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ABSTRACT
In computer architecture, caches have primarily been viewed as
a means to hide memory latency from the CPU. Cache policies
have focused on anticipating the CPU’s data needs, and are mostly
oblivious to the main memory. In this paper, we demonstrate
that the era of many-core architectures has created new main
memory bottlenecks, and mandates a new approach: coordination
of cache policy with main memory characteristics. Using the
cache for memory optimization purposes, we propose a Virtual
Write Queue which dramatically expands the memory controller’s
visibility of processor behavior, at low implementation overhead.
Through memory-centric modification of existing policies, such as
scheduled writebacks, this paper demonstrates that performance-
limiting effects of highly-threaded architectures can be overcome.
We show that through awareness of the physical main memory
layout and by focusing on writes, both read and write average
latency can be shortened, memory power reduced, and overall
system performance improved. Through full-system cycle-accurate
simulations of SPEC cpu2006, we demonstrate that the proposed
Virtual Write Queue achieves an average 10.9% system-level
throughput improvement on memory-intensive workloads, along
with an overall reduction of 8.7% in memory power across the
whole suite.

Categories and Subject Descriptors
B.3.1 [Memory Structures]: Semiconductor Memories—Dynamic
memory (DRAM); B.3.2 [Memory Structures]: Design styles—
cache memories, Primary Memories, Shared Memory, Interleaved
Memories

General Terms
Design, Performance

1. INTRODUCTION
It is now well-understood that in the nanometer era, technology

scaling will continue to provide transistor density improvements,
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Figure 1: DDR3 single rank bus utilization efficiency,
limited by DRAM parameters (tRC, tRRD, tFAW), and bus
turnaround time (tWRT)

but that power density and performance improvements will slow.
In response, processor designers now target chip-level through-
put (instead of raw single-core performance), packing increasing
numbers of cores and threads onto a chip. In 2000, virtually all
server processors were single-core, single-thread; today we see 16
threads (Intel Nehalem EX), 32 threads (IBM POWER7TM), and
128 threads (Sun Rainbow Falls) [3].

The processor-memory interface has been particularly chal-
lenged by this many-core trend. Technology scaling provides
roughly 2x the number of transistors per lithography generation,
so when core or thread counts more than double per generation,
the result is generally a decrease in the available cache size per
core and/or thread. From first principles, a drop in on-chip cache
size will result in higher miss rates and higher memory bandwidth
demands. Single socket memory demands have thus been rapidly
increasing, not only due to core and thread counts, but also from the
transition to throughput-type designs, which provide fewer cache
bits per thread.

These many-core architectures struggle not only to provide suffi-
cient main memory bandwidth per core/thread, but also to schedule
high memory bus utilization efficiency. Server processors generally
have one or two main memory controllers per chip, meaning that
many cores share a single controller and a memory controller
simultaneously sees requests from different work streams. In this
context, locality is easily lost, and it becomes difficult to find and
schedule spatially sequential accesses. Inefficient scheduling re-
sults in performance reductions and consumes unnecessary energy.

Most servers currently use JEDEC-standardized Double-Data-
Rate (DDR) memory [2], so a fairly accurate understanding of
memory bandwidth scaling can be obtained by looking at DDR
trends. In terms of raw IO (Input/Output) speeds, DDR has
continued to improve, with peak speeds doubling each generation
(400Mbps DDR, 800Mbps DDR2, 1600Mbps DDR3). IO frequen-
cies continue to scale, but other key parameters, such as reading
a memory cell or turning a bus around from a write to a read
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Figure 2: Baseline CMP and memory system

operation, are not scaling at comparable rates. At higher signaling
rates, the electrical integrity of busses becomes much more difficult
to maintain – both within the DRAM chips and across the main
memory path to/from the processor. This results in a complex
set of timing parameters which dictate that gaps be inserted when
the access stream transitions from a write to a read or vice-versa,
significantly degrading effective memory bandwidth. This problem
has worsened with each memory generation. For example, tWRT,
the Write-to-Read Turnaround delay, has stayed within a range
of 5-10ns for DDR through DDR3. Therefore, as DRAM IO
frequencies increase, the number of cycles wasted between each
access grows. Figure 1, calculated from JEDEC parameters, shows
the dramatic impact of these mandatory timing delays on effective
bandwidth: even with perfect scheduling, utilization of a single
memory rank can be as low as 25-40% for high-frequency DDR.
Clearly, this trend cannot continue – in the many-core era, we must
find ways to improve not only raw memory bandwidth, but also
memory bandwidth efficiency.

Memory efficiency improvements in highly threaded systems
have primarily been addressed in the past with various mechanisms
to reorder requests received by the memory controller. Work on
Fair Queuing Memory Systems by Nesbit et al. [18] utilizes fair
queuing principles at the memory controller, to provide fairness and
throughput improvements. Parallelism-Aware Batch Scheduling
[17] alleviates the same problem by maintaining groups of requests
from various threads and issuing them in batches to the controller.
While these techniques are useful in improving read scheduling,
they do not directly address the memory traffic initiated by write
operations. The Eager writeback technique [9] takes a step in
dealing with write bandwidth to memory, but its approach has
minimal communication between the last-level cache and the
memory controller.

Given more write queueing resources, the memory controller
can more efficiently determine priorities, pack commands into
page mode accesses, and efficiently schedule write requests to
the memory bus. The challenge is how to efficiently expand
the memory controller’s write queueing resources. We propose a
Virtual Write Queue which leverages the existing last-level cache
to expand the memory controller’s visibility, allowing improved
performance and reduced power consumption. Our proposed
scheme uses Scheduled Writebacks (writeback operations initiated
by the DRAM scheduler) to effectively utilize the available mem-
ory bandwidth. This enables significantly longer write bursts that
amortize bus turnaround times, and decrease high latency conflicts
with read operations.

