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ABSTRACT

We aim to secure smart sensor networks, where computa-
tionally powerful sensing devices such as smartphones or
cognitive radios interact with the cloud. In previous work,
we have proposed a large-scale brokering framework, and
we are researching several facets of securing sensors in the
context of this framework. In this paper we discuss initial
results for three portions of this effort, challenges that re-
main for secure sensor networks, and specific directions we
are currently pursuing. In particular, we discuss our work
on (i) Sensor risk assessment, relating to the possession
and environment of the smartphone sensors, (ii) New mal-
ware threats and defenses installed on the sensor network
proper, and (iii) Defense against the side-channel analysis
on the Software-as-a-Service infrastructure.

KEYWORDS: Sensor Network, Brokered Network, Se-
curity, Wireless.

1 INTRODUCTION
With the increased pervasiveness of sensory devices for
military and civilian uses comes the demand for effective
processing of the large amounts of data they collect. This
demand can only be met with the low-cost computing re-
sources offered by today’s cloud computing systems. To-
day’s cloud can already support data-intensive computing
at a low cost: for example, a large-scale computing task
can be accomplished on Amazon’s Elastic Compute Cloud
(EC2) at an expense as low as 10 cents per CPU hour. So
far little effort has been made in applying the ultra cost-
effective cloud platform towards analyzing and managing
sensor data. Recently, we have made the first step towards
building a practical sensor cloud system [21]. Different
from prior work on sensor networks [21], we assume that
sensors communicate directly with a proxy or broker on
a cloud. In our research, we consider a group of sen-
sors organized as a hierarchical structure or some types
of partitions, which communicate with their cloud proxies
through wireless channels. The sensor platforms studied in

our research are ones with multiple sensors that can each
measure different properties of the environment. For ex-
ample, we might have GPS for positioning, microphones
for sound, laser-range finders for scanning surroundings,
temperature indicators, wireless radios etc. We can imag-
ine a host of different autonomous and manned devices that
contain these sensors including vehicles, robots, smart-grid
nodes, mobile computers, and smartphones. For each de-
vice, we have a number of different sensors that can pro-
vide different environmental readings on a near continuous
basis, further these hosts all contain reasonable computa-
tional power and power supplies for continuous function.
Finally, they all have reliable cellular network conductivi-
ties. We imagine that these hosts are continually collecting
data from their environment, performing some level of data
processing and publishing the outcomes to a cloud for fur-
ther analysis or data storage. For the purposes of our stud-
ies, we examine modern Android smartphones as exemplar
hosts in our work.

Figure 1, which has also been used in our prior paper [21],
illustrates the structure of the system built in our research.
A critical issue for this sensor-cloud computing environ-
ment is security and privacy. In [21], we summarize the
security and privacy challenges we face when building a
trustworthy sensor-cloud system, which come from the fol-
lowing perspectives:
∙ The environment in which sensors work can be compro-
mised by the adversary. For example, the adversary can ar-
tificially reduce or raise temperatures to cause the sensors
to collect improper data.
∙ Individual sensors can be vulnerable to attacks. This can
happen when the adversary has physical access to the sen-
sors, or remote access through propagating malware.
∙ Information flows within the cloud can be intercepted and
stolen or modified by compromised cloud nodes.
∙ The cloud client can be infected by malicious code im-
planted by an adversary, which can lead to further security
breaches within a sensor-cloud system.
∙ The communication channels between the sensors and the
cloud, and between the client and the cloud are vulnerable
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Figure 1. A depiction of the different components of the
sensor and cloud-computing network. Android smart-
phones denote the sensors in the system, and are in the
possession of individuals. The smartphones have some
computational capacity, and transmit through WiFi or
cellular services to a brokering network, running over
traditional TCP/IP services. The brokering service can
itself have computers performing filtering, processing
and/or creating other mashups of sensor data.

