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Abstract 

 The majority of text retrieval and mining techniques 
are still based on exact feature (e.g. words) matching 
and unable to incorporate text semantics. Many 
researchers believe that the extension with semantic 
knowledge could improve the results and various 
methods (most of them are heuristic) have been proposed 
to account for concept hierarchy, synonymy, and other 
semantic relationships. However, the results with such 
semantic extension have been mixed, ranging from slight 
improvements to decreases in effectiveness, mostly likely 
due to the lack of a formal framework. Instead, we 
propose a novel method to address the semantic 
extension within the framework of language modeling. 
Our method extracts explicit topic signatures from 
documents and then statistically maps them into single-
word features. The incorporation of semantic knowledge 
then reduces to the smoothing of unigram language 
models using semantic knowledge. The dragon toolkit 
reflects our method and its effectiveness is demonstrated 
by three tasks, text retrieval, text classification, and text 
clustering.  

 
1. Introduction 
 

Text retrieval and mining applications often involve a 
huge feature space. The comparisons between single 
documents or document groups using exact feature 
matching may be unreliable because the decision is based 
on a very small number of common features. Many 
researchers believe that the extension with semantic 
knowledge can improve the quality of the comparison. A 
straightforward extension is to expand document vectors 
through ontologies such as WordNet and UMLS. 
However, this line of approaches often lacks a formal 
framework. The results have been mixed, ranging from 
slight improvements to decreases in effectiveness. Liu et 
al. expanded query terms using WordNet and word sense 
disambiguation (WSD) and the retrieval accuracy was 
improved [10]. But Sanderson concluded in [14] that 
long queries could not take the benefit from WSD and a 
sense disambiguator contributing to an IR system should 
have a high accuracy. Zhang et al. compared eight 

ontology-based similarity metrics for document vector 
expansions. But, neither of them outperformed the 
original vector in the setting of k-means document 
clustering [20]. 

A more formal approach to the utilization of feature 
semantics is topic modeling [4] [7], where a document is 
represented by a fixed number of weighted topics and 
each topic can be further described as a set of similar or 
related words. The text retrieval [16] and categorization 
[5] based on the topic modeling have been empirically 
proved to be effective. However, this approach has 
several limitations. First, it is not intuitive; the extraction 
of “abstract” topics is totally blind to end users. Second, 
it is difficult to reuse the extracted topics because 
determining the weights of topics in a new document is a 
challenging task. Third, topic modeling for a large 
collection is not efficient. 

Berger and Lafferty proposed a statistical translation 
model for document expansions, which statistically maps 
document terms into query terms [3]. The incorporation 
of semantic knowledge then reduces to the smoothing of 
unigram language models using semantic knowledge. As 
long as the translation probabilities between words are 
available, the document expansion is straightforward. 
Thus, it can solve the first two problems of the topic 
modeling approach. However, the estimate of translation 
parameters remains inefficient. Furthermore, it introduces 
two new problems. First, the “translation” procedure 
needs a large number of document-query pairs for 
training, which are difficult to obtain in real world. 
Second, contextual information is unable to be included 
and the translation result may be fairly general and 
contain mixed topics. 

We propose in this paper a novel method to address 
semantic extensions based on the idea of the translation 
model. Our method extracts explicit topic signatures (e.g. 
words, multiword phrases, and ontological concepts) 
from a document and then statistically maps them into 
single-word features. This semantic mapping component 
is then used to smooth unigram document models. The 
semantic mapping from topic signatures to single-word 
features is based on co-occurrence data which are very 
easy to collect. The semantic mapping for each topic 



signature can be estimated separately, making this 
approach quite efficient and scalable to large collections. 
Various topic signatures are compatible with our method. 
Especially, if topic signatures (e.g. multiword phrases 
and ontological concept) self-contain context, mappings 
are highly specific and accurate. The dragon toolkit [25] 
is an illustration of our approach. We conduct 
comprehensive experiments on text retrieval, text 
classification, and text clustering using this toolkit. The 
results prove that the new approach is not only scalable 
to large text retrieval and mining applications, but also 
effective in improving their performance.    