Based on full-system, cycle-accurate, simulations performed on
SIMICS [22] and GEMS [13], Virtual Write Queue demonstrates
an average 10.9% system throughput improvement on the memory
intensive workloads of the SPEC CPU2006 Rate suite [23], when
configured using 1 memory rank. In addition, the proposed

scheme is able to achieve a memory power reduction of 8.7%
across all the SPEC CPU2006 suite. Both throughput and power
reductions are demonstrated over a baseline implementation that
incorporates a First-Ready, First-Come-First-Served (FR_FCFS)
[21] memory controller augmented with the Eager writeback tech-
nique [9] (FR_FCFS+EW). Overall, the Virtual Write Queue re-
quires a modest 0.3% hardware overhead by heavily reusing the
existing structures and functionality of a typical high performance
server design.

To the best of our knowledge this is the first proposed scheme
that directly coordinates memory controller scheduling with cache
writeback traffic. While the motivation and evaluations presented
in this paper are based on DDR-DRAM, it is important to note
that this paper tackles a problem which will only become worse as
new memory technologies are incorporated into proposed hybrid
and tiered main memory systems. Phase-change memory [19],
NOR and NAND Flash, and other non-DRAM storage technologies
have noticeably longer write times and larger page sizes (so as to
amortize access costs). These factors aggravate existing memory
inefficiencies such as write-to-read gaps, and make it even more
crucial that efficient access opportunities, such as page mode ac-
cesses, be made apparent to the memory controller. The techniques
in this paper can be extended easily for new technologies, and
would be highly effective for improving performance of non-
DRAM main memory subsystems.

The rest of the paper is organized as follows. Section 2 describes
the typical organization of a DDR DRAM, and in Section 3 we
characterize key aspects of memory system behavior. Section 4
elaborates on the proposed Virtual Write Queue. Finally, Section 5
includes results and evaluation, followed by a summary of related
work in the literature in Section 6.

2. MAIN MEMORY BACKGROUND AND
TERMINOLOGY

Figure 2 illustrates our baseline CMP and memory system.
To maximize memory bandwidth and memory capacity, server
processors have multiple memory channels per chip. As Figure 2
shows, each channel is connected to one or more DIMMs (memory
cards), each containing numerous DRAM chips. These DRAM
chips are arranged logically into one or more ranks. Within a
rank, each DRAM chip provides just 4-8 bits of data per data cycle,
and a rank of 8-16 DRAM chips works in unison to produce eight
bytes per data cycle. The DRAM burst-length (BL) specifies an
automated number of data beats that are sent out in response to a
single command, commonly 8 data beats, to provide 64Bytes of
data. From the time of applying an address to the DRAM chips, it
takes about 24ns (96 processor clocks at 4GHz) for the first cycle
of data, but subsequent data appear at high frequency, closer to 2-3
processor clocks.
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Figure 3: Write-to-read turnaround noticeably worsens command latency and databus utilization. tWPST [2] further worsens
turnaround, but has been removed for simplicity

Internally, DRAM chips are partitioned into banks that can
be accessed independently, and banks are partitioned into pages.
DRAM page mode provides the opportunity to read or write
multiple locations within the same DRAM page more efficiently
than accessing a new page. Page mode accesses require that the
memory controller find requests with adjacent memory addresses,
but are executed with fewer timing constraints, and incur lower per-
access power than non-page mode accesses.

DRAM chips are optimized for cost, meaning that technology,
cell, array, and periphery decisions are made with a high priority
on bit-density. This results in devices and circuits which are
slower than standard logic, and chips that are more sensitive to
noise and voltage drops. A complex set of timing constraints has
been developed to mitigate each of these factors for standardized
DRAMs, such as outlined in the JEDEC DDR3 standard [2].
These timing constraints result in ”dead times” before and after
each random access; the processor memory controller’s job is
to hide these performance-limiting gaps through exploitation of
parallelism.

3. CHARACTERIZATION OF MEMORY
SYSTEM BEHAVIOR

In order to understand memory system opportunities, we inves-
tigated the particular challenges associated with DRAMs in server
systems. In our analysis we identified three characteristics as the
most important factors in addressing memory interface utilization
from the perspective of write memory traffic: a) bus turnaround
penalty, b) page mode opportunities, and c) programs’ bursty
behavior.

3.1 Bus turnaround penalty
As described in the introduction, memory IO frequencies have

been improving (resulting in raw bandwidth increases), but timing
constraints related to signaling and electrical integrity have, for the
most part, remained constant. This is especially well illustrated by
tWRT, which defines the minimum delay from the completion of a
write to the initiation of a read at the same DRAM rank. tWRT is
7.5ns on DDR3 devices – at 4GHz, this is 30 CPU cycles – a very
significant penalty for any reads issued after a write.

Figure 3 conceptually illustrates DDR3 write command timings.
Successive writes can be issued back-to-back, realizing 100% data
bus utilization (Figure 3.a). On the other hand, when a read follows
a write to the same device, the read must not only wait for the
write’s completion, but also for the bus turnaround time to elapse.
This adds noticeable latency to the read operation (Figure 3.b), and
results in dismal data bus usage: 31%. For server-class 1066Mbps

DDR3, the extra nine DRAM cycles between a write and read
amount to a ≈66 cycle read penalty at 4GHz.
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Figure 4: Bus utilization based on cache burst lengths

Memory scheduling efficiency is thus heavily influenced by the
mixing of read and write operations. Timing gaps are required
when read and write operations are intermingled in a continuous
memory access sequence, but with many application streams and
limited queuing resources, these turnarounds are generally difficult
for the memory controller to avoid. As shown in Figure 4, mem-
ory data bus utilization can be greatly improved by significantly
increasing the number of consecutive read/write operations the
memory controller issues before switching the operation type on
the bus. For example, if the scheduler can manage 32 reads/writes
per scheduling block, utilization grows to 94%. Throughout the
paper, we refer to a stream of consecutive reads or writes as a
cacheline burst to memory.

