 10% of the pixels in the image block.

Figure 7 shows the processing rates when each of the

three implementations is applied to the different spectrally

downsampled images. To be fairly certain that the

observed rates are not an extreme result from the random

initialization of the estimation, the median rate of 19 runs

is chosen for each implementation and band configura-

tion. By comparing with the sensor data rate, represented

by the dotted line in Fig. 7, we see that the parallel GPU-

based implementations run faster than the data rate right

up to about 50 bands. Hence, by exploiting the power of

GPU processing, multivariate normal mixture based

anomaly detection can be run in real time under similar

conditions for less than 50 spectral bands on current

hardware. In the 15–25 band interval, the GPU imple-

mentations are about 3-10 times faster than the real-time

constraint, while the CPU implementation is slower than

real time above 10 bands.

When comparing Fig. 7 with Fig. 5 it is clear that the

implementations are somewhat faster in this experiment.

This is simply because the estimation process needs fewer

iterations before satisfying the convergence criterion.

Figure 7 also shows the number of iterations needed for

the different band configurations.

To fully justify the claim that multivariate normal

mixture based anomaly detection is performed in real time,

sufficiently good detection results must be demonstrated.

The detection results for the GPU-CH implementations are

presented in Fig. 8. For 20 bands all the targets are detected

with less than 1 false alarm per s, and 3 targets are detected

without false alarms. These are considered acceptable

results for the target detection scenario in question, and

may be further improved by exploiting the available pro-

cessing time to use more accurate model estimation

techniques and perform different false alarm mitigation

methods (e.g. [14]). Figure 9 shows the detection result for

20 bands with a detection threshold set so that all targets

are detected.

6 Conclusion

Multivariate normal mixture models form the basis of an

algorithm for anomaly detection in hyperspectral images.

The algorithm possesses a significant amount of data-level

concurrency in its time-consuming parts, and appears well

adapted to the GPU architecture. We have used CUDA to

implement the computationally intensive parts of the

algorithm on an Nvidia GeForce 8800 GPU, and compared

its performance to a CPU-based implementation running

on a dual quad-core computer.

Generally, the GPU provides a significant speedup of

the algorithm compared to the CPU implementation. The

relative performance of the GPU depends on the algo-

rithm parameters such as data size and band count.

Furthermore, it is often difficult to optimize GPU code

without adapting it to a narrow range of parameters. For

the pixel-parallel parts of the algorithm, speedups on the

order of 10 and even 100 are observed. For the compu-

tation of covariances, however, the GPU only provides an

advantage over the CPU for band counts below about 20.

For higher band counts, the memory model of the GPU
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Fig. 7 Anomaly detection processing rate for different choices of

number of bands. The solid lines show the processing rate for the

different implementations, while the dotted line shows the sensor data
rate (see the left y-axis). The dash-dot line shows the number of

iterations needed to reach convergence for the different band counts
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does not provide a speed advantage in the calculation of

covariance sums.

Anomaly detection has been performed on a realistic

hyperspectral data set. We have shown, crucially, that the

GPU enables real-time execution of the algorithm on a

hyperspectral data stream with high spatial and spectral

resolution, with acceptable detection performance and a

significant margin on computing time. This margin

enables the same hardware to execute other parts of the

detection system such as threshold estimation, spatial

analysis, false alarm mitigation or signature-based spectral

detection.

Finally, it can be noted that methods based on multi-

variate normal mixtures are versatile statistical tools with

potential use in many areas beyond remote sensing. Up to

now, computational complexity has precluded their use in

many applications. This is about to become history with

the advent of highly parallel processing in desktop

computers.
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