to different types of attacks. Even when the data transferred
over the channels is fully encrypted: side-channel informa-
tion leaks constitute creditable threats.
Our prior research pinpoints a subset of issues within thE
problem space that need immediately attention. Specifi-
cally, we investigated I) techniques for detecting anoma-
lous use of sensors, particularly, when the adversary
gains unauthorized physical access to smartphones; ii) we
demonstrated that intelligent smartphone-based malware
can be built to “understand” the context of a phone con-
versation and extract a small amount of high-value infor-
mation from the context [33] (Given the small quantity of
such sensitive information, the malware can deliver it to
its master through covert channels, even without direct net-
work access [33].); and iii) prior research shows that even
in the presence of Wi-Fi encryption and HTTPS protection,
the traffic features of the communication between sensors
and the cloud, and between the cloud and its clients can
easily be analyzed to infer highly-sensitive user data [6].
In this paper, we sketch recent progress and follow-up on
previously discussed research plans on these fronts, includ-
ing detection of anomalous use of sensors, and defenses
against smartphone malware and side-channel leaks. We
summarize below.

Sensor risk assessment. With the possibility of a vast
number of sensors deployed throughout an environment on
different hosts, with all the sensors feeding information in

to a cloud computing infrastructure, there is the possibil-
ity for an adversary to attack a sensor, and thereby make
its readings untrustworthy. There are several types of at-
tacks on differing types of sensors one can imagine. These
range from changing the environment of the sensor so its
readings are faulty, to actively changing the logic in the
sensor system itself. We are concerned with the former,
as opposed to the latter in which traditional patching and
anti-viral and anti-malware technologies are likely to be
used. Therefore, what is needed is the ability of a sensor
to measure changes to its normal operating environment,
and report changes that seem to indicate a high risk that
the sensor is not in an appropriate operating environment.
Our research on contextual authentication and deauthen-
tication of smartphones, has developed an layered sens-
ing approach, whereby each sensor measures risks locally
based on its own information and appropriate risk model.
Individual sensor risks are then conglomerated together
through a trained support vector machine, to a larger global
risk view. In our application, the global risk is used to ei-
ther deauthenticate or authenticate a user’s smartphone, but
the data could as easily be used to measure data-reliability
and provenance from sensors on the phone.

Defense against sensory malware Our research on sen-
sory malware, i.e., malware augmented by on-board and
paired sensors, demonstrates how Trojan malware can spy
on a user’s phone conversations and steal their credit card
information (for example) and send this information to a
“malware master” [33]. Furthermore, our Trojan malware
evades existing defenses.
We demonstrated that sensory malware is a potent threat
with challenges remaining to defend against such attacks.
Even though we presented a targeted solution to prevent
sensory malware attacks, the general problem of knowing
when sensors are taking legitimate readings of the environ-
ment and when they are actually causing a privacy breach
is hard to solve.

Detection and quantification of side-channel informa-
tion leaks Our prior research shows that the encrypted
communication channels in sensor clouds are vulnerable
to side-channel analysis. Specifically, a prominent fea-
ture of such systems is its extensive use of web applica-
tions, whose program logic is distributed over the client-
side browser and the cloud-side web server. Our recent
study [6] shows that such side-channel leaks present a se-
rious threat to the Software-as-a-Service (SaaS) infrastruc-
ture: several popular web applications reveal such sensi-
tive user data as family incomes, health records, investment
strategies and others. Our research further shows that to
mitigate this threat, we need to change the way the cur-
rent web applications are being developed. In the follow-
up work, we made the first step towards building a more
secure web application. We propose a suite of new tech-
niques [47] that automatically analyzes a web application



to detect its side-channel information problems and quan-
tify such leaks. The outcomes of such an application in-
forms the web developer of the presence of the problem
and its seriousness. Based on such understanding, the de-
veloper can decide on the course of action that contributes
to the improvement of the security quality of her applica-
tions.
The rest of the paper is organized as follows. Section 2
describes our recent work on sensor risk assessment. Sec-
tion 3 presents a new detection mechanism we developed
for mitigating the threat of sensory malware. Section 4 sur-
veys our new technique for mitigating side-channel leaks.
Section 5 describes the related research and Section 6 con-
cludes the paper.

