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Abstract—Space-time (ST) coded MIMO systems employing co-
herent detectors crucially require channel state information. This
paper presents a novel pilot-embedding framework for channel es-
timation and data detection by exploiting the null-space property
and the orthogonality property of the data-bearer and pilot ma-
trices. The ST data matrix is firstly projected onto the data bearer
matrix, which is a null-space of the pilot matrix, and the resulting
matrix and the pilot matrix are combined for transmitting. The
data and pilot extractions are achieved independently through
linear transformations by exploiting the null-space property. The
unconstrained maximume-likelihood (ML) and linear minimum
mean-squared error (Immse) estimators are explored for channel
estimation. Then the ML approach for data detection is developed
by exploiting the orthogonality property. The mean-squared error
(mse) of channel estimation, Cramer-Rao lower bound (CRLB),
and the Chernoff’s bound of a pair-wise error probability for ST
codes are analyzed for examining the performance of the proposed
scheme. The optimum power allocation scheme for data and
pilot parts is also considered. Three data-bearer and pilot struc-
tures, including time-multiplexing (TM)-based, ST-block-code
(STBC)-based, and code-multiplexing (CM)-based, are proposed.
Simulation results show that the CM-based structure provides
superior performance for nonquasi-static flat Rayleigh fading
channels, while these three structures yield similar performances
for quasi-static flat Rayleigh fading channels.

Index Terms—Channel estimation, code-multiplexing based
training, multiple-input multiple-output (MIMO), pilot embed-
ding, space-time (ST).

I. INTRODUCTION

ULTIPLE-INPUT multiple-output (MIMO) communi-
cation systems provide prominent benefits to wireless
communications due to the high capacity and reliability they
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can offer [1], [2]. Recently, the space-time (ST) codes have been
proposed in [3] and [4] for MIMO communications, in which
the bit error rate (BER) of the systems is significantly improved
without increasing transmission power by exploiting transmit
diversity [3].

A major challenge in wireless ST communications employing
a coherent detector is the channel state information acquisition
[31, [4]. Typically, the channel state information is acquired or
estimated by using a pilot or training signal, a known signal
transmitted from the transmitter to the receiver. This technique
has been widely applied because of its feasibility for implemen-
tation with low computational complexity [5].

Two main pilot-aided channel estimation techniques have
been proposed in both single-input single-output (SISO) and
MIMO systems: the pilot symbol assisted modulation (PSAM)
technique and the pilot-embedding technique. In the SISO
system, the PSAM technique has been intensively studied in [5]
for frequency-nonselective fading channels, and was recently
extended to MIMO systems [6]-[11]. In this technique, first,
a pilot signal is time-multiplexed into a transmit data stream,
and then, at the receiver side, this pilot signal is extracted from
the received signal to acquire the channel state information.
Furthermore, an interpolation technique by averaging channel
estimates over a certain time period is employed in order to im-
prove the accuracy of the channel estimates. The disadvantage
of this technique is the sparse pilot arrangement that results in
poor tracking of channel variations. In addition, the denser the
pilot signals, the poorer the bandwidth efficiency.

The pilot-embedding, also referred as pilot-superimposed
technique, has been proposed for the SISO systems [12] and
for the MIMO systems [13]-[15], where a sequence of pilot
signals is added directly to the data stream. Some soft-decoding
methods, such as Viterbi algorithm [12], [14] are employed
for channel estimation and data detection. This technique
yields better bandwidth efficiency, since it does not sacrifice
any separate time slots for transmitting the pilot signal. The
disadvantages of this technique lie in the higher computational
complexity of the decoder and the longer delay in channel
estimation process.

Our purpose is to design a novel pilot-embedding approach
for ST coded MIMO systems with affordable computational
cost and better fast-fading channel acquisition. The basic idea
is to simplify channel estimation and data detection processes
by taking advantages of the null-space and orthogonality prop-
erties of the data-bearer and pilot matrices. The data-bearer ma-
trix is used for projecting the ST data matrix onto the orthogonal
subspace of the pilot matrix. By the virtue of the null-space and
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orthogonality properties, in our proposed data-bearing approach
for pilot-embedding, a block of data matrix is added into a block
of pilot matrix, that are mutually orthogonal to each other. The
benefit that we are able to expect from this approach is better
channel estimation performance, since the estimator can take
into account the channel variation in the transmitted data block.
In addition, a low computational complexity channel estimator
is also expected.

Now let us briefly describe the MIMO channel and system
model. We consider the MIMO communication system with L,
transmit antennas and L, receive antennas. In general, for a
given block index ¢, a ST symbol matrix U(¢) is an L; x M code-
word matrix transmitted across the transmit antennas in M time
slots. The received symbol matrix Y (¢) at the receiver front-end
can be expressed as follows [14]:

Y (1) = HOU(t) + N(1) )

where H(t) is the L, X L; channel coefficient matrix and the
L, x M additive noise matrix IN(¢) is complex white Gaussian
distributed with zero mean and variance (o?/ 2)L(L, mxL, )
per real dimension. The elements of H(¢) are assumed to be in-
dependent complex Gaussian random variables with zero mean
and variance 0.5 per real dimension. Or equivalently, an inde-
pendent Rayleigh fading channel is assumed. In this paper, we
first examine a quasi-static flat Rayleigh fading channel, where
H(¢) remains constant over each symbol block but it changes
block-by-block independently. Then, we extend our proposed
scheme in a nonquasi-static flat Rayleigh fading channel, where
H(t) is not constant over each symbol block. Our problems
are to estimate the channel coefficient matrix H(¢) and the ST
symbol matrix U(t) by using the pilot or training signal em-
bedded in U(t).

The rest of this paper is organized as follows. We present
the proposed data-bearing approach for pilot-embedding
frameworks in Section II, including general properties needed,
channel estimation process, possible data bearer and pilot
matrices, and data detection process. Performance analysis
for the proposed scheme is carried out in Section III, in terms
of channel estimation and data detection. In Section IV, we
address the issue of optimum block power allocation for data
and pilot parts. The simulation results are given in Section V,
and we conclude this paper in Section VL.

