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Abstract. Detecting the dimension of the latent subspace of a linear
model, such as Factor Analysis, is a well-known model selection prob-
lem. The common approach is a two-phase implementation with the help
of an information criterion. Aiming at a theoretical analysis and compar-
ison of different criteria, we formulate a tool to obtain an order of their
approximate underestimation-tendencies, i.e., AIC, BIC/MDL, CAIC,
BYY-FA(a), from weak to strong under mild conditions, by studying a
key statistic and a crucial but unknown indicator set. We also find that
DNLL favors cases with slightly dispersed signal and noise eigenvalues.
Simulations agree with the theoretical results, and also indicate the ad-
vantage of BYY-FA(b) in the cases of small sample size and large noise.

1 Introduction

Linear model is one of the most common modeling approaches to multivariate
data in many scientific fields. Factor Analysis (FA)[1] is a such widely-used linear
model that assumes the observations come from a linear mixture of some latent
Gaussian factors with additive Gaussian noise. It is usually used for dimension
reduction via detecting the hidden structures. Also, as recently revisited in [2],
PCA is equivalent to a special case of FA [1] under the Maximum Likelihood
(ML) principle. FA is extended to Independent Component Analysis (ICA)[3]
by requiring higher order independence, no noise and square mixing matrix.

One of the fundamental tasks in FA modeling is determining the dimension
of the latent subspace, i.e., the number of hidden factors. It is a model selection
problem in machine learning. Also, it is addressed as the problem of detecting the
number of signals through a noisy channel in signal processing [4,5,6,7,8]. One
conventional approach is hypothesis tests based on the likelihood ratio statistic
[9] and a subjective threshold. Another approach is the two-phase implementa-
tion that requires no subjective threshold with the help of an information cri-
terion such as Akaike’s Information Criterion (AIC)[10], Bozdogan’s Consistent
Akaike’s Information Criterion (CAIC)[11], Schwarz’s Bayesian Information Cri-
terion (BIC)[12] (which coincides with Rissanen’s Minimum Description Length
(MDL)[13]), and Bayesian Ying-Yang (BYY) harmony learning criterion[14].

Following an early work [4] in signal processing literature, a framework was
proposed in [5] for studying criteria such as AIC and MDL, with asymptotic
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bounds provided for overestimation and underestimation probabilities, which
was further studied in [6,7]. Recently, the behaviors of AIC and MDL in a situ-
ation with high dimensional signals but relatively few samples were investigated
in [8]. In this track [4,5,6,7,8], FA is considered in its special case of PCA, and
the studies are focused on asymptotic properties, such as consistency and asymp-
totic normality, and the results were shown to be robust for non-Gaussian sources
empirically[7]. However, in practical the sample size is finite or even small, and it
is intractable to get an exact selection accuracies of different criteria. An easier
way is to study their relative selection tendencies for a preliminary comparison.

This paper formulates a tool further developed from[5] for a theoretical com-
parison of typical criteria in terms of ordered approximate underestimation ten-
dencies. It suffices to study a key statistic and an indicator set which is inherently
associated with each criterion and depends on the distribution of samples. The
order from weak to strong is shown to be AIC,BIC,CAIC and BYY-FA(a) under
mild conditions, while DNLL is found to favor the cases with slightly dispersed
signal and noise eigenvalues. Though analytically hard, BYY-FA(b) is shown to
be empirically superior for those small-sample-size and large-noise cases.

The rest of the paper is organized as follows. In Section 2, we briefly review
FA and several criteria. In Section 3, we formulate a tool for comparisons of
different criteria via studying a key statistic and a crucial indicator set, and
then conduct simulations in Section 4. The conclusion is made in Section 5.