3.2 Page mode opportunities
While DRAM devices output only 16-64 bits per request (de-

pending on the DRAM type and burst settings), internally, the
devices operate on much larger, ≈2Kbit, pages (sometimes referred
to as rows). Each random access causes all 2Kbits of a page to be
read into an internal buffer, followed by a "column" access to the
requested sub-block of data. Since the time and power overhead of
the page access have already been paid, accessing multiple columns
of that page decreases both the latency and power of subsequent
accesses. These successive accesses are said to be performed
in page mode. With page mode, latency is approximately one-
half that of accesses to different, random pages. Active power
reduction is realized through elimination of extra page reads and
extra precharge page writebacks (because DRAM page read is
destructive, the data must be restored). Additional details on
DRAM architectures can be found in Jacob et al. [5].

Using a DDR3 memory power calculator from Micron Technol-
ogy [16], we obtained the DRAM chip power characteristics shown



in Table 1 for various page mode access rates. We have chosen a
server-type configuration, to match the environment used for the
class of benchmarks studied in this paper (2Gb DDR3 DRAMs,
1.5V, 1066Mbps, 2:1 read:write ratio, 45% DRAM utilization,
multi-rank DIMMs); we also include termination power. Memory
power varies widely, depending on the class and capacity of the
memory subsystem (frequency and number of ranks, for example).
As shown, activation power is greatly reduced with page mode.
Total DRAM power can be reduced by 1/3 if operations are
executed as four references for each activate.

Table 1: DRAM power estimation based on [16]

% Page Mode Activate
Power (mW)

Total Power
(mW)

% DRAM
Power Saved

0% 196.9 450.8 Baseline

25% 147.2 401.1 11%

50% 98.1 352.0 22%

75% 49.0 303.9 33%

Page mode DRAM access greatly improves both memory uti-
lization and power characteristics, but the optimization possibilities
for read and write operations are significantly different. Reads
are visible as the program (or a prefetch engine) generates them;
this should enable spatial locality in reference sequences to be
executed in page mode. Aligning load references into a page mode
sequence often increases latency for critical operations, since they
are delayed by younger page hits. Page mode read opportunities
are thus commonly limited by conflicts with latency minimization
mechanisms [17]. In contrast, write operations (in the common
writeback cache policy) are generated as older cache lines are
evicted to make room for newly allocated lines. As such, spatial
locality at eviction time can be obscured through variation in set
usage between allocation and eviction, as shown in Figure 5.

Figure 5 shows the total number of page mode writes possible
for various workloads, for a range of memory controller write
queue sizes. The workloads and simulation environment for this
characterization data are described in Section 5. For practical
write queue sizes, such as 32 entries, there is essentially no page
mode opportunity (approximately one write possible per page
activate). That stated, a large amount of spatial locality is contained
within the various cache levels of the system, but today’s CPU-
centric caches do not give the memory controller visibility into
this locality. Significantly larger memory controller write queues,
though impractical, would provide the needed visibility and enable
significant page mode opportunities.

3.3 Bursty behavior
Most programs exhibit bursty behavior. At the last-level cache,

this results in phases when a large number of load misses must be
serviced. Common cache allocation/eviction policies compound
this effect, as bursts of cache fills create bursts of forced writebacks,
thus clustering bursts of reads with bursts of writes.

Figure 6 shows the distribution of time between main memory
operations for three workloads. The workloads and analysis are
discussed in more detail in Section 5. Note that 20-40% of
all memory requests occur with less than ten cycles delay after
the previous memory operation, while the median can be in the
hundreds of cycles and many requests take significantly longer.

Over-committed multi-threaded systems have always experi-
enced some degree of cache thrashing, as workloads evict one
another’s data, and threads re-warm their local cache. However,
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Figure 5: Page writes per activate vs. number of
Physical Write Queue entries for commercial workloads
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Figure 6: Distribution of time between memory requests for
commercial workloads

this is no longer a problem seen only in large-scale SMP systems.
Instead, this phenomenon is inherent to today’s virtualized com-
puting environments as disparate partitions share a physical CPU.
If write operations can be executed early, bursts of read operations
execute with lower combined bandwidth demands. Ideally, the
memory controller will always have write operations ready to be
sent to idle DRAM resources.

4. A COORDINATED CACHE/MEMORY
SYSTEM DESIGN

The characteristics identified in the previous section could be ad-
dressed if the memory controller were to have increased elasticity
and visibility for scheduling write operations to memory. Typical
memory controllers contain 10’s of queued write operations [7].
Queue structures are costly in terms of area and power, and the
size of the write queue is a critical parameter for overall memory
performance. In our solution, we propose that the set members
close to the LRU position of the last-level cache function as a
very large write queue (e.g., 64k effective entries for the lower
one-quarter of a 16 MB last-level cache). We refer to the LRU
section of the last-level cache as the Virtual Write Queue, in that
we overload and repurpose the usage of this region. We show that
a coordinated cache/memory policy based on direct management
from the Virtual Write Queue mitigates each of the challenges
described in Section 3, increasing the performance of the memory
subsystem. Specifically:
1. Bus turnaround penalty avoidance: Through a Scheduled

writeback policy, we efficiently drain more pending write op-
erations, minimizing the probability of interleaved read and
write operations, which incur costly scheduling penalties (≈66
processor cycles @ 4GHz).



2. Harvesting page mode opportunities: Directed cache lookups,
to a broad region of the LRU space, enable harvesting of addi-
tional writes to be executed in page mode at higher performance
and lower power.

3. Burst leveling: With the Virtual Write Queue, the ability to
buffer ≈1000x more write operations than in a standard mem-
ory controller enables significantly greater leveling of memory
traffic bursts.

Figure 7(a) shows the Virtual Write Queue, which logically
consists of some LRU fraction of the last-level cache (1/4 in this
example); the Physical Write Queue in the memory controller; and
the added coordinating control logic and structures. We refer to
the structure as virtual because no additional queueing structures
are added. The overall area cost is small: ≈0.3% overhead over a
typical cache directory implementation (see Section 4.7).