II. THE PROPOSED DATA-BEARING APPROACH FOR
PI1LOT-EMBEDDING

In this section, we present the proposed data-bearing approach
for pilot-embedding, including the pilot and data extraction
procedures, channel estimation, possible data bearer and pilot
matrices, and data detection. Our motivation of pursuing pilot-
embedding by distributing the pilot signal onto the ST data is to
capture the variation of the channel at every instant for achieving
a better channel estimate. Without loss of generality, we de-
scribe our data matrix Z(t) € CE+*M as follows:

Z(t)=D(t)A (2)

where D(t) € CL+*¥ is the ST data matrix, and A € RV*M
is the data-bearer matrix with [V being the number of data time
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slots. It is worth mentioning that N < M because the ex-
cessive time slot, i.e., M — N, will be used for providing a
room to embed pilot signals. In our implementation, the ST
data matrix D(¢) is assumed to maintain the energy constraint
E[||D(#)||?] = L; with || - || being the Frobenius norm. The pro-
posed pilot-embedded ST symbol matrix U(¢) can be expressed
as follows:

U(t) = Z(t) + P = D(t)A + P 3)

where P € RE+XM js the pilot matrix. Unlike the pilot-embed-
ding technique previously proposed in [14] where the pilot-em-
bedded ST symbol matrix U(¢) is expressed as U(t) = D(¢) +
P, the major difference of our proposed scheme in (3) is the ex-
ploitation of the data-bearer matrix A, which plays the major
role along with the pilot matrix P in the channel estimation and
data detection processes.

By the data-bearing approach for pilot-embedding, we re-
quire that the data bearer matrix A and the pilot matrix P satisfy
the following properties:

APT =0 e RN )
PAT =0 e REXN 5)
AAT =pB1 e RNV (6)
PP” =al € RL+*L (M

where (3 is a real-valued data-power factor for controlling the
value of data-part power, « is a real-valued pilot-power factor
for controlling the value of pilot-part power, 0 stands for an
all-zero-element matrix, and I stands for an identity matrix. The
key concept of our pilot-embedding approach is the exploita-
tion of the null-space properties [16], i.e., the properties (4) and
(5), and the orthogonality properties [16], i.e., the properties (6)
and (7), about the data-bearer matrix A and the pilot matrix P.
Obviously, in (3), the data-bearer matrix A plays a major role
in projecting the ST data matrix D(¢) onto the orthogonal sub-
space of the pilot matrix P. From (6) and (7), we can imply that
Rank(A) = N and Rank(P) = L; with Rank(-) being the
rank of a matrix. In order to satisfy the null-space properties in
(4) and (5), the minimum number of the column in A and P
must be equal to the sum of the rank of A and P [17]. Conse-
quently, the number of time slots M of the pilot-embedded ST
symbol matrix U(¢) must satisfy the following equality:
Rank(A) + Rank(P) = M. ®
The proposed pilot-embedded ST symbol block structure
is demonstrated in Fig. 1. The proposed pilot-embedded ST
symbol block U(¢) consists of two main parts: data sequences
{Z(t)}; and pilot sequences {P};, where 7 stands for a row
index, ¢« = 1,...,L;. Substituting (3) into (1), the received
symbol matrix Y (¢) in (1) can be rewritten as follows:

&)

There are at least three possible structures of data-bearer and
pilot matrices, in which the elements of these matrices are real
numbers, that satisfy the properties (4)—(7) as follows.

Y(t) = H(t)(D()A + P) + N(1).
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Fig. 1. The proposed pilot-embedded ST symbol block structure.

1) Time-Multiplexing (TM)-Based Data-Bearer and Pilot
Matrices: The structures of these matrices are given as

A =/B0vxriTvww)]

P=Va[L1,x0,)i0mxn]: M=N+L (10

where ; denotes matrix combining. In this structure, the L; X L,
identity matrix I is used as a pilot or training symbol. In addi-
tion, PSAM belongs to this category [5], because it employs the
time-multiplexing structure for pilot and data allocation, and has
been used in [7]-[10]. Therefore, the existing PSAM technique
is subsumed in the proposed general idea in (3).

2) ST-Block-Code (STBC)-Based Data-Bearer and Pilot Ma-
trices: The structures of these matrices are given as

A=\ [0(n xr)i I
P:\/a[STBC(LtXT)aO(LtX]V)], M:N+T (11)
where 7 is the number of time slots used for transmitting one
ST block code. In addition, 7 is greater than or equal to Ly, i.e.,
7 > L4, depending on the structure of the chosen ST block
code. In this structure, the major difference from the TM-based
structure is that it employs the normalized known ST block code
[4] as the pilot symbol instead of using the identity matrix. It
also inherits the time-multiplexing structure in pilot and data
allocation. This kind of data bearer and pilot matrices have been
used in [6], for instance.

3) Code-Multiplexing (CM)-Based Data-Bearer and Pilot
Matrices: The structures of these matrices are given as

A = /BWH[L: N](xuar),

P =aWH[N +1: M](thM), M=N+1L; (12)
where WH][z : y] denotes a submatrix created by splitting the
M x M normalized Walsh-Hadamard matrix [18] starting from
z*P-row to y'"-row. Because the power is evenly distributed
over all entries of these matrices, i.e., no zero-entry is con-
tained in these matrices, we expect that their channel estimation
performance is superior to the other two structures. The disad-

vantage of this structure is the limitation of dimensionality of

Walsh-Hadamard matrix, which has a dimension proportionally
to 2", n € [. In addition, this structure provides an instructive
example of the proposed general idea in (3) for pilot-embedding.

It is worth mentioning that our proposed data-bearing ap-
proach for pilot-embedding frameworks subsumes the general
idea of the existing pilot-based techniques, i.e., PSAM and pilot-
embedding techniques. Furthermore, our designed criteria in (6)
and (7), and the above three examples satisfy the optimal de-
signed criteria in [10], i.e., the optimal training data and the op-
timal training interval length, respectively. In addition, the prop-
erty in (7) is optimal in the sense that the bandwidth efficiency
loss due to the pilot transmission is proportional to the factor
(M — L;)/M [10], so that all three structures yield the same
loss, provided that the case of M = N + L, is considered.
In what follows, we further consider the problems of channel
estimation and ST data detection by using the aforementioned
data-bearing approach.

A. Channel Estimation

The channel estimation of our proposed data-bearing ap-
proach for pilot-embedding frameworks can be achieved by
first simply postmultiplying the received symbol matrix Y (%)
in (9) by the transpose of the pilot matrix P7 for extracting the
pilot part. Using (4) and (7), and dividing the result by «, thus,
yielding

(13)

Let us denote y(t) = vec(Y(#)PT/a), n(t) =
vec(N(t)P? /a), and h(t) = vec(H(t)) with vec(-) being
the vectorization conversion [19], hence, (13) can be rewritten
as follows:

y(t) = h(t) + n(?). (14)

For the pilot-projected noise vector n(t), using the following
relationship [19]:

vec(ABC) = (CT ® A)vec(B) (15)
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where ® is the Kronecker product, we have

n(t) = é (T@ N(#)) vee(PT).