2 Sensor risk assessment
Our research on contextual sensor data shows that it is fea-
sible for smartphones to continuously evaluate their sen-
sors and based on appropriate risk-models calculate risk
in real-time. While risk is measured in real-time, the risk
models which must be learned through the use of appropri-
ate machine learning algorithms, can be computationally
intensive. This is not troubling, as training can either be
offloaded to the cloud, or if security and/or privacy rea-
sons interfere, then these computationally intensive tasks
can be scheduled for a phone’s low-use periods. For ex-
ample, smartphones can train while the phone is charging
during the evening. With relation to specific risks based on
individual sensors, we have considered two alternate sen-
sors: geo-locational data as is derived through a mashup of
GPS, WiFi and Cellular Tower positioning, and determina-
tion of friends and strangers in the near proximity via short
range Bluetooth radio.
We have shown that by labeling a small number of geo-
graphic sites that users frequent and developing a history of
geo-locational positioning information, the phone can infer
when it is supposed to be in certain locations. This model-
ing is done through the use of a third-order Hidden-Markov
Model (HMM). Sequences of observations correspond to a
discretization of location into a string on labeled known and
unknown locations. Initially we performed experiments
where time was discretized in to 30 minute segments. Us-
ing positional data from the MIT Reality Mining Project
of Eagle and Pentland[14] , which contains positional data
collected via phones for 100 users over a 9 month period,
we trained the HMMs using traditional Baum-Welch and
Viterbi HMM training algorithms. In fact, we train a sepa-
rate HMM for each 4-hour segment of time during the day.
This allows us to predict location based on a reasonably re-
cent location history, but not so short as to be meaningless.
Next, to calculate the risk of the phone’s present location,
we use an HMM trained over a 4-hour period immediately
preceding the current time segment, and use it to predict—
with the forward algorithm— the likelihood of the HMM
having made the observed sequence of positions. We nor-
malize the result, but essentially if the forward algorithm

suggests that the HMM would produce a given sequence
with low probability, then we predict high-risk, and vice-
versa. Certain thresholds of risk are then set to determine
if the phone should force authentication.
With such a risk calculation and forced authentication in
place, we are now able to simulate loss and theft of the
phones, and determine how effective our positional model
is. Essentially, we simulate theft of phones by having their
locations switch to a series of previously unknown loca-
tions that the phone does not frequent. To simulate loss
of the phone, the phone is assumed to remain in its cur-
rent location independent of the movements of its owner.
While such simulations are first approximations to actual
theft and loss, we believe that they appropriately simulate a
large number of such cases. Actual data on the positioning
of stolen phones is unavailable. Given such a model, we
then determined thresholds for measured risk which should
force authentication, allowing us to determine our type I
and II errors. Some example users’ Receiver Operating
Characteristic (ROC) curves for theft are shown in Fig. 2.
The right-most graph is atypical in performance, the other
two more accurately report mean performance. Different
lines depict Time of Theft plus an offset of 30 minute inter-
vals (i.e. TOT+i depicts theft detection i ⋅ 30 minutes after
theft.
As can be seen in the ROC, given as little as 30 minutes,
many users have reasonable theft detection. However, in
practice 30 minutes may be too long of a period to detect
theft, but with the 30 minute time segments use for train-
ing this is the fastest one might hope to detect theft or loss.
Therefore, we are currently investigating the feasibility and
efficacy of shortening time segments to 5 minute intervals
to allow for a much more fine-grained detection. Issues
involved with higher granularity are the computational in-
tensity needed to train and compute with the much larger
HMMs that need to be maintained, and the amount of his-
tory that needs to maintained to predict current location.
There are times when sensors are in new and unanticipated
locations, for these times we buttress our geo-location sen-
sor with a the Bluetooth sensor, used to detect the devices
that are in close proximity to it. Roughly, the smartphone
can learn which devices are frequently in close proximity
to it, and learn that such devices are “friendly”. The mere
presence of such devices can indicate that there is a low
risk that the phone has been stolen or lost. Examples could
include your phone recognizing your car’s presence, or two
spouses phone’s recognizing the presence of each other.
In both scenarios, the presence of a trusted Bluetooth id
suggests the risk that the phone has been lost or stolen is
low. This scheme can also be used with other short-range
wireless technologies, such as the 802.11 family of wire-
less networks. While maintaining Bluetooth radios in pow-
ered modes can increase the rate of power consumption,
there are a large number of users who maintain power to
their WiFi and Bluetooth radios throughout the day, with-
out difficulty. In any event, we are using the smartphones