2 Factor Analysis and Serval Model Selection Criteria

Factor Analysis. Assume x is an observed n-dimensional random variable, and
it is distributed according to the following descriptions:

x = Ay + µ + e, p(x|y) = G(x|Ay + µ,Σe), p(y) = G(y|0,Σy),{
Θm = {A,Σe} if Σy = Im (the m × m identity matrix), for FA(a);
Θm = {A,Λm,Σe} if Σy = Λm (diagonal) and ATA = Im, for FA(b);

p(x) =
∫

p(x|y)p(y)dy = G(x|µ,Σx), Σx = AAT + Σe

(1)

where y is an m× 1 hidden factor, Θm is the unknown parameter set including
an n × m factor loading matrix A and a diagonal noise covariance matrix Σe,
and G(•|µ,Σ) denotes a Gaussian distribution with the mean vector µ and the
covariance matrix Σ. The two formulations, i.e., FA(a) and FA(b), are equiva-
lent under the Maximum Likelihood principle for parameter learning, but they
are different under the BYY harmony learning [14] for selecting m which will be
introduced in Section 3.3&4.1. In the sequel, we assume µ = 0,Σe = σ2

eIn.

Several Criteria and Two-phase Implementation. The task of FA mod-
eling consists of parameter learning and selecting m, based on a sample set
XN = {xt}N

t=1, and it is tackled by the following two-phase implementation:

– Phase I: Compute Θ̂m = Θ̂(XN , m) for each m ∈ [mlow, mup] with
mlow and mup given. Normally, Θ̂m is the Maximum Likelihood (ML) es-
timator Θ̂ML

m = argmaxΘm ln p(XN |Θm) = argminΘm EL(XN |Θm), where
EL(XN |Θm)=− 2

N ln p(XN |Θm) is denoted as NLL(negative log-likelihood).
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– Phase II: Estimate m̂ = argminm ECri(XN , Θ̂m), where ECri is formulated
according to a criterion (Cri), e.g.,

ECri(XN , Θ̂m) = EL(XN , Θ̂m) + ρcridm,

dm = nm + 1, ρcri =

⎧⎪⎪⎨
⎪⎪⎩

ρL = 0; for NLL
ρAIC = 2

N ; for AIC
ρBIC = lnN

N ; for BIC
ρCIC = ln N+1

N ; for CAIC

(2)

3 Theoretical Analysis and Comparisons

3.1 A Tool for Comparisons

Based on Sec.2&[5], this subsection further formulate a tool aiming at analysis
and comparisons of different criteria for FA modeling, and provides a summarized
guidance for the detailed analysis in the subsequent subsections.

– select m via discrete optimization. Consider S(Θm, m) to be a family of
statistical models p(x|Θm) for FA(a) given in eq.(1) with Θm = {An×m, σ2

e}.
Given a criterion(Cri) with ECri = ECri(XN , Θ̂(XN , m)) = ECri(XN , m),
an estimator of m∗(the underlying true dimension) is given by m̂(XN ) =
arg minm ECri. To locate the minima w.r.t. discrete m, no derivative can
be used. However, it is reasonable to study instead the backward difference
function ∇mECri = ECri(XN , m)−ECri(XN , m−1), as shown in Fig.1(a)(b).

– from ∇mECri to local preference. It is intractable to study ∇mECri as a
function of XN , m. Fortunately, ∇mECri from several criteria for FA can be
formulated as ∇mECri(γm, m)(Fig.1(b)(c)), a function of m and a statistic
γm given in eq.(8), which will be shown in Sec.3.2&3.3. The medium γm

extracts and transmits sufficient information from samples to selecting m,
and also determines the local preference over each {m−1, m} as in Fig.1(d).
Γ ∗

m and its element γ∗
m are separately termed indicator set and indicator

at m. Note that γm is closely related to the signal-to-noise ratio.
– approximate underestimation tendency. Underestimation refers to an

event “m̂ < m∗”. Considering the Local preference defined in Fig.1(d) over
{m∗ − 1, m∗}, if γm∗ ∈ Γ+

m∗ , then m∗ − 1 is preferred to m∗, which indicates
that “m̂ < m∗” is likely to happen (though not guaranteed). Therefore, it is
reasonable to approximate the underestimation tendency by the probability
Pr{γm∗ ∈ Γ+

m∗}. Its exact evaluation is intractable for a finite or small N ,
but the relative tendencies of different criteria can be determined as follows.