Scheduled Writeback: Traditional writeback cache policies
initiate memory writes only when a cache fill replaces an LRU
cacheline. We refer to this as forced writeback. There are two
problems with this policy. First, writes are only sent to the memory
controller at the time of cache fills, so idle DRAM cycles cannot be
filled with writes. This was addressed with Eager Writeback [9],
where cachelines are sent to the memory controller when it appears
to be idle (an empty write queue is detected). The second problem
deals with the mapping of write locations to DRAM resources.
Since the memory controller is aware of each DRAM’s state, it
would ideally decide which writeback operation can be executed
most efficiently. With Eager Writeback, this selection is made
by the cache, without knowledge of what would be best for
DRAM scheduling. We introduce Scheduled Writeback to solve
this problem. With Scheduled Writeback, the memory controller
can direct the cache to transfer lines that map to specific DRAM
resources.

As shown in Figure 7(b), the primary microarchitectural addition
over traditional designs is the Cache Cleaner. The Cache Cleaner
orchestrates Scheduled Writebacks from the last-level cache to the
Physical Write Queue. While the cache and the Physical Write
Queue are structurally equivalent to traditional designs (and thus
hardware overhead is minimal), the logical behavior is significantly
altered. This is reflected in the distribution of dirty lines in the
system. Specifically, dirty lines have been cleaned from the lower
section of the cache, and the Physical Write Queue is maintained
at a higher level of fullness, with an ideal mix of commands
with respect to scheduling DRAM accesses. In addition, typical
memory controllers decide write operation priority based on only
the Physical Write Queue, whereas this system uses the much larger
Virtual Write Queue. The Physical Write Queue becomes a directly
managed staging buffer, of the now much larger window of write
visibility.

4.1 High Level Description of Coordinated
Policies

At steady state, the Physical Write Queue is filled to a defined
≈full level with a mix of operations to all DRAM resources. This
level is chosen to keep the queue as full as possible, while retaining
the capacity to receive cache writebacks. Scheduled Writebacks can
vary in length, depending on the number of eligible lines found in
the same DRAM page; the write queue must maintain capacity to
absorb these operations.

The DRAM scheduler executes write operations based on the
conditions of the DRAM devices, read queue operations, and the
current write priority. Write priority is determined dynamically

depending on the fullness of the Virtual Write Queue. As write
operations are executed to DRAM, the fullness of the Physical
Write Queue is decreased, so the Cache Cleaner refills the Physical
Write Queue to the target level. The Cache Cleaner will search the
last-level cache Virtual Write Queue region for write operations to
the desired DRAM resource. This DRAM resource is chosen in two
ways: 1) If the memory controller attempts a burst of operations
to a specific rank, an operation mapping to that rank will be sent;
2) alternately, if no burst is in progress, the Physical Write Queue
will be rebalanced by choosing the rank with the fewest operations
pending. This maintenance of an even mix of operations to various
DRAM resources enables opportunistic write execution, in that a
write is always available to any DRAM resource that becomes idle.

As part of the Cache Cleaner function, we harvest additional
writes which map to the same DRAM page as the write selected by
the Cache Cleaner for writeback. This is accomplished via queries
to cache sets which map to the same DRAM page (Section 4.3). In
our system, we define groups of such cache sets based on the cache
and DRAM address translation algorithms. In our evaluation we
found groups of four cache sets to be an ideal size.

Upon completion of the Scheduled Writebacks, the Physical
Write Queue once again contains an ideal mix of operations to be
scheduled. While we have described a sequence of operations,
in practice, the structure can concurrently operate on all steps,
accommodating periods of high utilization.

4.2 Physical Write Queue Allocation
As previously described, the highest barrier to efficient utiliza-

tion of a main store (whether DRAM or future technologies) is
the transition between read and write operations. In addition to
write-to-read turnaround, alternating between different ranks on
the same bus can introduce wasted bus cycles. To have good
efficiency, DRAM banks must additionally be managed such that
operations to the same bank, but to different pages, are avoided.
These characteristics motivate creation of long bursts of reads or
writes to ranks, while avoiding bank conflicts. The Physical Write
Queue allocation scheme addresses the formation of write bursts.

A key aspect of the Virtual Write Queue solution is its two-level
design. Since writes can only be executed from the Physical Write
Queue, our Scheduled Writebacks must expose parallelism of the
Virtual Write Queue into the Physical Write Queue to achieve the
highest value from last-level cache buffering. This is accomplished
by maintaining the best possible mix of operations in the Physical
Write Queue, given what is visible in the entire Virtual Write Queue
structure.

We accomplish this in two ways. First, we create the capability to
opportunistically execute write operations to any rank. In this way,
we can react to a temporarily idle rank with a burst of writes at any
moment. Extending this idea, we must maintain several writes to
each rank which can be executed without idle cycles. Ideally, we
would maintain many writes to the same DRAM pages. When it is
not possible to maintain accesses targeting the same rank and page,
we find operations to the same rank, but a different bank. For a
write burst to a rank that is longer than what can be stored in the
Physical Write Queue, we directly generate Scheduled Writebacks
in concert with execution of writes, such that we can overlap the
cache writeback latency with the Physical Write Queue transfers to
memory. Once the initial latency of the first cache writeback has
passed, our cache has the required bandwidth to maintain a busy
DRAM bus.

An example timing diagram for this Virtual Write Queue func-
tion is shown in Figure 8. In this example, the Physical Write
Queue initially contains four cachelines which map to a target rank
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(cachelines 0 to 3 in the first column). At t0, the scheduler initiates
an eight cacheline write burst. While the initial four cachelines of
data are available in the write buffer, the remaining lines must be
transferred from the last-level cache using the Scheduled Writeback
mechanism. In this case, a request is made at t1 to the Cleaner logic
coincident with the initiation of the writes to memory. To maintain
back-to-back transfers on the DRAM bus, the Cache Cleaner must
be able to provide data within the delay of the transfer of data
from the Physical Write Queue to main memory. For example,
in a system using DDR3 1066 memory with a burst length (BL) of
8, each cacheline requires ≈8ns to be transferred (i.e., ≈32 CPU
cycles). Thus the Cleaner must be able to provide a cache line
within 32ns, assuming four cachelines stored in the Physical Write
Queue. Our design analysis shows that this is easily achieved for
typical last-level cache latencies (10 ns measured on Intel I7 965
[4]). In the example of Figure 8, we show that the first writeback
data, cacheline 4, arrives at time t2. At this point, the Physical
Write Queue has been depleted of lines 0-3, and data is streamed
from the last-level cache. As the eight-line write burst completes
at time t3, the remaining lines from the last-level cache transfer are
used to refill the Physical Write Queue. At time t4, the physical
queue is once again full, and ready to execute another write burst.