Typical A-Typical
Figure 2. A depiction of three users’ ROC curves.

as a test-bed platform for a large number of sensors, where
power supplied to the radios need not be an issue.
In order to measure risk, we consider a two level
white/grey-listing system. First, phones can whitelist cer-
tain Bluetooth devices, such that their presence will result
in a low-risk measurement, no matter the presence of other
devices. However, in the absence of such white-listed de-
vices, a risk measurement must be made based on the de-
vices that can be detected. In order to make such a measure-
ment the phone constantly searches for Bluetooth identi-
fiers and records their relative presences over time, defining
a distribution D over Bluetooth identifiers: devices that are
observed frequently have high probability mass, and vice-
versa. Using this distribution, we can now think of those in-
dividuals that are frequently in proximity as more trusted,
than those that are not. The entropy of this distribution,
H(D), tells us the average amount of risk we are exposed
to on a daily basis. Thus to measure the risk of a given
situation, we can measure the information presented by the
identifiers (IDs) i, − log(Pr(i)), currently visible, and de-
termine its distance from H(D). To measure the probabil-
ity of seeing a given id, we keep track of the amount of
time all Bluetooth IDs have been seen in recent history (a
month). We then consider the fraction of time a given id has
been observed, presenting its probability. We use a heuris-
tic to account for identifiers that have never previously been
observed, according them a very small probability in the
distribution that is not 0.
In order to punish and reward high and low risk scenar-
ios, we consider this difference transformed under a logis-
tic sigmoid. This gives us the following risk function:

Risk =
1

1− e
−
∑

i∈Observed ids(− log(Pr(i))−H(D))
.

In Figure 3 we show a sample of our risk prediction func-
tion, when used to predict risk for a given day in the Reality
Mining Dataset. The upper (magenta) line depicts the rel-
ative risk predicted at any given point in time of the day
based on the the grey-listing Bluetooth risk predictor (i.e.,
predicted by logistic sigmoid). The low risk time periods is
consistent with the device being in the presence of devices
that are frequently present. The high-risk periods indicate
the presence of a number of individuals which the phone
has rarely or never seen. The lower line indicates the rela-
tive probability mass of the observed identifiers at a given
time.
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Figure 3. Depiction of a user’s relative risk.

We are currently in the process of modeling theft and loss
with the Bluetooth sensors, to measure the system’s effi-
cacy. We are again using the Reality Mining Dataset [14]
which contains not only positional data on the individuals,
but scans of nearby Bluetooth devices. Our final goal is
to implement a global risk analyzer that will take the local



risk measurements from the individual sensors, and pro-
vide a better global risk measurement, then the individual
sensors can provide. The expectation is that this will be
done through the use of a trained Support Vector Machine
(SVM).