– A TOOL for comparisons. Fixing m = m∗, assume ∇mECri1(γm) and
∇mECri2(γm), sketched in Fig.1(c), are strictly monotone decreasing in do-
main ΓD with their indicators satisfying γ∗

m(Cri1) < γ∗
m(Cri2). Actually,

these assumptions hold for several criteria as in Sec.3.2. Then, Γ+
m(Crii) =

(−∞, γ∗
m(Crii))

⋂
ΓD, i=1, 2, and Pr{γm ∈ Γ+

m(Cri2)}−Pr{γm ∈ Γ+
m(Cri1)}

= Pr{γ∗
m(Cri1) < γm < γ∗

m(Cri2)} ≥ 0. So, “approximately the underesti-
mation tendency of Cri2 is stronger than that of Cri1” or Cri1 ≺u Cri2.
Similar analysis on overestimation can be performed at m = m∗ + 1.
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Fig. 1. For a given XN , graphs of ECri and ∇mECri w.r.t. m are sketched in (a)&(b),
while for two criteria, Cri1 and Cri2, the graphs of ∇mECri1 ,∇mECri2 w.r.t. γm given
m are sketched in (c), as well as its corresponding local preference defined in (d)

3.2 AIC, BIC, CAIC

Assume the eigenvalues of the sample covariance matrix, i.e., SN = 1
N

∑N
t=1 xtxT

t ,
are {si : 1 ≤ i ≤ n} with s1 ≥ . . . ≥ sn. The Maximum Likelihood (ML) estimate
Θ̂ML

m for FA(a) in eq.(1) is given to be ([1,4,2]):
{

ÂML
n×m = Un×m(Dm − σ̂2

e)
1
2 RT , Dm = diag[s1, . . . , sm],

σ̂2,ML
e = 1

n−m

∑n
i=m+1 si,

(3)

where the i-th column of Un×m is the eigenvector of SN corresponding to si,
and R is an arbitrary rotation matrix. According to eq.(2) and eq.(3), the NLL
and the difference functions of some criteria, are further formulated as:

EL(XN , Θ̂ML
m ) = k ln

n∑
i=m+1

si − k ln k −
n∑

i=m+1

ln si, k = n − m, (4)

∇mEL(γm, m) .= ∇mEL(XN , Θ̂ML
m ) = −(k + 1) ln

(
1 +

γm − 1
k + 1

)
+ ln γm (5)

∂∇mEL(γm, m)
∂γm

= − k(γm − 1)
(k + γm)γm

≤ 0, ∀γm ∈ [1, +∞). (6)

∇mECri(γm, m) .= ∇mECri(XN , Θ̂ML
m ) = ∇mEL(XN , Θ̂ML

m ) + nρcri (7)

where ρcri is given in eq.(2), and γm is explicitly formulated by

γm = γm,m, γi,m = si/An
m+1 ≥ 1, i = 1, . . . , m; An

m = 1
n−m+1

∑n
i=m si, (8)

Due to the space limit, all theoretical results are given without proofs.

Lemma 1. (1). Given ρ > 0, the root γ∗ of ∇mEL(γ) = −nρ is unique for
γ > 1 and bounded in (γlow, γup), where γlow = (k + 1)C0 − k, and γup = γlow +√

2(k + 1)C0(C0 − 1), and C0 = exp{nρ
k }, k = n− m. (2). For ρ1 > ρ2 > 0, we

have γ∗(ρ1) > γ∗(ρ2) > 1.

Remarks: Similar bounds were provided in[5,6] by two kinds of Taylor approx-
imations w.r.t. two formulated variables separately, while Lemma 1(1) was de-
rived by a second-order Taylor approximation (as in[6]) w.r.t to γ (as in[5]).
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Theorem 1. Since the indicator γ∗
m(Cri) is a root of ∇mECri(γm) = 0, then

1. 1 = γ∗
m(NLL) < γ∗

m(AIC) < γ∗
m(BIC) < γ∗

m(CAIC), if N ≥ 8 > e2.
2. Γ+

m = [1, γ∗
m(Cri)), Γ−

m = (γ∗
m(Cri), +∞), and indicator set Γ ∗

m = {γ∗
m(Cri)}.

3. Applying C0 ≈ 1 + nρ
k to γup in Lemma 1, we get a further approximation:

γ∗
m(Cri) ≈ 1 + (n + n/k) · c

N
+

n

k

√
2(k + 1)

(
k

n
+

c

N

)
c

N
+ O(

c

N
), (9)

where c = 2, ln N, ln N +1 for AIC, BIC, CAIC separately, and k = n−m.