(16)
From the white Gaussian-distributed assumption of N(¢), the
mean vector and the covariance matrix of the pilot-projected
noise vector n(¢) are determined as follows:

Hogt) = éE [(I®N(t)) vec(PT)] =0(r,z.x1) (17)
Vaw) = %E [ (I® N(t)) vec(P™))

x (1@ N(t)) vee(PT))"]
2
g .
= ﬁDlag(Bi)
M
B; = Z|Pi,j|21(erLr), ie{l,..., L}
j=1
per real dimension (18)
where P ; is the (4, 7)*" element of the pilot matrix P, Diag(-)
stands for the dlagonal matrix created by concatenating subma-
trices B;,t € 1,..., L; into the d1agona1 elements.
From (7), it can be shown that E _1|Pij1* = a, Vi. Hence,
we can rewrite (18) as follows:

o2

Vaw) = 5-Lr.L, x1.1,), perreal dimension. (19)
2a T T
Obviously, the pilot-projected noise vector n(t) is a com-
plex white Gaussian vector, hence, the log-likelihood function

In(p(y(#)h(?))) is given by [20]

o (YOB0) = I (g )
— (y(0) ~ (1) Vi (v(8) ~ h(D).

1) Unconstrained Maximum-Likelihood (ML) Channel Es-
timator: It is straightforward to show that the maximum-like-

lihood estimator [20] maximizing the log-likelihood function
In(p(y(t)|h(t))) is as follows:

(20)

5 Y (t)PT

(1) = max {In (p (v(1)|1(1)))} = ¥(t) or F(t) =

(0%
21

meaning that the unconstrained ML estimator is the pilot-pro-
jected received vector y(t) itself.

2) Linear Minimum Mean-Squared Error (Immse) Channel
Estimator: We further improve the performance of the uncon-
strained ML channel estimator in (21) by employing the L-tap
Immse channel interpolation. The L-tap Immse channel interpo-
lation interpolates the last L channel estimates estimated in the
last L ST symbol blocks. The L-tap Immse channel estimator
can be expressed as follows:

1 wihL
hj?’t?mse(t) Wi, thJ,

(t) (22)
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where hJ3™(t) denotes the (j,4)"™ element of the Immse-es-
timated channel matrix, w;; = [w;;(0)---w;;(L — 1)]T
denotes the L-tap finite impulse response (FIR) linear filter’s
weight vector, and hf;(t) = [h;(t)---h;i(t — L + 1)]7
denotes the L- element input vector constructed from the (4,4)t"
element of the ML-estimated channel matrix in (21) taking values
corresponding to the block indices [t — L + 1, t], orequivalently
corresponding to the time interval [(¢ — L + 1)M, Mt]. The
optimization criterion, assuming the channels are wide-sense
stationary (WSS), for the L-tap Immse channel estimator is given

by
[th,i(t)

)th

J(w;;) =argminE fIZhJLZ

Wi

2
o] e
where h; ;(t) denotes the (j,7)"" element of the true channel
matrix H(¢) in (1).

The optimum Immse weight vector W?I,Zt is given by

opt __ 1
Wi = RhL (Phl.® (24)
where Ry, () = Elh};(Dhi’ (1)] and pg, ) = B[k (1)

ﬁJLZ(t)] According to (14), (19), (21), and the uncorrelatedness
of the channel and noise coefficients, the L-tap Immse channel
estimator can be further rewritten as

H
mmse 02 - I
};1 (t)= [(Rh!ﬁ_i(t) + EILXL> Phjl;_l.(t)] h;;,i(t)
(25)

where Ry () = Ehf;()hj7 (¢)] and Par iy = Blhj(1)
h (1) = Pnt (1) The performance analy51s for the un-
constramed ML channel estimator will be considered in
Section ITI-A-1). In addition, the performance analysis for the
Immse channel estimator can be found in [10].

B. Data Detection

We further describe the data detection procedure. First, the
data part in the received symbol matrix Y (¢) is extracted by
postmultiplying the received symbol matrix Y (¢) by the trans-
pose of the data-bearer matrix AT Using (5) and (6), we have

N(t)AT
+ —5

Let us define n’(t) = vec(N(t)A”/3). From (6), it can be
shown that 77 [4;;|* = 3, Vi. Then similar to (17) and (18),
the mean vector and the covariance matrix of the data-bearer-
projected noise vector n'(¢) are determined as follows:

(26)

By =0(L, N x1) 27)
2
Vo = ;ﬂ L, NxL,N) per real dimension. (28)

The ML receiver is employed for decoding the transmitted ST
data matrix D(¢) by using the estimated channel coefficient ma-
trix H(¢) obtained in either (21) or (25) as the channel state in-
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formation. Due to the i.i.d. white Gaussian distribution of n’(t),
the ML receiver computes the decision metric and decides the
codeword that minimizes this decision metric as in [3]

(#)

2

= min

N L,
{ai} 22

Ly
J 7 i
Y — § :hj7idk
k=1j=1 i=1

vdi, i€ {1,..., L}, ke {l,...,N}

’ ’

(29)

where y; denotes the (7, k)t element of the data-bearer-pro-
jected received symbol matrix Y (t)AT/3, hj,; denotes the
(4,4) element of the estimated channel coefficient matrix
H(t), and di, denotes the (i, k)™ element of the estimated ST
data matrix D(t).

The performance analysis for the ST data detection is dis-
cussed in Section III-A-2). Note that the null-space and orthog-
onality properties of the data-bearer matrix A and the pilot ma-
trix P play the major role in the pilot and the data extraction for
channel estimation and data detection, respectively. In addition,
the ranks of the data-bearer matrix A and the pilot matrix P also
determine the minimum number of time slots, obtained in (8),
of the pilot-embedded ST symbol matrix U(¢).

III. THE PERFORMANCE ANALYSIS FOR THE
PROPOSED SCHEME

In this section, we analyze the performances of our data-
bearing approach for pilot-embedding frameworks, including
both the unconstrained ML channel estimation and data de-
tection performance, under two different scenarios, i.e., quasi-
static and nonquasi-static flat Rayleigh fading channels. We use
the analysis as the theoretical benchmarks for later comparisons
in Section V.