3 Defense against Sensory Malware
Our research on sensory malware shows that is is feasible
for Trojan malware to spy on user’s speech-based commu-
nications through access to the microphone [33]. In par-
ticular we demonstrated how our Trojan can target a small
amount valuable information such as a spoken credit card
number or social security number and transmit this infor-
mation to the “malware master”. We showed how our
sensory malware can evade existing defenses through the
use of stealthy local processing of information and the use
of covert channels so as to avoid suspicious permissions
needed by the Trojan application. We thus demonstrated
that sensory malware is a potent threat with challenges re-
maining to defend against such attacks.
Even though we presented a targeted solution to prevent
sensory malware attacks, the general problem of knowing
when sensors are taking legitimate readings of the environ-
ment and when they are actually causing a privacy breach
is hard to solve. Our current defense against speech-based
malware is to recognize that a phone call to a sensitive num-
ber (such as a bank or credit card company) is being made.
If so, the reference monitor that controls when audio can
be recorded and delivered to applications can preempt any
ongoing recordings and replace it with blank audio. We
showed that such a defense incurs minimal penalty and
does not significantly delay outgoing phone calls [33].
To defend against sensory malware attacks in general, thus
we propose techniques that take into account the context
under which sensing is being performed. In our defense
explained above, we can see that a phone call to a sensi-
tive number is contextual information that is interpreted as
an unsafe situation to be recording from the microphone.
Similarly, the sensors can be used to detect various unsafe
contexts for various sensors. We are currently exploring
how to automatically infer such sensitive contexts for vari-
ous sensors. For example, in our work (reported in this pa-
per) for sensor risk assessment, we utilize various on-board
sensors to assess the risk of theft. We propose various mod-
els to infer an unsafe or anomalous situation for the phone.
In the same way, we hope to characterize normal situations
when different sensors are used, and thus flag anonymous
uses of sensors to the user. Our system can then take input
from the user as to whether the access to a sensitive sensor
is authorized and if so the system can continually refine its
models for risk assessment.
We thus hope that we can build a generalized framework to
learn and refine context based risk assessments of when it
is relatively safe or unsafe to use different sensors. Again,
“when” is not only a matter of time, but also various situa-
tions such as who is around, what motion is being sensed,

what the camera can see, and so on. We believe this ap-
proach is an exciting avenue for research since sensor-
based context are used to secure the use of sensors.

4 Mitigating Side-channel Leaks from Web
Applications

Our research, as elaborated in our prior paper [6], indi-
cates that mitigation of the side channel problem in web
applications is nontrivial. Particularly, it is unlikely to have
an application-agnostic solution to the problem. We eval-
uated the effects of two padding strategies on web appli-
cations, including rounding that rounds up packet sizes to
the nearest multiple of certain bytes, and random padding
that appends packets to a random length within a certain
range. We found that the leaks within a famous online
health information system cannot be completely subdued
even after packets are rounded to 512 bytes, which incurs
a network overhead of 32.3%. For a well-known tax ap-
plication, even rounding packets to 2048 bytes, with an
overhead of 38.10%, is insufficient for hiding the 7 income
ranges disclosed from asymmetric execution paths, which
actually cannot be covered by padding alone. More inter-
esting is the observation that search engine leaks, which al-
lows an eavesdropper to figure out the content of the input
data by looking at the sizes of the packets carrying auto-
suggestion lists [6], cannot be fixed by rounding, as the
auto-suggestion lists are actually GZip-compressed by web
servers, and some organizations decompress them for in-
specting the packets while others let the users’ browsers
do the decompression: as a result, the web server can-
not use rounding to protect both compressed and uncom-
pressed contents transmitted in different recipients’ Wi-
Fi networks. On the other hand, random padding seems
to have nothing but marginal effects on the inference at-
tack on the images of an online investment application, be-
cause the eavesdropper can compare the traffic attributes of
the same user’s images collected from different rounds of
client/server interactions to remove the randomness.
The first technical challenge is how to find the side-channel
vulnerabilities within individual web applications. Detec-
tion of such vulnerabilities requires an in-depth analysis
of information flows within the applications, and in some
cases, acquisition of background knowledge on how they
are used. In our recent paper [47], we present the first
technique, call Sidebuster, for detecting and quantifying
side-channel leaks. Based upon a set of “taint sources” la-
beled by the developer as sensitive, our techniques perform
an information-flow analysis on source code of web appli-
cations to track the propagation of “tainted” data across a
program’s client/server components. Whenever the tainted
data are found to be transmitted to the network through an
encrypted channel, an information-leak evaluation is per-
formed to understand whether the side-channel informa-
tion of the channel, such as packet sizes and sequences,
can be used to infer the content of the data. Whenever a
branch condition is found to be tainted and its branches