Remarks: This theorem indicates: (1). NLL tends to select large m in probability
one unless γm = 1, ∀m > m∗ or si = σ2 (∀i ≥ m∗) which requires N → +∞;
(2). Fixing m = m∗, “AIC≺uBIC≺uCAIC” holds according to Sec.3.1.

3.3 DNLL and BYY-FA(a)

The likelihood-ratio test is a conventional approach to model selection in statis-
tics [9]. The logarithm of the likelihood-ratio or the difference of the Negative-
Log-likelihood (NLL) is denoted as DNLL, and the corresponding objective
function is EDNLL(XN , Θ̂ML

m ) = ∇mEL, where ∇mEL is given in eq.(5). Then,

∇m(EDNLL(XN , Θ̂ML
m )) = ∇2

mEL = −2(k + 1) ln
(
1 + γm,m−1

k+1

)
+(k + 2) ln

(
1 + γm−1,m+γm,m−2

k+2

)
− ln γm−1,m

γm,m

(10)

where γm−1,m, γm,m are formulated in eq.(8), and γm−1,m ≥ γm,m ≥ 1. Ac-
cording to the Formulation 1, γ(XN , m) is generalized to a two-variable vector
(γm−1,m, γm,m), and the indicator set Γ ∗

m becomes a 2-dimensional boundary.

Theorem 2. Define sp, . . . , sq to be “slightly dispersed”, if |si −Aq
p| < δ holds

for any i ∈ [p, q] and a very small δ(> 0). The criterion DNLL captures the
variations of NLL, and especially at the unknown true dimension m∗ we have

1. When m = m∗: If sm−1 ≈ sm � An
m+1, then γm−1,m ≈ γm,m � 1, which

implies ∇mEDNLL < 0, i.e., m∗ is preferred to m∗ − 1.
2. When m − 1 = m∗: If sm−1 � sm ≈ An

m+1, then γm−1,m � γm,m ≈ 1,
which implies ∇mEDNLL > 0, i.e., m∗ is preferred to m∗ + 1.

3. If s1, . . . , sm∗ are slightly dispersed, sm∗+1, . . . , sn are also slightly dispersed,
and sm∗ � sm∗+1, then m∗ is the global minimum of EDNLL.

Remarks: Instead of strict mathematical formulations, the conditions in Theorem
2 are stated in an intuitive way. It implies DNLL favors slightly dispersed signal
and noise eigenvalues, as well as a large signal-to-noise ratio (SNR). However,
the conditions will be probably violated when N and SNR is small.

Another approach to tackling model selection problems is the Bayesian Ying-
Yang (BYY) harmony learning theory[14]. We defer its detailed introduction to
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the next section. With γm again formulated in eq.(8), a BYY criterion (denoted
as BYY-FA(a)) for FA(a) in eq.(1) as well as its difference function is

Ea
H(XN , Θ̂ML

m ) = m ln(2πe) + n ln
(

1
n−m

∑n
i=m+1 si

)
,

∇mEa
H(γm, m) = ln(2πe) − n

{
ln

(
1 + γm

n−m

)
+ ln

(
1 + 1

n−m

)}
,

(11)

Lemma 2. According to eq.(11) and the tool defined in Sec.3.1, we have

1. Since the indicator γ∗
m(Ha) is the root of ∇mEa

H(γm) = 0, then γ∗
m(Ha) =

(n−m + 1)
[
(2πe)

1
n − 1

]
+ 1 > 1, e.g., γ∗

m(Ha) ≈ 3.595 when n = 9, m = 3.

2. Γ+
m = [1, γ∗

m(Ha)), Γ−
m = (γ∗

m(Ha), +∞), the indicator set Γ ∗
m = {γ∗

m(Ha)}.
Theorem 3. There exists an equivalent ρHa for BYY-FA(a), and then we in-
directly compare the indicator γ∗

m(Ha) of BYY-FA(a) with γ∗
m(Cri) of another

criterion (Cri) by approximately comparing ρHa with ρcri as follows:

1. ρHa is bounded in
(
ρ
(low)
Ha

, ρ
(up)
Ha

)
, where ρ

(up)
H2

= n−m
n ln cn and ρ

(low)
Ha

=

cn + 2cn−1
k−1 −

√
2(k+1)cn(cn−1)+1

k−1 , cn = n
√

(2πe), k = n − m.
2. Given n, m, ∃Ncri > 1 such that ρHa < ρcri iff 1 < N < Ncri. Also, Ncri is

lower bounded by Nup, which is the largest N that satisfies ρ
(up)
Ha

< ρcri. E.g.,
Nup = 14, 23, 31 for AIC, BIC, and CAIC respectively, when n = 9, m = 5.