4.3 The Cache Cleaner
To qualify as an efficient implementation, our scheme must (1)

not interfere with the mainline cache controller; (2) be power
efficient; and (3) be timely. Specifically, the Cache Cleaner must
not affect hit rates or cause excessive access to cache directory and

data arrays; it must avoid excess reads of cache directory arrays
for power efficiency reasons; and cache lines to be cleaned must be
located in a timely manner. The Cleaner uses a Set State Vector to
accomplish these goals.

4.3.1 The Set State Vector (SSV)
While the cache lines in the Virtual Write Queue are contained

within the state information of the cache directory itself, direct
access is problematic. Specifically, cache directory structures are
optimized for efficient CPU-side interaction. This CPU-centric
directory organization conflicts with the access requirements of the
Cache Cleaner. The Cache Cleaner would like to efficiently search
across many sets, in search of dirty cache lines to be scheduled for
writeback to the DRAM. We enable this efficient search with the
addition of the Set State Vector (SSV).

At the most basic level, the SSV is used as a structure to decouple
the cache cleaner from the actual cache directory for the following
reasons. First, the SSV provides a much denser access method. If
the actual directory were used, many more bits would need to be
read and interpreted, wasting power. This is shown in Figure 9(a),
where each 8-way cache set maps to one SSV bit. In addition to the
density gains, the organization of the SSV is tailored such that array
reads return 64 bits for the specific DRAM resource being targeted
(taking advantage of reading entire rows of the storage arrays). This
is shown in Figure 9(b), where the set address is remapped to the
DRAM rank and bank address. Lastly, the SSV avoids interference
between the cache cleaner and the main cache directory pipeline by
providing a dedicated read port for the cache cleaner.

The process of calculating the SSV bit is implemented as part
of the cache access pipeline where all of the state and LRU
information is available as part of the existing cache lookup. While
there is additional power in accessing the SSV array, the structures
are only a fraction of the size of the actual directory, thus the
additional power is not significant.

Each SSV entry contains the dirty data criticality of each set.
For our system, we define sets with dirty data in the oldest 1/4 of
the cache as critical. We derive this criticality from the LRU bits
present in the cache pipeline. Our system uses an 8-way true LRU
algorithm implemented with 28 bits for each cache set. These 28
bits are used to define pairwise age between every combination of
the eight members (7+6+5+4+3+2+1=28 bits). The LRU distance
is then calculated by adding the 7 direction bits for each way. If the



!"#$ %&"&' ()* +,, %%-

(a)

!"#$%&$'

!"#$%&$'

()*+%,-%.)*+%,%//0

()*+%,-%.)*+%1%//0

/"$%2*3"#
,#1,,,
,#1,4,
,#1,5,
,#1,6,
,#11,,
,#114,
,#115,
,#116,

,#176,
,#18,,
,#184,
,#185,
,#186,
,#15,,
,#154,
,#155,
,#156,

,#19,,
,#194,

,
1
9
:
4
;
7
8

,
,
,
,
,
,
,
,

,
1
9
:

4
;
7
8

,
9
:

,
,
,
,

:
:
:
:
:
:
1

()*+%,-%.)*+%9%//0

()*+%,-%.)*+%:%//0

()*+%:-%.)*+%4%//0

()*+%:-%.)*+%;%//0

()*+%:-%.)*+%7%//0

()*+%:-%.)*+%8%//0

()*+%,-%.)*+%4%//0

()*+%:-%.)*+%:%//0

()*+%,-%.)*+%;%//0

()*+%:-%.)*+%9%//0

<(=>%("?@A'B"%%%%

!"#$%&$'

!"#$%&$'

!"#$%&$'

!"#$%&$'

!"#$%&$'

!"#$%&$'

!"#$%&$'

!"#$%&$'

!"#$%&$'

!"#$%&$'

6)BC"%/"$ //0

()*+ .)*+

(b)

Figure 9: Set State Vectors (SSVs): a) directory set map to SSV entries, and b) mapping of cache sets to SSVs

distance is greater than the criticality distance (5 in our example),
the SSV bit is set. While our system is based around true LRU, this
concept can be extended to other replacement algorithms such as
pseudo-LRU. For example the relative age in a tree based pseudo-
LRU can be estimated by counting the number of pointers towards
each way.

4.3.2 Cleaner SSV Traversal
Adjacent entries in the SSV are not necessarily adjacent sets

in the cache. The dense packing is based upon the mapping of
the system address into the physical mapping on the DRAM’s
channel/rank/bank resources. Adjacent entries in the SSV all map
to the same channel/rank/bank resource.

A mapping example is shown in Figure 9(b). In this example
we have a closed-page mapping for four ranks, each with 8
banks. In this case, every 32nd cache line maps to the same SSV.
In general the mapping logic must be configured to match the
DRAM mapping function; this is not a significant constraint, since
mappings are known at system boot time. Our scheme requires
all bits that feed the DRAM mapping function to be contained
within the set selection bits of the cache. This enables not only
the SSV mapping function, but also page mode harvesting. This
restriction does not produce significant negative effects, since all
bits above the system page size are effectively random, and large
last-level cache sizes have several higher order bits available for
more sophisticated mapping functions (which avoid power of two
conflicts that are common in simple lower-order bit mappings) [24].

The SSV is then subdivided into regions for each channel / rank
/ bank configured in the system. The Cache Cleaner maintains a
working pointer for each of these configured regions. As the Cache
Cleaner receives writeback requests from the memory controller,
the associated working pointer reads a section of the SSV (with the
matching Next Ptr in Figure 9(b)). A set is selected, which will
determine the specific set with which a writeback request will be
generated. This request is sent to the cache controller to initiate the
actual cache cleaning operation.