contain client/server communications, Sidebuster evaluates
whether the attributes of such communications reveal the
sensitive condition. We also developed new techniques
for analyzing GUI widgets, such as auto-suggestion lists,
which are triggered by input events (e.g., letters being en-
tered) to synthesize different user inputs into an integral
variable (e.g., a query word) that the developer labels as a
“taint target”.
Every web application gives away some information
through its side-channels. However, not all such infor-
mation leaks are serious enough to warrant mitigation ef-
forts. For example, people could live with disclosure of
the lengths of their query words and some operations they
performed, such as sending/receiving emails. A question,
therefore, becomes how to quantify the private information
that can be inferred from a side-channel vulnerability. This
question can be answered through dynamic analysis, be-
cause the encrypted traffic of a web application is actually
generated by its underlying web servers/browsers, whose
source code is often beyond the access of the developer. To
conduct such an analysis, we also come up with a design
of a quantification technique that systematically re-runs se-
lected portions of a web application to understand how the
domain of a taint source or target can be partitioned by its
side-channel leaks [47].

Figure 4. Data-flow example

Figure 5. Control-flow example. The code within the
dark boxes runs on the client side.

Figures 4 and 5 describe two examples. The first one is the
code of a suggestion list. For simplicity, we describe the
program using Java pseudocode. The program is split into
the part that runs on a web server and the part that works in
the client’s browser.1 Given a tainted variable keyword, a
static analysis can identify the taint data to be propagated to
the network through send data to server. This func-
tion is then instrumented for further evaluation. Analysis of
the server-side code also taints the suggestion list to be sent
back to the client, which makes our analyzer instrument

1A Java program can be easily complied into AJAX code by the
Google Web Toolkit (GWT)

sent to client on the server side. Then, we can in-
strument related program statements for dynamic analysis,
because in the absence of data, static analysis alone can-
not determine whether the content of the tainted variable is
inferable from attributes of the tainted web traffic. During
the runtime of the application, the instrumented code works
with the web server and browser to identify the sizes of the
packets containing keyword letter(s) and those carrying
their corresponding suggestion lists. The former leaks little
information except the length of keyword, while the lat-
ter changes with the content of keyword: different con-
tents lead to suggestion lists with different sizes. Such a
side-channel leak is therefore identified. The example in
Figure 5 is the simplified program logic for tax credit and
deduction claims in a tax preparation application. Suppose
that the variable, agi, is marked as a taint source. An in-
formation flow analysis tracks the taint data to the branch
condition “agi<145000”, and further identifies its scope,
from the condition to a post-dominator where all branches
converge. Checking the code within the scope, we find that
the “not eligible” branch involves one round of client/server
interactions, while the “eligible” branch has two, one for
the deduction request/response and the other for entering
the user’s interest. This asymmetric structure then is de-
tected to disclose the tainted condition.

White-box testing of web applications needs their source
code and depends on the programming languages with
which they are implemented. In follow-up research, we
will study black-box testing that does not suffer from these
constraints. Given that most high-profile web applications
are actually closed source, black-box testing has become a
popular choice for evaluating their security problems such
as cross-site scripting (XSS) and SQL injection flaws. Al-
though there are a large number of open-source and com-
mercial black-box fuzzers, none of them check for side-
channel leaks. A prominent property of a web application
is that part of its program logic resides on the client side,
and can therefore be used for guiding a fuzz test. As an
example, let us consider a suggestion list with its input text
box labeled as a taint source. Analyzing its JavaScript code
reveals that the content of the text box will be sent to the
server in response to every keystroke, which allows an au-
tomatic fuzzer to generate test keystrokes and evaluate the
web flow vectors triggered by these inputs. Such an analy-
sis can also uncover the changes of keystroke inputs result-
ing in different suggestion lists, which therefore also need
to be tainted. The contents of the lists further inform the
fuzzer of the options the user has, i.e., the legitimate val-
ues the input text box can take. This enables the fuzzer to
generate test cases to evaluate whether these options can be
distinguished from each other by their traffic attributes.