A. Quasi-Static Flat Rayleigh Fading Channels

1) Channel Estimation Performance Analysis: We ana-
lyze the channel estimation error first, and then compute the
Cramer-Rao lower bound (CRLB), which is a lower bound
of the conditional variance of the channel estimation error. A
channel estimation error vector can be evaluated as follows:

(30)

Substituting (21) into (30) and using the fact that n(t) is the
AWGN with zero-mean and variance expressed in (19), the co-
variance matrix of the channel estimation error is given by

Cov [h(H)] = |(h(t) ~h(t)=n(1)) (h(r) ~h(1) ~n()"

=V 31)

The mean-squared error (mse) of the channel estimation is
given by

0'2LtLT

mse = tr {Cov [fl(t)} } = (32)
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where tr{-} stands for the trace operator of a matrix. It is worth
noticing that the mse of the ML channel estimation is inversely
proportional to the pilot-power factor «; as a result, more power
allocated to the pilot part resulting in lower mse of the channel
estimation. Since the pilot-projected noise vector n(¢) is the
Gaussian distributed random vector with zero-mean and vari-
ance expressed in (19), the ML channel estimator is efficient and
unbiased, and it achieves the CRLB [20], [21]. It can be shown
that the CRLB for an unbiased estimator is given by [20]

[_E [62 In (p <y<t>|h<t>>>H‘1

Cov [A(t) - h(t) h(1)] =

oh2(t)
= V- (33)
The trace of the CRLB matrix in (33) is given by
~ O'2LtL7=
tr 4 Cov |h(t) — h(t)|h(t)| ¢ = . 34
v {Cov [a(t) — () n(1)] } = == (34)

Therefore, one can see that the channel estimator achieves
the desired properties of a good estimator that is unbiased, and
achieves the CRLB.

2) Data Detection Performance Analysis: We further
analyze the probability of error of the proposed scheme in
data detection. First, the data-bearer-projected received signal
Y (t)AT /3 in (26) can be alternatively represented by

Y(t)AT

N(t)AT
5 —_—

= H(H)D() + (H(t) - H(1)) D(¢) + 3

(35)

Let us define N 4(t) = H(¢)D(t) + (N(t)AT /) an addi-
tive noise taking into account both channel estimation error and
noise, where H(#) = H(t) — H(t) denotes the matrix-based
channel estimation error. It can be shown that the ML channel
estimation error can be expressed as follows:

T
() = - NP (36)
@
by substituting H(¢) in (21). Hence, we have
B AT  PTD(#)
Na(t) = N(¢) <7 - T) . (37)

Next, we find the statistics of N 4(¢). Since N(¢) is the
AWGN with zero-mean and variance (o2 / 2)I(, mx L, ) Per
real dimension, it can be shown that N 4(¢) has a zero-mean.
The variance of the element of N 4(¢) can be computed by

1

Ny =
T T.N

tr {E [N4(t)N{(1)]} (38)
where L,.N is the number of elements of N4(¢).
Substituting N 4(¢) into (38); and using the fact that
tr{E[N(t)ATAN(t)¥ /3%]} = 0L, N/[3 (see also (28)); and
the channel estimation error matrix H(¢), the ST coded data
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matrix D(¢), and the noise matrix N(t)A”T /(3 are statistically
independent, Ny can be expressed as follows:

No =

it (B [HOTH®| E[DOD®]} + %

Since the transmit antennas are used independently with
equal power, which is reasonable because no channel
knowledge is assumed at the transmitter, we then have
ED(t)D(t)¥] = Iz, x1,) In fact, this property is also true
for an orthogonal STBC [4], and it has been shown in [10] that
this property can maximize the mutual information of the ST
coded MIMO systems given H(t). From (19), it can be shown
that tr{E[H(t)PH(t)]} = tr{E[Nt)PTPN(t)"/a?]}=
0%L:L, /a. Hence, Ny can be expressed as, by substituting all

above derivations
L; N
Ng = —
° N< * ﬂ)

In summary, N 4 () is the AWGN matrix whose element has
zero-mean and variance Ny /2 per real dimension. For the data-
bearer-projected received signal in (35), we can derive Cher-
noff’s upper bound of the probability of transmitting a codeword
d2 (d%d%---df‘ cdidds -
a different codeword e 2 (ele?--elt - ehed - eh)T at
the maximum-likelihood receiver in a similar way to [22] as
follows:

(40)

dy)T and deciding in favor of

P(d—>e|ilj7i,j:1,...,Lr, i:l,...,Lt)
2

< exp <&) 41
where m?(d,e) = >

4Ny
L. N Li i i
j=1 D et |20l hya(d — e)|.
In our analysis, the Chernoff’s upper bound of the average
probability of error with respect to independent Rayleigh distri-
butions of the channel is expressed as (see also Appendix I)

—L, —LAL,
P(d —e) ) < (H/\)
42)

where \;s are the eigenvalues of the code-error matrix C(d, e),
definedas C, , = xHx, wherex,, = (df —ef’,... dy—ef)T,
aé =1+4+(o 3 / «) is the variance of the element of the estimated
channel coefficient vector h( ), and L o is the rank of ST codes,
whose maximum achievable rank is L;.

In comparison to the case that the channel coefficient matrix
H(t) is exactly available to the maximum-likelihood receiver,

the average probability of error is given in [3] as,

—Lr P —LaAL,

(43)
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where P; is the normalized power allocated to the data part
when the channel coefficients are known.

Notice that the noise variance N, is affected by the variances
of the channel estimation error, i.e. o2 /«, and the data-bearer-
projected noise, i.e., o2 /B; therefore, it completely reveals the
underlined effects of pilot- and data-power factors in the proba-
bility of error. Hence, this probability of error can be reasonably
used as a cost function for optimum power allocation purpose.

Let us define the probability of error upper bound (PEUB)
mismatch factor as follows:

ﬂ) L r(5+s)
—

==l

e)H(t) N( + %2)
44)

This PEUB mismatch factor can be used as an optimization
objective for optimum power allocation for the data and pilot
parts. In other words, this factor is minimized when the power
is allocated optimally. The advantage of using this PEUB mis-
match factor as the objective function inherits directly from its
expression that takes both the channel estimation error and the
effect of the data-bearer-projected noise into account. In addi-
tion, the use of this factor as the objective function is better than
using the channel estimation error as the cost function merely,
because, under the constant power constraint, despite the fact
that assigning a larger power to the pilot part yields better
channel coefficient estimates, i.e., a lower channel estimation
error; the remaining smaller amount of power given to the data
part yields a poorer probability of error in decoding. Hence,
this power tradeoff is essential for the overall performances of
the pilot-embedded MIMO system, e.g., channel estimation
error and the probability of detection error.