4.4 Read/write Priority Mechanism
To be most effective, our write queueing system must be able

to dynamically adjust the relative priority between read and write
operations. The system must be able to respond to the workload’s
overall read-to-write ratio, in addition to being able to handle
bursts of operations. A well-behaved system will always execute
reads instead of writes, as writes only indirectly slow a program as
queueing in the system becomes full. Given finite queuing, writes
must at some point step in front of reads. This is an important
aspect of our system, in that the Virtual Write Queue provides

much larger effective buffering capability. To efficiently manage
this capacity we must react to the overall fullness of the Virtual
Write Queue. The behavior of our system as the capacity nears full
differs significantly from the previously-proposed Eager Writeback
technique [9] (which essentially results in no benefits in sustained
high bandwidth situations). This is illustrated in the following
example.

Some workloads, such as Stream [14], require a high level of
sustained, regular, bandwidth. Stream consumes sequential vectors
of data that are not contained within the cache. These vectors
are processed within loops with various read-to-write ratios (e.g.,
1:1 R:W for copy, 3:1 for triad). Despite changes in the
read-to-write ratio, the workloads’ memory bandwidth requirement
is constant: every instruction executed must read from memory.
There is therefore no inherent period of execution in which writes to
memory can be hidden. Despite this constraint, memory utilization
is significantly reduced if the memory bus is switched between read
and write operations at the native requirements of the workload.
For workloads with this type of behavior, improving performance
requires that we force long write burst lengths, even when no
idle bus slots are available. For the copy kernel, the native 1:1
ratio yields a memory bus utilization of 31%, while a burst of 32
cachelines can achieve 94% (Figure 4); a 300% improvement in
memory efficiency.

Priority Mechanism: We base our read-to-write priority on a
count of the data criticality bits set in the SSVs associated with
each rank (8, one for each bank). The count is updated as bits are
set/reset in the corresponding SSVs. We then utilize high and low
water marks to trigger high priority writes. The high water mark
is chosen such that we do not overflow the LRU of the cache with
forced writebacks. In our evaluations we found a value of 4096
to be effective. This represents a half full Virtual Write Queue.
Larger values resulted in overflow of some cache sets, decreasing
the ability to control writebacks. The low water mark defines the
number of consecutive cachelines to be written. We found a burst
of 32 lines to be effective (low water mark of 4064 = 4096 - 32).

4.5 Write Page Mode Harvester Logic
The cache eviction mechanism is augmented to query adjacent

lines in the directory, such that groups of requests within the
same memory page can be detected and sent as a group for
batch execution to the DRAM. When a line is pulled out of
the cache array, we search the associated sets of the cache that
contain possible page mode addresses. If the corresponding page
mode addresses are found, these will be sent as a group to the
memory controller, to be processed as a burst page-write command
sequence. In our evaluation we found that three look-ups associated



Table 2: Core and memory-subsystem parameters used in evaluation section

Core Characteristics Clock Frequency Pipeline Reorder Buffer /Scheduler Branch Predictor

4 GHz 30 stages / 4-wide fetch / decode 128/64 Entries Direct YAGS /
indirect 256 entries

L1 Data & Inst. Cache L2 Cache Outstanding Requests Memory Bandwidth

Memory Subsystem

64 KB, 2-way associative, 3 cycles
access time, 64 Bytes block size,

LRU

16 MB, 8 ways associative, 12
cycles bank access, 64 Bytes

block size, LRU
16 Requests per Core 16.6 GB/s

Controller Organization DRAM Controller Resources Virtual Write Queue
2 Memory Controllers

1, 2, and 4 Ranks per Controller
8 DRAM chips per Rank

8GB DDR3-1066 7-7-7 32 Read Queue & 32 Write
Queue Entries

2 LRU ways
4096 High & 4064 Low

Watermark

with a block of four cachelines provided significant gains without
excessive directory queries.

4.6 Prevention of Extra Memory Writebacks
Since our system speculatively writes dirty data back to memory,

there is some chance that extra memory write traffic is introduced.
Specifically, if a store occurs to the data after it is cleaned, the
cleaning operation is wasted. As a solution to this problem, we add
additional cache states to indicate a line was once dirty, but has been
cleaned. Lines in Cleaned states are excluded from being cleaned a
second time. A complete extension to the MOESI protocol would
require Cleaned version of all four valid states. This presents
additional overhead in that the total number of states would reach
nine. Since MOESI systems require three state bits of encoding,
three unused state encodes are available. To avoid the overhead of
adding a fourth state bit, we choose to exclude the Shared Cleaned
state, maintaining the same state overhead as standard MOESI. Our
justification for the exclusion of Shared Cleaned is best explained
through the state transitions shown in Table 3. In the table, the
Cleaned states are represented with a lowercase c, e.g. Modified
Cleaned as Mc.

Table 3: Extra coherence protocol transitions introduced to
prevent extra memory writebacks

# Initial
State Event Next

State Comment

1 M Clean Ec Scheduled Writeback
2 S Store M M If no Oc in system
3 S Store Mc Mc If Oc in system
4 Mc Snooped Read Oc

5 Oc Store Mc

6 Oc Snooped Read Oc

7 Ec Store Mc

8 O Clean S Disallowed due to lack of Sc

9 Ec Snooped Read S Loss of cleaned Information

There are two cases of potential transitions into the Shared
Cleaned state (Sc). In row 8 of Table 3, we show the case of
an Owned (O) line that if cleaned would transition to Shared
Cleaned. In our simulations we do not clean Owned lines thus this
case is avoided. In row 9 we show the case of a line in Exclusive
Cleaned state (Ec), where a read operation is snooped. Here the
Exclusive Cleaned line must transition to an Shared state. Since
the Cleaned modifier is not required for coherence, we simply
use the traditional Shared state in this case. In our analysis we
observed no degradation due to this policy.