2. Overview of the Dragon Toolkit 
The dragon toolkit is implemented in Java and 

consists of six main components as shown in Figure 1. 
Topic signature extraction and semantic knowledge 
learning are detailed in section 3. Unlike other tools such 
as Weka and CLUTO which load all data into memory in 
the running time, the dragon toolkit is built on sparse 
matrices which are partially loaded into memory on 
demand. Thus, the toolkit is highly scalable and capable 
of handling hundred thousands of documents with 
limited memory. A collection can generate multiple topic 
signature representations each of which corresponds to a 
sparse matrix. The acquisition of co-occurrence data for 
semantic mapping is then quite straightforward.  

 
Figure 1: The architecture components of the dragon toolkit 

The dragon toolkit provides two types of interfaces. A 
developer can either directly call well-organized APIs in 
their programs, or gain access to full functionalities 
through xml-based configuration files. The configuration 
files of some experiments in this paper are available at 
the website of the dragon toolkit [2]. 

3. Topic Signature Extraction and Mapping 
The toolkit is able to extract four types of topic 

signatures. They are word, multiword phrase, ontological 
concept, and concept pair. Multiword phrases are 
extracted by a modified version of Xtract [11]. The detail 
of the implementation is available in our previous work 
[24]. The extraction of last two topic signatures needs 
domain ontologies. The current version of the toolkit has 
integrated two biomedical ontologies, UMLS and MeSH. 
UMLS concepts are extracted by MaxMatcher [23], a 

dictionary-based concept extraction tool. A concept pair 
is defined as two order-free concepts with semantic and 
syntactic relationships. The details of the implementation 
can be found in our previous work [22]. 

  The estimate of semantic mapping from a topic 
signature to individual words is based on co-occurrence 
data.  We introduce a mixed language model to separate 
topic information from background information and then 
use EM algorithm to estimate the parameters. The detail 
of the algorithm is available in previous work [22] [24]. 
Examples of semantic mapping are shown in Figure 2. 

Space: 
space 0.245; shuttle 0.057; launch 0.053; flight 0.042; air 0.035; 
program 0.031; center 0.030; administration 0.026; develop 0.025; 
like 0.023; look 0.022; world 0.020; director 0.020; plan 0.018;  
release 0.017; problem 0.017; work 0.016; place 0.016; mile 0.015; 
base 0.014; 

Program: 
program 0.193; washington 0.026; congress 0.026;  administration 
0.024; need 0.024; billion 0.023; develop 0.023; bush 0.020; plan 
0.020;money 0.020; problem 0.020;  provide 0.020; writer 0.018; d 
0.018; help 0.018; work 0.017; president 0.017; house .017; million 
0.016; increase 0.016; 

Space Program 
space 0.101; program 0.071; NASA 0.048; shuttle 0.043; astronaut 
0.041; launch 0.040; mission 0.038; flight 0.037; earth 0.037; 
moon 0.035; orbit 0.032; satellite 0.031; Mar 0.030; explorer 
0.028; station 0.028; rocket 0.027; technology 0.026; project 0.025; 
science 0.023; budget 0.023; 

Figure 2: The demonstration of semantic mapping (only top 20 
topical terms are listed). All three examples are trained on the 
20-newsgroup corpus. 

If topic signatures such as multiword phrases and 
ontological concepts self-contain contextual information, 
the mapping is context-sensitive. The corresponding 
language model smoothing is referred to as context-
sensitive semantic smoothing (CSSS). Otherwise, the 
smoothing is referred to as context-insensitive semantic 
smoothing (CISS). From three examples shown in Figure 
2, we can see that context-sensitive mapping is more 
specific and coherent than context-insensitive mapping.  