B. Nongquasi-Static Flat Rayleigh Fading Channels

When the channel changes rapidly, the assumption of
quasi-static fading channels does not hold anymore. Appro-
priate channel estimation approaches have to be designed and
analyzed for combatting such channel situations. In what fol-
lows, we investigate the performance of the proposed scheme
for nonquasi-static flat Rayleigh fading channels. For the sake
of exposition, we study a half-block fading channel model
in which the channel coefficient matrix H(¢) symmetrically
changes once within one ST symbol block, i.e., there exists
H;(t) and Hy(t) in the t*"-block ST symbol matrix. With
P = [Py;P;y] and A = [A;; Ay, the received symbol matrix
in (9) can be rewritten as follows:

Y(t) = [Hi(t) (D(t)A1 + P1);

H, (1) (D(1)As + P2)] + N(1)  (45)
where H;(t), A; and P denote the first part of the channel
coefficient, the data bearer, and the pilot matrices, respectively;
H,(t), As and P> denote the second part of the channel co-
efficient, the data bearer, and the pilot matrices, respectively.
In addition, we would like to remind readers about the proper-
ties of matrices A and P in (4)—(7); First, we compute the ML
channel estimation as in (21), i.e., H(t) = Y (¢)P?'/a. To gain
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insight into the statistical property of I:I(t), by substituting Y ()
in (45), we notice that the underlying structure of H(#) can be
explained as follows:

H(t) = — [H,())D(t)A:PT + Hy(t)D(t)A,P]

RIm

+$ [H; ()P, P] + Hy(t)PoPJ] + Ny(t) (46)

where N () = N(t)P7 /a. Next, we compute the data extrac-
tion as in (26), i.e., Y1(t) = Y(¢)AT /a. Likewise, to gain in-
sight into the statistical property of Y (¢), by substituting Y (¢)
in (45), we notice that the underlying structure of Y (¢) can be
explained as follows:

Yi(t) = - [Hi()D(t) A1 AT + Hy(t)D(t) A2 A |

=

+% [Hy()P1AT + Hy(1)PoA%] + No(t)  (47)

where N (t) = N(t)AT /(. In a similar way to (29), the es-
timators Y1 (%) and H(t) are used to detect the ST coded data
matrix D(¢).

As an illustrative example, we are investigating the case
where L, =2, L, =2, 7=2,N=2,and M = N + L, = 4.
* TM- and STBC-Based Data-Bearer and Pilot Matrices
According to (10) and (11), respectively, for the above il-
lustrative example, we have the data-bearer and pilot ma-

trices as follows:

0 01 O 1 00 O
ATN[:\/B 0 0 0 1 ]-)Tl\/[:\/a 0 1 0 0
—— —— e ——
ATl .AT2 PTl PTr)
and
0 01 O
Astac =/ 0 00 1
—— N ——
AS1 A52
% —50 0
Psisc=Va | ¥ Y 0 (48)
V2 2 . ,
Ps, Ps,

From the matrix design in (48), we then have

APl =AnPT =Pr,PT, = Af AT, = 03,9

Pr, P} =olyo), and Ap, AT, = Bl5y0). (49)

Similarly, for the STBC-based matrices, the derivation in
(49) is also applied, except the notation. Substituting (49)
into (46) and (47), thus yielding, respectively

Hruestae(t) = Hi(t) + Ni(t).
Yl'I‘M&S'[‘B(Y (t) = H2(t)D(t) + N2(t)

(50)
619
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* CM-Based Data-Bearer and Pilot Matrices
According to (12), we are able to design the data-bearer
and pilot matrices as follows:

1 11 1
_ 2 2 2 2
Acu = \/B 1 11 1
2 22 T2
N— N —
ACI AC'Q
1 1 _1 _1
2 2 2 2
Pcoy =Va 1 1] 1 . (52)
2 272 2
N—_—— —
P(‘l P(‘Z

In a similar way to (49), we have

Po,PL =P.,PL = %I(M)

Ac AL =AcAL, = Tlo.0

AC1P£1 = @I(Qm), and

Ac,PL = - ‘/%_O‘Img). (53)

Substituting (53) into (46) and (47), thus yielding, respec-
tively

Ho(t) = % [HL (£) + H(4)]

n %\/g [H, (1) — Ho(£)] D(t) + Ny (). (54)
Yoo (t) = % [H, () + H ()] D(1)
+ %\/g [H, () — Ha(t)] + Na(2). (55)

1) Channel Estimation Performance Analysis: In the fol-
lowing analysis, the channel estimation error for the TM-,
STBC-, CM-based matrices are analyzed and compared to one
another.

a) TM- and STBC-Based Data-Bearer and Pilot Matrices:
According to (50) and (51), we are going to use this channel es-
timate in (50) to decode the ST data matrix D(¢) in (51). There-
fore, the channel estimation error can be expressed by, in the
matrix form

Hryestae(t) = Ha(t) — Hrvestae(t).  (56)

If we model Hy(t) as a linear combination of H;(¢) and
the increment channel matrix AH(¢), i.e., Hao(t) = Hy(¢) +
AH(t), then substituting this linear channel model into (50) and
(56) yielding

Hrvestae(t) = AH(t) — Ny (t). (57
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The mse of the ML channel estimation in (50) can be com-
puted by

mseTMesTBC = B mﬁTMandSTBC(t)H }

B[R0 - NI 68)
Since AH(t) and Ny (¢) are statistically independent, and
N; (¢) is the AWGN with zero-mean and variance expressed in

(19), msermandsTBC can be expressed as follows,

MSETMandSTBC = MS€quasi + E [||AH( Ol } (59
where msequasi = 02L; L, /o in (32).

b) CM-Based Data-Bearer and Pilot Matrices: According
to (54) and (55), similarly we use the channel estimate in (54)
to decode the data matrix D(#) in (55). Therefore, the channel
estimation error can be expressed by, in the matrix form

Hew(t) = % [FL; (¢) + H(t)] — Hem(t). (60)

Substituting Hey (t) in (54) into (60), the mse of the ML
channel estimation in (54) can be computed by

e | [fewo)]

H gAH(t)D(t) - Ni()

msecy =

2
] (61)

where £ = /f/a. For the same reason described in Sec-
tion III-B-1)-a), msecy can be expressed as follows:

2
msecn = MSequasi + %E [HAH(t)D(f)HZ} ) (62)
For the orthogonal STBC which is normalized to have

E[||D(t)||?] = L+, msecu can be expressed as follows:

2
msecn = MSequasi + %E [||AH( Al } (63)

Notice that, in high SNR regimes where msequasi = 0, if
the equal power allocation (i.e., £ = 1) the msecy in (63) is
four times less than the msernfandsTBe in (59). In comparison,
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the ratio between msecy; and mseTyandsTBC €an be shown as
follows:

101og (&) ~ 10log (1)
MSETMandSTBC 4

which indicates that the mse of the channel estimation of
CM-based matrices is 6.02-dB superior to that of TM- and
STBC-based matrices, in the half-block fading channel model.