4.7 Overall Overhead Analysis of Virtual
Write Queue

The actual storage overhead of the proposed Virtual Write Queue
is limited to the overhead for the SSVs. The rest of the scheme
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Figure 10: IPC improvements of Virtual Write Queue over prior
work (FR_FCFS + Eager) [21, 9]

primarily reuses existing structures in the last-level cache and
memory controller of a typical CMP system. All of the remaining
structures added to the last-level cache controller and memory
controller are negligible in size compared to the storage required
for the SSVs. We evaluate the overhead of the SSV by comparing
it to the cache directory. For a 16MB 8-way associative cache used
in our analysis, each cache set requires 346bits (see Figure 9(a):
8 ∗ 32bits Tag bits, 8 ∗ 3bits State Bits, 28 LRU bits and 38 ECC
bits). Since we add only one SSV bit per cache set, our overhead
is approximately 1/346≈0.3% (4Kbytes of storage for the SSV
compared to 1384Kbytes for the cache directory).

5. EVALUATION
To evaluate the effectiveness of the proposed Virtual Write

Queue, we used Simics [22], extended with the Gems toolset [13],
to simulate cycle-accurate out-of-order processors and a detailed
memory subsystem. We configured our toolset to simulate an 8-
core SPARCv9 CMP with 8GB of main memory. The memory
subsystem model includes an inter-core last-level cache network
that uses a directory-based MOESI cache coherence protocol
along with a detailed memory controller. Both the last-level
cache and the memory controller were augmented to support
a baseline memory controller and the proposed Virtual Write
Queue. Our baseline implementation simulates a First-Ready,
First-Come-First-Served (FR_FCFS) [21] memory controller with
the addition of Eager writebacks [9], referred to as FR_FCFS+EW
in our evaluation. Enhancements beyond FR_FCFS, such as PAR-
BS [17] and Fair-Queueing [18] focus on memory read fairness
and throughput improvement in heterogeneous environments. In
this study we evaluated improvements to the write scheduling using
homogeneous workloads. System improvements targeting read
scheduling are non-conflicting and can be used in combination with
Virtual Write Queue. Therefore a baseline system of FR_FCFS
with eager writebacks (FR_FCFS+EW) allows us to evaluate our
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Figure 11: Power reductions achieved by Virtual Write Queue for SPEC CPU2006 Rate

proposed scheme. We use the SPEC CPU2006 Rate scientific
benchmark suite [23], compiled to the SPARC ISA with full
optimizations (peak flags). Each benchmark is fast-forwarded for
4 billion instructions to reach its execution steady-state phase. We
then simulate for the next 100M instructions to warm up the last-
level cache and our memory controller structures; followed by a
final 100M instructions used in our evaluation. Table 2 includes
the basic system parameters.

5.1 System Throughput Speedup Analysis
Cycle-accurate simulations of SPEC CPU2006 Rate showed that

the Virtual Write Queue enables significant throughput gains for
workloads with high memory bandwidth requirements. These
gains over the baseline FR_FCFS+EW [21, 9] system is shown in
Figure 10. We show speedups for three memory bus configurations
(1, 2, and 4 DRAM ranks per channel). SPEC workloads not listed
in the figure did not show any measurable change in performance.
As expected, workloads with high memory utilization showed
benefits due to reduction in bus penalties by forming long back-
to-back write bursts. The largest speedup is observed on the single
rank system. In this case, the controller does not have other ranks to
which to send requests, and the ”write-to-read-same-rank” penalty
is incurred at every bus turnaround. For the 2-rank system, we show
smaller gains, since the baseline system is able to schedule around
”write-to-read-same-rank” penalties in many cases. In that case,
delays due to rank-to-rank transitions become more important. The
performance of the 4-rank system is very close to that of the 2-
rank since the controller incurs fewer ”write-to-read-same-rank”
penalties, but generates more frequent rank-to-rank transitions.
Overall, the Virtual Write Queue achieved average improvements
of 10.9% in throughput when configured with 1 rank, while for the
cases of 2 and 4 ranks the IPC improvements were found to be 6.4%
and 6.7%, respectively.

5.2 Page Mode Analysis
Using the Virtual Write Queue we see significant increases

in the amount of page mode write operations over the baseline
FR_FCFS+EW [21, 9] system. Our full-system simulation shows
an average of 3.2 write accesses per page – this contributes to
system throughput gains (as observed in Section 5.1) and memory
power reduction. While the throughout gains are only observed
in high bandwidth workloads, the power reductions are more
universal. In Figure 11 we show the DRAM power reduction for
each workload estimated using the Micron power estimator [16].
Overall, we observe an average DRAM power reduction of 8.7%.
As shown in [20], main memory can be a significant portion of total
system power. For stream, Rajamani et al. indicate that memory
power can be 48% of high performance system power, even after
accounting for supply losses. The 11-15% power saved for half of
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Figure 12: Writes per open-page for varying number of cache
ways allocated to the Virtual Write Queue. The Virtual Write
Queue exploits the LRU ways of the last-level cache to virtually
expand the write queue.

the workloads through the page mode write scheduling of Virtual
Write Queue would thus result in a 5-7% system-level savings.

To further evaluate the page mode behavior of the Virtual
Write Queue we performed a set of simulations using three di-
verse commercial workloads. Due to the complexity and size of
the commercial workloads, a detailed evaluation using a cycle-
accurate, full system simulator is prohibitively expensive. As a
solution, for commercial workloads we utilize trace-based cache
simulations. The first workload is an On-Line Transaction Process-
ing (OLTP) workload driven by hundreds of simulated individual
clients generating remote transactions against a large database.
The second workload represents a typical Enterprise Resource
Planning (ERP) workload. As with the OLTP workload, the
ERP workload was driven by simulated users who sent remote
queries and updates to the database. Finally, the third workload
is SPECjbb2005 benchmark [23] that targets the performance of
a three-tier client/server system with emphasis on the middle tier.
We performed the trace-based simulations using an in-house cache
simulator augmented to model the Virtual Write Queue.