4. Text Retrieval 
We compare four retrieval models, Okapi [13], two-

stage language model (TSLM) [19], CISS and CSSS. The 
equation (4.1) describes the retrieval model of CISS and 
CSSS. It is a mixture of the two-stage language model 

and the semantic mapping model controlled by 
the translation coefficient (λ). If λ is set to zero, it 
becomes a TSLM; if λ is set to one, it becomes a pure 
semantic mapping model. 
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The aforementioned four models are evaluated on five 
collections. For CSSS, Genomics 2004 uses UMLS 
concepts as topic signatures and other four newswire 
collections take multiword phrases as topic signatures. 
All models are well tuned. The translation coefficient for 
CISS and CSSS is set to 0.3 according to our previous 
work [22]. The results are shown in Table 1. Mean 
average precision (MAP) and recall at first 1000 
documents are two performance metrics for retrieval. 
TSLM and Okapi achieve similar performance. Both 
CISS and CSSS outperform significantly than Okapi and 
TSLM. CSSS achieves slight improvement over CISS on 
all five collections because CSSS takes the advantage of 
contextual information and makes the semantic mapping 
more specific and accurate. 

Table 1: The comparison of four retrieval models (Okapi, 
TSLM, CISS and CSSS) on five testing collections 

Collections Okapi TSLM CISS CSSS 
MAP 0.369 0.352 0.408 0.422 Genomics 

2004   Recall 6847 6544 7176 7279 
MAP 0.239 0.252 0.272 0.288 AP88-89 

51-100   Recall 3346 3428 3735 3771 
MAP 0.220 0.219 0.235 0.246 AP88-89 

101-150   Recall 3087 3055 3237 3445 
MAP 0.249 0.239 0.244 0.256 WSJ90-92 

101-150   Recall 1488 1510 1568 1572 
MAP 0.184 0.190 0.199 0.208 SJMN91 

51-100   Recall 1348 1350 1427 1472 

5. Text Classification 
 We compare six text classifiers. The first four are 

within the framework of naïve bayesian (NB) [11], but 
use different class model smoothing techniques. They are 
Laplacian smoothing [11], background smoothing [8] 
[18], CISS, and CSSS, respectively. The other two 
classifiers are an active learning classifier [12] and a 
SVM classifier [9]. NB has several variants regarding the 
implementation of class models. We choose multinomial 
mixture model in this paper because it has proved to be 
most effective for text classification [11]. The Laplacian 
smoothing simply adds one count to all features. The 
background smoothing interpolates a unigram class 
model with the collection background model, controlled 
by the parameter β as shown in equation (5.1).  
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The equation (5.2) describes the formula for CSSS and 
CISS. It combines a simple class model  with a 
semantic mapping model controlled by the translation 
coefficient (λ).  
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The comparative experiments are conducted on three 
collections, 20-Newsgroups (20NG), Los Angeles Times 

(LATimes), and OHSUMED. 20NG is collected from 
twenty different Usenet newsgroups and the data are 
relatively noise. LATimes contains news articles and we 
select top 10 categories as described in [24]. OHSUMED 
consists of scientific abstracts collected from Medline 
and top 14 categories are selected for the experiment.  

All classifiers are well tuned. The parameter β in the 
background smoothing is set to 0.5 because the classifier 
achieved the best results around this setting. The best 
configuration for SVM classifier uses a linear kernel, 
one-versus-all (OVA) code matrix as well as loss-based 
multi-class decoder (hinge loss function is used) [1]. For 
CISS and CSSS, the translation coefficient λ is set to 0.4 
and 0.1 for 1% training and 33% training, respectively. 
Micro-F1 and macro-F1 [17] are used to evaluate the 
performance of text classifiers. All reported results are 
the average of ten random runs. 

Table 2: Comparisons of all classifiers. 1% of documents are 
used for training and the remaining 99% for testing.  