Another important direction we will pursue is to automati-
cally transform a web application to remove the discovered
side-channel leaks. In the case that side-channel leaks are
actually caused by asymmetric execution paths (Figure 5),
the application will be modified to either include fake state



transitions or move some of its states to its client-side com-
ponent. Given the complexity of today’s web applications
and the presence of a large amount of legacy code, it is de-
sirable for this code transformation to be supported by a
suite of automatic tools, which we plan to develop. Based
upon the side-channel vulnerabilities detected by white-
box testing, padding policies can be specified for state tran-
sitions whose traffic attributes disclose the content of sen-
sitive data flows. For the example in Figure 4, the pol-
icy can be to pad all responses that carry suggestion lists.
Mitigation of control flow leaks can be more complicated.
Consider Figure 5. We have two options: either adding a
round of fake communications and delay on the “not el-
igible” branch or move the code related to a state transi-
tion, e.g., the program logic bounded by dash lines, to the
browser. Such code splitting can be done automatically [9].

5 RELATED WORK
5.1 Mobile phone security and privacy
There has been some work in using sensors to establish
context for different purposes on smartphones. The work
of Peddemors et al. [30] uses past networking and sensor
events to predict future network events. They give exam-
ples of predicting network availability. The ability to pre-
dict events is distinct from deviating from normal or pre-
scribed behavior. Nonetheless they use the prediction of
being at home or work, and for durations. Therefore, the
system should be considered. Of particular problem is the
complexity of computing predicted events, which would be
too slow in our scenario.
The work of Tanviruzzaman et al. [37] is most similar to
that discussed here. In their work, they suggest the use of
a hierarchy of sensor information to establish authentica-
tion, and show some work on using accelerometer data on
an iPhone to produce a biometric that can be used to au-
thenticate to the phone. Jakobsson et al. [19] discuss the
notion of implicit authentication of phones based on con-
textual data, and use call pattern data.

5.2 Sensory malware threats and defenses
Researchers have been investigating attacks and defenses
related to sensory malware [5]. Work on proof-of-concept
video malware shows how malware can capture video and
transmit this video after suitable compression to lessen the
burden on the network [45]. However such approaches are
not stealthy because the amount of data sent over the net-
work is still very large. We would like to assume that net-
work access is limited completely using techniques such as
Kirin [12], a security certification mechanism for applica-
tions on Android. Even in cases where a system such as
Saints [28] is used to control the interaction between appli-
cations, we would like to study the use of covert channels
to circumvent such mechanisms. While techniques such
as behavioral detection of malware by monitoring system
calls [3], and power consumption [25] attempt to detect
malware on mobile platforms, we aim to study the limits

of such detection techniques. Resources are limited on mo-
bile devices, and malware could circumvent detection be-
cause of the inherent limitations placed on the detection
techniques.

5.3 Side-channel information leaks
Side-channel leaks have been studied for a long time in dif-
ferent contexts. In addition to the information leaks that
happen through electromagnetic signals (e.g., keystroke
emanation [42]), shared memory/registers/files between
processes (e.g., the recent discovery of the side-channel
weakness in Linux process file systems [46]), CPU usage
metrics, etc, the side-channel attacks are recently found to
threaten cloud computing platforms like Amazon EC2 [31].
Examples of side-channel leaks through encrypted chan-
nels include the attack on the RSA secret keys used in
OpenSSL [4], keystroke inference from SSH [34], anal-
yses on phrases and sentences from the variable-bit-rate
encoding in VoIP [44], and detection of movie titles in
an encrypted video-streaming system [32]. For encrypted
web communication, prior research shows that a network
eavesdropper can fingerprint web pages using their side-
channel characteristics [43, 7]. Such information leaks
pose a threat to anonymity channels like Tor, MixMaster
and WebMixes [36, 11, 2].

6 SUMMARY
We have outlined our research on secure sensor networks
in the context of a high-level cloud based brokering archi-
tecture and highlighted various research challenges going
forward. We outline research challenges associated with
assessing the trustworthiness of the sensors based on en-
vironmental sensor data, detecting and defending against
“sensory malware” on such sensors, and mitigating side-
channel leaks when sensor devices communicate with the
cloud. We believe these components of the overall cloud
based sensor network architecture are the least trustworthy
since they are out of the control of the cloud “back end.”
Thus, addressing these challenges will help protect the in-
tegrity of the sensing platforms, the privacy of users who
carry mobile sensors, as well as the delivery of sensor data
to the cloud. These protections will greatly contribute to
trustworthy collection of sensor data from smart and mo-
bile sensing devices.
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