We augmented our cache simulator to monitor the total page
mode writes that were possible when varying the number of
cache ways that were allocated to the Virtual Write Queue. The
simulation results are shown in Figure 12. Whenever a dirty line
was evicted from the cache, the last N ways of the cache were
checked for other dirty lines that mapped to the same DRAM page.
As expected, there is a steady increase in page mode opportunity
as we increase the number of ways considered, with significant
increases in 2 ways, and diminishing returns after considering more
than 4 ways, or half the cache. The increased performance from
considering more ways of the set must be balanced against the
overhead of additional writes introduced by the cleaning. Though



	
   Figure 13: Extra Writeback avoidance for SPEC CPU2006

not shown, it is worth noting the implied difference in performance
results across the three workloads. The OLTP workload sees
limited benefit, while the ERP and SPECjbb see much larger
opportunities.

5.3 Prevention of Extra Memory Writeback
Analysis

As described in Section 4.6, the Virtual Write Queue mecha-
nisms has the potential to generate additional writeback traffic for
cases where a cleaned line is modified after its speculative write-
back to the memory. In this section we evaluate the magnitude of
the problem, and the solution presented in Section 4.6. Through our
cycle-accurate simulations, we classified the writebacks to memory
into the following categories: a) Inherent: normal bandwidth that
is not created by speculative writebacks, b) Extra: bandwidth
created through speculative writeback that is not removed though
our cache state enhancements, and c) Avoidable: Speculative
bandwidth that is avoided with the addition of the proposed cache
state enhancements. In Figure 13 we present the total memory
bandwidth, in MB/sec, as was collected from our simulations. As
shown, certain workloads, such as sjeng, see significant extra
bandwidth that is eliminated using the cache state enhancements of
Section 4.6. Note, our power estimates in Section 5.2 assume these
cache state enhancements. In all cases, the power savings achieved
at the DRAM using page mode offset the increase from extra
traffic (since most of the extra traffic contains no bank activates).
In addition, we performed a limited evaluation of commercial
workloads to gauge how problematic this behavior is. Again, there
are significant differences between the workloads. Using the lower
2-ways of LRU in the Virtual Write Queue, SPECjbb showed 1%
increase in writebacks compared to an increase of 6% for ERP and
9% for OLTP.

6. RELATED WORK
Multi-threaded aware DRAM schedulers: Multi-threaded

aware proposals have primarily addressed mechanisms to reorder
requests received by the memory controller. Work on Fair Queu-
ing Memory Systems by Nesbit et al. [18] utilizes fair queuing
network principles on the memory controller to provide fairness
and throughput improvements. Parallelism-Aware Batch Schedul-
ing [17] alleviates the problem by maintaining groups of requests
from the various threads in the system and issuing them in batches
to the controller. A suite of work has considered minimizing
prefetch impacts on overall memory subsystem performance, some
of which consider prioritizing prefetch according to page mode
opportunity [10] [11]. As previously described, the Virtual Write

Queue, which realizes performance and power savings by focusing
on writes, is non-conflicting and can be combined with the previous
read-oriented memory optimization approaches.

System and DRAM interaction: Proposals to improve interac-
tions between the DRAM controller and other system components
have been proposed in the following areas. The Eager Writeback
technique [9] addresses breaking the connection between cache
fills and evictions, but the approach has minimal communica-
tion between the last-level cache and the memory controller and
thus misses performance and power opportunities which arise
through knowledge of logical-to-physical address mapping and
troublesome memory timing constraints. In the work evaluating
ZettaRAM [25], Eager Writeback is shown to work synergistically
with the more advanced write characteristics of the described
memory technology. This is an example of how future mem-
ory technologies can benefit from more sophisticated write-back
schemes. We expect the Virtual Write Queue to further improve
the system characteristics. SDRAM-aware scheduling from Jang
et al. [6] addresses management of the on-chip network such that
requests are ordered with regard to memory efficiency.

DRAM write-read turnaround: For specialized applications,
DRAMs have been offered with separated read and write IOs,
allowing for high bus utilization, even for mixed read/write access
streams [15]. Borkenhagen et al. [1], describe the problem of
DRAM write-to-read turnaround delay, and recognize the need for
cache / memory controller interaction to most effectively alleviate
its performance effect. Borkenhagen et al. propose a read predict
signal, which provides the memory controller early notice that a
read may soon arrive at the memory controller. If read predict
is asserted, the memory controller will not issue pending writes,
to avoid incurring a write-to-read turnaround delay which would
delay the read.

DRAM power management: Several approaches have been
proposed for DRAM power management, however most leverage
memory sleep states, rather than exploiting page mode power
savings. [8] considers the power cost of opening and closing
pages, and [12] proposes a Page Hit Aware Write Buffer (PHA-
WB), a 64-entry structure residing between the memory controller
and DRAM, which holds onto writes until their target page is
opened by a read. The PHA-WB, however, was evaluated for a
write-through cache, for which memory-level access locality will
be much more apparent than in a writeback structure. Writeback
caches provide significant improvements in available memory
bandwidth and power consumption, so are thus a more realistic
baseline for many-core server-class systems.



7. CONCLUSIONS
In this work we address the barriers to efficient DRAM oper-

ation, which is a key attribute of many-core architectures. We
propose a novel approach that coordinates last-level cache and
DRAM policies, which significantly improves both system perfor-
mance and energy characteristics. We modify existing structures
and mechanisms in order to allow greater sharing of system state
across units, therefore, enabling better scheduling decisions.

Specifically, we expand the memory controller’s visibility into
the last-level cache, greatly increasing write scheduling opportuni-
ties. This enables several improvements in system behavior. We are
able to increase page mode writes to DRAM, which both decreases
power consumption and increases memory bus efficiency. The
longer write bursts achieved through Scheduled Writebacks amor-
tize bus turnaround penalties, increasing bus utilization. The larger
effective write queue improves read/write priority determination in
the DRAM scheduler, enabling burst read operations to proceed
uninhibited by write conflicts for longer periods.

We demonstrate through cycle-accurate simulation that the pro-
posed Virtual Write Queue scheme is able to achieve significant
raw system throughput improvements (10.9%) and power con-
sumption reductions (8.7%) with very low hardware overhead
(≈0.3%). Overall, the Virtual Write Queue demonstrates that
co-optimizations of multiple system components enable low-cost,
high-yield improvements over traditional approaches.
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