(a) The result of micro-F1 
Collection SVM AL Lap Bkg CISS CSSS 
OHSUMED 0.351 0.368 0.352 0.372 0.401 0.413 
20NG 0.472 0.575 0.427 0.526 0.623 0.613 
LATimes 0.524 0.566 0.525 0.538 0.577 0.581 

(b) The result of macro-F1 
Collection SVM AL Lap Bkg CISS CSSS 
OHSUMED 0.206 0.205 0.205 0.280 0.344 0.362 
20NG 0.464 0.551 0.421 0.523 0.616 0.613 
LATimes 0.491 0.536 0.492 0.513 0.549 0.562 

Table 3: Comparisons of all classifiers. 33% of documents are 
used for training and the remaining 67% for testing. 

(a) The result of micro-F1 
Collection SVM Lap Bkg CISS CSSS 
OHSUMED 0.680 0.660 0.667 0.663 0.665 
20NG 0.797 0.771 0.802 0.801 0.820 
LATimes 0.781 0.728 0.726 0.724 0.729 

(b) The result of macro-F1 
Collection SVM Lap Bkg CISS CSSS 
OHSUMED 0.646 0.626 0.639 0.636 0.669 
20NG 0.793 0.756 0.787 0.786 0.820 
LATimes 0.765 0.708 0.696 0.693 0.719 

In the case of 1% training data, CSSS and CISS 
significantly outperform Laplacian smoothing and 
background smoothing. However, in the case of 33% 
training data, the gap among three smoothing approaches 
becomes very small. This verifies our hypothesis that 
semantic smoothing is more effective than Laplacian 
smoothing and background smoothing for bayesian text 
classifiers when the number of training documents is 
small (i.e., the data are sparse).  

Taking a closer look at the results, we also find out 
that Macro-F1 receives more gain than Micro-F1 after 



applying semantic smoothing onto highly skewed data 
such as LATimes and OHSUMED. The result of Micro-
F1 is dominated by the performance of some common 
categories. However, for the metric of Macro-F1, the 
performance of each category is treated equally 
regardless the size of the category. This means semantic 
smoothing is especially effective for small categories. It 
is reasonable because small categories contain too few 
training examples and the data sparsity is very serious.  

With respect to the effectiveness of CSSS and CISS, 
the former is slightly better than the latter because the 
semantic mapping of the former is more specific and 
accurate. Active learning has been proved to be effective 
in the case of small training data [12]. Our experiments 
repeat this finding in the sense that it outperforms NB 
with Lap. But it is less effective than both CISS and 
CSSS. Previous empirical studies have shown that SVM 
using linear kernel outperforms many other text 
classifiers including NB [17]. In the case of 33 training 
data, we do find out SVM performs much better than 
semantic smoothing on OHSUMED and LATimes. But 
when the training data decrease to 1%, its performance is 
at the same level of NB and much less effective than 
semantic smoothing. It is mostly likely due to the fact 
that a large number of features are blind to SVM when 
training document set is very small and the power of 
SVM is compromised while a bayesian classifier can 
expand meaningful features through semantic smoothing.  

6. Text Clustering 
We compare six clustering approaches. The first two 

are the variants of spherical k-means [6]. One uses 
normalized term frequency score and the other TF.IDF 
score. Spherical kmeans is considered one of the most 
effective clustering approaches to text clustering [6]. The 
remaining four are based on generative model-based k-
means [21]. The difference between spherical k-means 
and model-based k-means lies in the mechanism of 
document assignment in iteration. The former uses cosine 
similarity while the latter employs a bayesian classifier. 
Since bayesian classifiers can take various smoothing 
methods, model-based k-means also have four variants in 
this paper. They are Laplacian smoothing, background 
smoothing, CISS and CSSS. 

The testing collections for clustering are the same as 
for the classification experiment. To mimic the data 
sparsity problem, we also create five small data sets for 
each collection. We randomly pick up 100 documents per 
category and then merge them into a big pool to cluster. 
Since k-means are sensitive to the initialization, we 
execute ten runs with random initialization for each 
dataset and average the results to report. The normalized 
mutual information (NMI) [2] is used to measure the 
clustering quality. NMI is a score ranging from 0 to 1. 