Remarks: Consider m = m∗. (1). Since γ∗
m∗(Ha) is irrelevant to N and γm∗ is the

ML estimator for the true unknown SNR γo = λm∗/σ2, then BYY-FA(a) tends
to underestimate m regardless of N as long as γ∗

m∗(Ha) > γo. (2). We compare
BYY-FA(a) with other criteria (Cri), such as AIC, BIC and CAIC, directly by
calculating each indicator γ∗

m∗(Cri) as in Lemma 1&2 or indirectly in form of
ρcri as in Theorem 3. (3). There exists a small Ncri, such that if N < Ncri then
BYY-FA(a)≺uCri, otherwise Cri≺uBYY-FA(a), according to Sec.3.1.

4 Empirical Study and BYY-FA(b)

4.1 BYY-FA(b)

The criteria analyzed above are relatively easy for a theoretical analysis, while
BYY Harmony Learning Theory on another formulation of FA, i.e., FA(b) in
eq.(1), is difficult. However, via an empirical comparison, we still provide insights
of its model selection performances.

Firstly proposed in 1995 and systematically developed in the past decade,
Bayesian Ying-Yang (BYY) harmony learning theory is a general statistical
learning framework that can handle both parameter learning and model selection
under a best harmony principle. The BYY harmony learning leads us not only
a set of new model selection criteria for typical structures, but also a class of
automatic model selection algorithms. For more details, please refer to a recent
systematic review[14].



160 S. Tu and L. Xu

FA(a) and FA(b) in eq.(1) are equivalent under ML principle but different
under the BYY harmony learning theory [14]. The former leads to BYY-FA(a)
in Sec.3.3, while the latter leads to BYY-FA(b) as follows, with a similar two-
phase procedure (see eq.(7) in[14]) implemented,

Eb
H = m ln(2πe) + ln |Λ| + n ln σ2

e + h2Tr
[
(AΛAT + σ2

eIn)−1
]
. (12)

4.2 Simulations

We design 3 × 3 = 9 cases of experimental environments by considering three
levels of sample size N and noise σ2

e respectively, with n = 9 and m∗ = 3 fixed.
Three levels are 100, 50, 25 for N or 0.1λm∗ , 0.3λm∗ , 0.5λm∗ for σ2

e (equivalently
γo = λm∗/σ2

e = 10, 3.33, 2), where λm∗ is the m∗-th largest Gaussian signal’s
variance. We randomly generate samples according to each setting of FA in
eq.(1) for each of 100 independent repeated runs, in which two-phase procedure
is implemented by setting [mlow, mup] = [1, 6] and randomly initializing Θm.
The selection percentage rates are reported in Table 1. The indicators γ∗

m∗(Cri)
are approximately calculated by eq.(9), and γ∗

m∗(Ha) by Lemma 2.
The simulations suggest the following observations. (1). The performances

of all criteria are comparable when N ,γo are large, but they decline at dif-
ferent speeds as N , γo reduce. (2). For a large N(= 100), BIC and CAIC is
consistent but AIC risks an overestimation. Let Cri be AIC, BIC or CAIC,
and then γ∗

m∗(Cri) grows as N reduces. When γ∗
m∗(Cri) exceeds γo, Cri tends

Table 1. We report the percentage rates of model selection of 9 combinations in three
categories, i.e., underestimation(U),successful selection(S) and overestimation(O). The
indicator γ∗

m(Cri) is calculated at m = m∗ = 3. Note that γ∗
m(Cri) by eq.(9) approxi-

mates γnum
m well, where γnum

m is the numerical solution of ∇mECri(γ) = 0.