2) Data Detection Performance Analysis: In the following
analysis, we provide the closed form expression, in a matrix
form for the sake of convenience, for the conditional pair-wise
probability of transmitting a codeword D(¢) and deciding in
favor of a different codeword E(¢) at the maximum-likelihood
receiver. By using the linear channel model described in the
channel estimation performance analysis, the pair-wise proba-
bility of error, given H(t) and AH(#), is given by [22]

—6.02dB (64)

A

P (D(t) — E@)H(®), AH(t)) —P (HYl(t)_H(t)E(t)H2

< HYl(t)—ﬂ(t)D(t)H2 H(t)) . (65)

For the sake of convenience, we drop the block index ¢ in all
parameters in this section.

a) TM- and STBC-Based Data-Bearer and Pilot Matrices:
By the virtue of the AWGN assumption, substituting (50) and
(51) into (65) to arrive at, after some algebraic manipulation

P(D— ElﬂmandSTBc- AH)

(D— )+AHDH _|AHD|?

et % UZHHTMandSTBCD E) H

where Q(-) is the Q-function defines as Q(z)
[ V2m)e Dy,

It can be shown that a Chernoff’s upper bound for (66) can be
computed using the inequality Q(z) < e=*"/2, given by (67) at
the bottom of the page.

Given the statistics of I:ITM&STBC and AH, the averaged
pair-wise error probability can be computed as follows:

D — E / / P(D - E|I:ITMandSTBC7 AH)

XDz y (I:IT]\’IandSTBC7 AH)dﬁd?J (68)

A 2 2
(HHTM&STBC(D —E)+ AHDH - ||AHD||2>

P(D — E|Hyestae, AH) < exp

4

N

(¥

5 (67)
+ Li) o? HHTM&STBC(D E)H
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where p,. , (Hryanastae, AH) is a joint pdf of Hryanastae
and AH.

b) CM-Based Data-Bearer and Pilot Matrices: Similarly,
by the virtue of the AWGN assumption, substituting (54) and
(55) into (65) to arrive at, after some algebraic manipulation,
shown in (69) at the bottom of the page, where I:Ic M.y =
Hry + (AH/2) = (Hy + (AH/2)) + Ny

It is straightforward to compute the Chernoff’s upper bound
and the averaged pair-wise error probability for (69) in a similar
way as (67) and (68), respectively. Even though the comparison
between (66) and (69) is difficult to get the closed form expres-
sion, we still provide the simulation performance comparison in
Section V. It is worth mentioning that this analysis is valid for
the fading channel model that changes in the multiple order of
N, where N € 2", n € .

IV. OPTIMUM BLOCK POWER ALLOCATION

In this section, we address the block power allocation
problem in order to optimally allocate the power to the data and
the pilot parts for quasi-static flat Rayleigh fading channels. It
is clear that the performances of the pilot-embedded MIMO
system essentially depend on the power percentages of the data
and that of the pilot. We consider the case of the constant block
power, where the power of the pilot-embedded ST symbol
matrix U(t) is constant. The normalized block power allocated
to the pilot-embedded ST symbol matrix U(¢), which is nor-
malized by the transmit antenna numbers L;, can be expressed
as follows:

Ellomir]  ®BIDmAIPR]  Eqej
L - L, L
:P.s{'i'Pp:ﬁ‘i'a

(70)

where the normalized block power allocated to the data part
P! = B, since E[||D(#)A]|?] = E[tr(D(t)AATD(t)T)]=
E[ptr(D(t)D(t)T)] = BLs; and P, = a is the normalized
block power allocated to the pilot part.

The objective is to minimize the PEUB mismatch factor 7
in (44) with respect to the pilot-power factor a subject to the
constraints of constant block power and acceptable mse of the
channel estimation which is a threshold that indicates the ac-
ceptable channel estimation accuracy for a reliable channel es-
timate. Substituting § = P; — « into (44), the problem formu-
lation is given by

o (25 )

(71)
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where mse < T with T being the acceptable threshold of the
mse in channel estimation. Differentiating (71) and equating the
result to zero, we have the optimum solution for the pilot-power
factor a* as follows:

2
P,—0c”

; N =1L

" =1 p L, \/PNP LT (L —N) (72)
T.-N) i N # Ly

where the mse of the channel estimation obtained in (32) must
satisfy the following:

UthLT
«

<T.

mse = (73)

It is worth noticing that, in the case that N # L, the op-
timum solution for the pilot-power factor a* in (72) exists if
and only if signal-to-noise ratio (SNR) SNR > (N — L),
where SNR = (P,L;/0?). Since we consider the case that
N = L; = 4 in our simulations, we use the case that N = L,
for the sake of exposition. Substituting (72) into (73), we have
the feasible range of SNR, when the inequality in (73) is satis-
fied, and the optimum pilot-power factor o* . , when mse = T,

min?

as follows:
2Lt2Lr
SNR > L; + T (74)
LL, Py
* . f— e ———— 75
w4 2L, L, 75

Accordingly, the range of the optimum pilot-power factor o*
obtained in (72), when the SNR satisfies the inequality in (74),
ie., Ly + (2L?L,/T) < SNR < oo, is given by

L,L,P;s

<a* < Lt
—— % <q ——
T+2L,L, — 2

(76)

However, there is a case when the SNR does not satisfy the
inequality in (74), i.e., SNR < L; + (2L2L,./T), as a result, the
mse of the channel estimation is not reliable, i.e., mse >T, and
the probability of detection error is inevitably increased. This
scenario is equivalent to the low-SNR scenario, where wireless
communication is not reliable. According to the range of the op-
timum pilot-power factor a* obtained in (76), we use the min-
imum value of o*, e.g., a* = L;L,.Ps/(T + 2L.L,), in this
scenario because the PEUB mismatch factor in (71) is a mono-
tonically increasing function of «, for a within this range.

[Ficse, -8+ 5 (eDe - )| - || (o0 -

P(D — E|I:ICM,AH) =Q

2 (N
N\ B

(69)

+ %) 0'2 HI:ICA'[eff(D — E) + % (fDE— ])'é—D)“
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In summary, we propose to determine the optimum pilot-
power factor a* for the case that N = L, under different SNR
scenarios as follows:

L,L.P, . 2L L,
«_ ) mhatt SNR<Li+ =%
a =9 p 3 77
=55 Otherwise.