The bigger the score, the better quality the clustering 
result is. 

 
Table 4: The NMI results of six clustering approaches. The first 
two are variants of spherical k-means and the last four are 
model-based k-means with four different smoothing approaches 

(a) Small dataset, 100 documents per class 
Collection NTF TF-IDF Lap Bkg CISS CSSS 
OHSUMED 0.090 0.172 0.080 0.090 0.227 0.212 
20NG 0.176 0.391 0.240 0.201 0.476 0.441 
LATimes 0.200 0.185 0.145 0.122 0.332 0.322 

(b) Large dataset, all documents are used for clustering 
Collection NTF TF-IDF Lap Bkg CISS CSSS 
OHSUMED 0.085 0.232 0.180 0.165 0.238 0.239 
20NG 0.192 0.506 0.493 0.489 0.571 0.564 
LATimes 0.201 0.349 0.382 0.371 0.395 0.420 

When the dataset to cluster is small, model-based k-
means with semantic smoothing (both CSSS and CISS) 
not only outperform model-based k-means with 
Laplacian smoothing and background smoothing, but 
also beats the spherical k-means. This finding is very 
similar to the one we obtain from the classification 
experiment. However, clustering with semantic 
smoothing presents some new features we do not see in 
the setting of text retrieval and classification. First, no 
matter the dataset to cluster are small or large, CSSS and 
CISS always have the best result. Second, semantic 
smoothing achieves the best result when the translation 
coefficient is close to one. In the setting of retrieval and 
classification, the optimal translation coefficient is 
around 0.3~0.4. Third, CISS performs better than CSSS 
on small datasets and are comparable to CSSS on large 
datasets. In the setting of retrieval and classification, 
CSSS are slightly better than CISS. 

A plausible explanation is that semantic smoothing 
well solves the overfitting problem of k-means. With Lap 
or Bkg smoothing, documents tend to group into a few 
large clusters and quickly converge to local maxima. 
With semantic smoothing, small clusters still have great 
chance to grow up because small clusters share many 
significant common words with other documents through 
semantic mapping. Our experiments do show that model-
based k-means with semantic smoothing takes more 
iterations to converge than the other two smoothing 
approaches. With such an explanation, it is not difficult 
to understand three new findings. The optimal translation 
coefficient is always around one because this maximizes 
its capability of helping small intermediate clusters jump 
out of local maxima. Semantic smoothing still works 
very well on large dataset because large dataset generate 
small intermediate clusters during first several iterations 
too. CISS performs more effectively than CSSS on small 
dataset because the number of words is much larger than 



that of context-sensitive topic signatures and hence more 
powerful to expand features. 

7. Conclusions 
In this paper, we introduced a new toolkit referred to 

as dragon toolkit which can utilize auto-learned semantic 
knowledge for large-scale text retrieval and mining 
within a formal language modeling framework. The core 
idea underlying this tool is to identify explicit topic 
signatures in documents and then statistically map them 
onto single-word features, i.e. semantic smoothing of 
unigram language models.  

We demonstrated the effectiveness of semantic 
smoothing on three tasks (text retrieval, classification and 
clustering). Semantic smoothing performed significantly 
better than two state-of-the-art retrieval models, Okapi 
model and two-stage language model. In the setting of 
classification, a NB classifier with semantic smoothing 
not only outperformed NB classifiers with Lap and Bkg, 
but also beat the SVM classifier and the active learning 
classifier, when the size of training documents is small. 
On clustering tasks, model-based k-means with semantic 
smoothing always beat the ones with Lap and Bkg as 
well as spherical k-means, no matter the dataset to cluster 
are small or large. CSSS performed slightly better than 
CISS for retrieval and classification, but slightly worse 
for clustering where the overfitting problem dominated 
the results. However, in terms of efficiency, CISS is 
always worse CSSS because the number of unique words 
is often much more than the number of unique context 
sensitive topic signatures such as ontological concepts. 
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