(a). Sample size N = 100, γo = λm∗/σ2
e (3 levels)

noise level: γo = 10 γo = 3.33 γo = 2 γ∗
m(Cri) approximated γnum

m is the
Cri \ rates U S O U S O U S O by eq.(9). numerical sol.

AIC 0 99 1 0 96 4 0 97 3 γ∗
3 (AIC) ≈ 1.87 γnum

3 (AIC) = 1.83
BIC 0 100 0 1 99 4 9 91 0 γ∗

3 (BIC) ≈ 2.50 γnum
3 (BIC) = 2.43

CAIC 0 100 0 1 99 4 22 78 0 γ∗
3 (CAIC) ≈ 2.72 γnum

3 (CAIC) = 2.65
DNLL 2 98 0 39 61 0 63 27 0 not available not available
BYY-FA(a) 0 100 0 30 70 0 98 2 0 γ∗

3 (Ha) = 3.59 γ∗
3 (Ha) = 3.59

BYY-FA(b) 0 100 0 1 99 0 1 95 4 not available not available

(b). Sample size N = 50, γo = λm∗/σ2
e (3 levels)

(same as (a)) U S O U S O U S O γ∗
m(Cri) by eq.(9) γnum

3 (Cri)

AIC 0 98 2 0 99 1 18 79 3 γ∗
3 (AIC) ≈ 2.36 γnum

3 (AIC) = 2.30
BIC 0 100 0 6 94 2 76 24 0 γ∗

3 (BIC) ≈ 3.18 γnum
3 (BIC) = 3.10

CAIC 0 100 0 20 80 2 91 9 0 γ∗
3 (CAIC) ≈ 3.57 γnum

3 (CAIC) = 3.50
DNLL 5 95 0 49 51 0 86 14 0 not available not available
BYY-FA(a) 0 100 0 35 65 2 96 4 0 γ∗

3 (Ha) = 3.59 γ∗
3 (Ha) = 3.59

BYY-FA(b) 0 100 0 3 97 0 5 84 11 not available not available

(b). Sample size N = 25, γo = λm∗/σ2
e (3 levels)

(same as (a)) U S O U S O U S O γ∗
m(Cri) by eq.(9) γnum

3 (Cri)

AIC 1 92 7 13 85 2 58 40 2 γ∗
3 (AIC) ≈ 3.21 γnum

3 (AIC) = 3.13
BIC 1 99 0 49 51 0 94 6 0 γ∗

3 (BIC) ≈ 4.15 γnum
3 (BIC) = 4.10

CAIC 1 99 0 84 16 0 100 0 0 γ∗
3 (CAIC) ≈ 4.88 γnum

3 (CAIC) = 4.91
DNLL 11 89 0 62 38 0 89 11 0 not available not available
BYY-FA(a) 1 92 7 35 63 2 85 12 3 γ∗

3 (Ha) = 3.59 γ∗
3 (Ha) = 3.59

BYY-FA(b) 0 99 1 6 89 5 21 66 13 not available not available
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to underestimates m, where AIC remains more robust. These agree with The-
orem 1. (3). DNLL fails as N, γo reduce, which agrees with Theorem 2. (4).
BYY-FA(a) tends to underestimate m when γo < γ∗

m∗(Hb), which is worse
than BIC and CAIC for N = 100 but better for N = 25. This coincides with
Theorem 3. (5). BYY-FA(b) becomes evidently superior when N ≤ 50 and
γo ≤ 3.33. For example, it improves by 4.7%, 6.3%, 65% relative to AIC when
(N, γo) = (25, 3.33), (50, 2), (25, 2) respectively.

5 Conclusion

We have provided a preliminary theoretical comparison of several criteria based
on the problem of selecting the hidden dimension of FA in its special case of
PCA. It suffices to study a statistic and a crucial but unknown indicator set
for each criterion. Due to the difficulty in exact evaluation of selection accuracy
for a finite or small sample size N , the model selection behavior is preliminarily
characterized by an order of the approximate underestimation tendencies, i.e.,
AIC≺uBIC≺uCAIC≺uBYY-FA(a) . DNLL requires a proper dispersion of signal
and noise eigenvalues. The simulations agree with the theoretical results and also
indicates that BYY-FA(b) becomes superior as N reduces and noise increases.
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