In addition, the acceptable threshold 7" for the mse of the
channel estimation is quite small and is determined by practice,
e.g., the simulation results in Section V. It is worth noticing that,
under the high-SNR scenario where o2 — 0 and, hence, the
Chernoff’s upper bound in (42) is tight, the pilot-power factor
« approaches Ps /2, which is an equal power allocation also re-
ported in [10] for the case that N = L, although where the
channel estimator used is the Immse estimator. The reason of
this convergence lies in the fact that, in high SNR regimes, both
the ML and Immse channel estimators yield the same effective
SNR. Since the proposed scheme and [10] effectively maximize
the effective SNR in order to achieve the minimum upper bound
on error probability and the maximum lower bound on channel
capacity, respectively, the convergence of the optimum power
allocation is resulted. However, in low SNR regimes, the power
allocation in both the proposed scheme and [10] are subop-
timal, because the bound used in both schemes are loose and the
channel estimation error is large. Nevertheless, both schemes
perform fairly well in this severely unreliable scenario as shown
in Section V.

V. SIMULATION RESULTS

In this section, we demonstrate the performance of the pro-
posed scheme. Without loss of generality, we examine one or-
thogonal ST block code introduced in [4] and [24] [see (78) at
the bottom of the page] where s;(t), i € {1,2,3} are the ST
symbols corresponding to the chosen modulation constellation,
e.g., 4-PSK, 8-PSK. Three data bearer and pilot structures pro-
posed in Section II are investigated for two situations: the quasi-
static and nonquasi-static flat Rayleigh fading channels. Under
the nonquasi-static scenario, we investigate the performances
of the pilot-embedded MIMO systems for nonquasi-static flat
Rayleigh fading channel with different Doppler’s shifts, repre-
senting different mobility speed of the mobile unit. We use the
bit error rate (BER) and the mse of the channel estimate as per-
formance measures, in comparison with the MIMO systems em-
ploying the ideal channel coefficients for the ML receiver [see
(29)]. In our simulations, for the ideal channel coefficient case,
the channel matrix H(¢) is assumed known and thus the pilot
matrix P is not employed, in the other words, the ST symbol
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Fig. 2. The graph of the normalized power allocated to the data and pilot
parts when applying the proposed and alternative optimum power allocation
strategies.

matrix U(%) in (3) is now expressed as U(t) = D(¢)A. In ad-
dition, the performances of the pilot-embedded MIMO systems
when employ the optimum power allocation scheme in (77), and
the alternative scheme proposed in [10], are compared. In order
to provide the fairness when comparing different schemes, the
same transmit rate and the total transmit energy are employed
by different schemes in our simulations.

For all of three data bearer and pilot structures, the setting
parameters of our experiments are: the noise elements in IN(¢)
in (1) are assumed to be independent complex Gaussian random
variables with zero mean and variance o2 /2 per real dimension;
the normalized ST symbol block power P; is 1 Watt/ST symbol
block; the number of time slots M is 8 time slots/ST symbol
block; the number of transmit antennas L; is 4; and the data
time slots N = M — L; is 4 time slots/ST symbol block. In
addition, 4-PSK modulation is employed in these experiments,
the acceptable threshold of the mse of the channel estimation 7'
is set as 0.5, and the number of Immse channel estimator’s taps
is 3.

A. The Quasi-Static Flat Rayleigh Fading Channel

In this situation, the channel coefficients of H(¢) in (1)
are taken from the normalized time-varying channel which is
modelled as Jakes’ model [25], where fd * T = 0.08 (fast
fading) with fd being the Doppler’s shift and 7 being the
symbol period.

In Fig. 2, the normalized power allocated to data and pilot
parts of two optimum power allocation strategies derived in (77)

(78)

V2
(—Sl(t)—ST(t);rSz (t)=s5())

V2
(s2(D)+s5 (t)42-51(t)—ST(t))

sit) —s3(t) e
* s5(t
s(t) i) :
D(t)=1| .
V2 V2
83 _ 83
V2 V2

(Cra(t)=si (0t ()= (1)

_ (s (t)+ST(t)42-52(t)—S§(t))
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Mean-Squared Error (MSE) of Channel Estimation vs. SNR
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Fig. 3. The graph of mse’s of the ML and Immse channel estimations where
the proposed and alternative optimum power allocation strategies are compared
in the quasi-static flat Rayleigh fading channel.

and [10] is illustrated. It is worth noticing that these two power
allocation strategies converge to 0.5 W in high SNR regimes as
explained in Section IV.

In Fig. 3, we plot mse’s of the channel estimation of the
pilot-embedded MIMO system with applying the optimum [i.e.,
(77)] and the alternative optimum (i.e., [10]) power allocation
strategies, when 1 and 2-receive antennas are employed. No-
tice that the mse’s of the optimum power allocation scheme is
slightly higher than that of the alternative optimum power allo-
cation scheme in low SNR regimes. In addition, the mse’s of the
channels estimation of the 2-receive antenna scenario are larger
than that of the 1-receive antenna scenario as explained by re-
ferring to (32), and three types of data-bearer and pilot matrices
yield the same mse which coincides with the trace of the CRLB
in (34). Notice that, the Immse channel estimator outperforms
the ML channel estimator, where the mse of the channel esti-
mation is much lower in the Immse channel estimator. In fact,
the Immse channel estimator is a Bayesian estimator in which
the prior knowledge on the statistics of channels is exploited;
therefore, its performance is much better than the ML channel
estimator, which is a deterministic estimator, and that of CRLB.
Furthermore, the Immse channel estimator tradeoffs the bias for
variance, hence, the overall mse is reduced [15]. The CRLB for
Bayesian estimators including the Immse channel estimator can
be found in [11] and [15].

In Fig. 4, we plot BERs of the pilot-embedded MIMO
system with applying the optimum power allocation strategy,
in comparison with the ideal-channel MIMO system, when 1
and 2-receive antennas are employed. In the ideal channel case,
the channel coefficients are assumed known, thus it serves as
a performance bound. Notice that, at BER = 10~4, the SNR
differences between the ideal-channel and the ML channel
estimator are about 2.3 dB for both the 1 and 2-receive antenna
schemes, whereas the lmmse channel estimation achieves
the ideal-channel error probability for the 1-receive antenna
scheme, and the SNR difference between the ideal-channel and
the Immse channel estimator are about 0.5 dB for the 2-receive
antenna scheme. In addition, the SNR differences between the
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Fig. 4. The graph of BERs of the pilot-embedded optimum-power-allocated
MIMO system in the quasi-static flat Rayleigh fading channel.
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Fig. 5. The graph of BERs where the proposed and alternative optimum
power allocation strategies are compared in the quasi-static flat Rayleigh fading
channel.

ML and Immse channel estimators are about 1.8 dB. It is worth
noticing that the Immse channel estimator performs better
than the ML channel estimator because of the higher accurate
channel estimate, as shown in Fig. 3.

In Fig. 5, the BERs are plotted in comparison between the
proposed and alternative optimum power allocation strategies
[10], both compared with the ideal-channel MIMO system,
when 1 and 2-receive antennas are employed. For the sake of
clarity, the CM-based matrices are used as the representative
of all three structures that behave similarly in the experimental
results. Obviously, say at BER = 10~%, both optimum power
allocation strategies are quite close resulting from the very
small difference in the power allocated to the data and pilot
parts in both strategies, as shown in Fig. 2.

B. The Nonquasi-Static Flat Rayleigh Fading Channel

In this situation, we consider the situation where the channel
coefficient matrix H(¢) is not kept constant over a ST symbol
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Mean-Squared Error (MSE) of Channel Estimation vs. SNR
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Fig. 6. The graph of mse’s of the pilot-embedded optimum-power-allocated
ML and Immse channel estimations when L,. = 2 in the nonquasi-static flat
Rayleigh fading channel.
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Fig. 7. The graph of BERs of the pilot-embedded optimum-power-allocated
MIMO system when L,. = 2 in the nonquasi-static flat Rayleigh fading channel.

block. We give an example where the channel coefficient ma-
trix symmetrically changes twice within one ST symbol block
as described in Section I1I-B. We examine one case where 2-re-
ceive antennas are employed for the pilot-embedded optimum-
power-allocated MIMO system.

In Fig. 6, the graph of mse’s of the channel estimation of the
pilot-embedded MIMO system when fd x T are 0.0021 (slow
fading), 0.0741, and 0.1235 (fast fading) is shown. Similarly to
the 1-receive antenna scheme, the CM-based matrices provides
the much lower mse than the TM- and STBC-based matrices.
In addition, the 6.02-dB SNR difference is also observed when
Doppler’s shifts are fairly large, in high SNR regimes.

In Fig. 7, the graph of BERs of the pilot-embedded MIMO
system when fd = T are 0.0021 (slow fading), 0.0741, and
0.1235 (fast fading) is shown. Similarly to the 1-receive antenna
scheme, the CM-based structure is much better than the TM- and
STBC-based structures, and, in high SNR regimes, the SNR dif-
ference between the CM- and the TM- or STBC-based matrices
ML channel estimators are approximately 6.02 dB, as remarked
in Fig. 7.
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It is worth mentioning that the CM-based structure yields
better BER performances than that of the TM- and STBC-based
structures, especially under the high Doppler’s shift scenarios.
The reason why the CM-based structure performs better than
the TM-based and STBC-based structures is that it takes both of
the channel coefficient matrices H; (¢) and Ho(¢) into account
(see (54)), whereas the other two structures exploit either some
parts of Hj (#) or Hy () based on their structures [see (50)]. In
this situation, there also exists the inevitable error floors that in-
crease significantly as the Doppler’s shift increases. These error
floors result from the channel mismatch introduced as the bias
in the channel estimate, thus result in a poor detection perfor-
mance especially under the high Doppler’s shift scenarios. Fur-
thermore, the Immse channel estimator performs better than the
ML channel estimator in low SNR regimes, in which the AWGN
is the major factor that causes the detection error; however, in
high SNR regimes, the channel mismatch plays a major role
in causing the detection error resulting in the comparable error
floors for the Immse and ML channel estimators.

VI. CONCLUSION

In this paper, we have proposed the data-bearing approach
for pilot-embedding frameworks for joint data detection and
channel estimation in ST coded MIMO systems. The main con-
tributions of this paper are as follows.

* The advantages of our data-bearing approach are that it
is the generalized form for pilot-embedded channel esti-
mation and data detection in ST coded MIMO systems,
in which the classical channel estimation method, e.g.,
PSAM, is subsumed; the low computational complexity
and the efficient ML and Immse channel estimators are
achieved; and it is capable of better acquiring the channel
state information in fast-fading channels.

» For the quasi-static flat Rayleigh fading channels, the error
probability and the channel estimation performance of
three data-bearer and pilot structures, i.e. the TM-, STBC-,
and CM-based data-bearer and pilot matrices, are quite
similar, where the optimum-power-allocated schemes
based on the minimum upper bound on error probability
and the maximum lower bound on channel capacity opti-
mizations yield the close results. This result claims that our
proposed scheme is one of the implementable scheme that
achieves the maximum lower bound on channel capacity
derived in [10], in high SNR regimes. In addition, the
SNR differences between the optimum-power-allocated
schemes and the ideal-channel schemes are about 2.3 dB
when employing the unconstrained ML channel estimator
and 0.5 dB for the Immse channel estimator.

» For the case of nonquasi-static flat Rayleigh fading chan-
nels, the CM-based structure provide superior detection
and channel estimation performances over the TM- and
STBC-based structures. For instance, the 6.02-dB SNR dif-
ference is observed, as well as the error floors of the former
are much smaller than that of the other two, under fairly
high Doppler’s shift scenarios, in high SNR regimes.

e In the future work, we are considering to extend the
proposed data-bearing approach to MIMO orthogonal
frequency division multiplexing (OFDM) systems, and
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also investigating the optimum power allocation scheme
for different criteria.

APPENDIX |

From (41) and the derivations in [3], the Chernoff’s upper
bound of the probability of error can be rewritten as follows:

.,Lr,izl,...,Lt)

Ly
1 1
< exp —mg XilQj.il? (1-1)
i=1

=1

where J; is the eigenvalue of the code-error matrix C(d, e) de-
fined as ), = xFx, where x, = (df —ef’,...,d§ —el)T,
Qj,i € (Qj,h e Qj,Lt) = Q?VH, where Qj =
(hj1,---,h;jr,)T and V is the eigenmatrix whose rows
correspond to the eigenvectors of C(d, e). Since V is unitary,
then, @ ; are independent complex Gaussian random variables
with zero mean and variance is given by

0622 =E [hj,ih;,i] + E [vai(t)vai(t)*]
2
0.5+ 7 per real dimension
2a

1-2)

where N, ;(t) is the (j, 7)'" element of the pilot-projected noise
matrix N1 (¢) in (13). Thus, |Q; ;| are independent Rayleigh dis-
tributions with pdf

2|Qj,i Qjil?
p(1Qj:]) = %exp —# (1-3)
7qQ 9qQ

fOI‘ |QJ1I Z 0.

The Chernoff’s upper bound of the average probability of
error can be computed by averaging (1-1) with respect to in-
dependent Rayleigh distributions of |Q; ;| to arrive at

L —L. —LAL,
A UZ)
P(d—e)gq < | [TX L (N L L
i=1 N (ﬁ + at) a?
(1-4)

where L A is the rank of ST codes, whose maximum achievable
rank is L;.
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