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ABSTRACT

Energy efficiency is a key design concern in contemporary pro-
cessor and system design, in the embedded domain as well as in
the enterprise domain. The focus on energy efficiency has led to
a number of power benchmarking methods recently. For example,
EEMBC released EnergyBench and SPEC released SPECpower to
quantify a system’s energy efficiency; also academics have pro-
posed power benchmarks, such as JouleSort. A major limitation
for each of these proposals is that they are tied to a specific bench-
mark, and hence, they provide limited insight with respect to why
one system may be more energy-efficient than another.

This paper proposes SWEEP, Synthetic Workloads for Energy
Efficiency and Performance evaluation, a framework for generating
synthetic workloads with specific behavioral characteristics. We
employ SWEEP to generate a wide range of synthetic workloads
while varying the instruction mix, ILP, memory access patterns,
and I/O-intensiveness; and we use SWEEP to evaluate the energy
efficiency of commercial computer systems across the workload
space and learn about how the energy efficiency of a computer sys-
tem is tied to its workload’s characteristics.

This paper also presents the Energy-Delay Diagram (EDD), a
novel method for visualizing energy efficiency. The EDD clearly
illustrates the energy versus performance trade-off, and provides
more intuitive insight than the traditionally used EDP and ED*P
metrics.

Categories and Subject Descriptors

C.0 [Computer Systems Organization]: Modeling of computer
architecture; C.4 [Computer Systems Organization]: Performance
of Systems—~Modeling Techniques
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Performance, Measurement, Experimentation
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1. INTRODUCTION

Energy efficiency has emerged as a primary design concern across
the entire compute range, from low-end embedded systems to high-
end servers and datacenters. Embedded systems are typically battery-
operated and higher energy efficiency translates into greater user
satisfaction through extended battery autonomy. Improving energy
efficiency in servers and datacenters reduces the operational cost by
reducing the electricity bill for powering the servers as well as for
cooling them down. Moreover, there is an environmental concern
as well. Improving the energy efficiency of computer systems is
key to reduce carbon dioxide emissions by the IT industry.

Architects are well aware of the need for energy-efficient com-
puter systems, and therefore, people have proposed benchmarks
and benchmarking methodologies for evaluating energy efficiency,
which should ultimately lead to more energy-efficient designs. The
Embedded Microprocessor Benchmarking Consortium (EEMBC)
released EnergyBench which provides data on the amount of en-
ergy a processor consumes while running a performance bench-
mark [6]. Recently, SPEC, the Standard Performance Evaluation
Corporation, launched SPECpower_ssj2008, a benchmark for eval-
uating the power and performance characteristics of computer ser-
vers [12]. Rivoire et al. [16] propose JouleSort, a sort benchmark
aimed at evaluating the energy efficiency of a wide range of com-
puter systems from servers to embedded systems.

Although these approaches offer valuable insight in the energy
efficiency of a computer system, they have limited flexibility. The
benchmarks are rigid and cannot be altered to reflect different work-
load behaviors. In particular, EEMBC’s EnergyBench is tied to the
EEMBC performance benchmarks; the SPEC power benchmark is
a Java server workload that generates and completes a mix of trans-
actions; JouleSort implements a sort algorithm. These benchmarks
are unable to explore the energy efficiency of computer systems
across the workload space. In other words, the numbers produced
by these approaches may be limited in scope — they are tied to
these specific workloads — and it is hard to generalize towards
other types of workloads, i.e., a computer system that is energy-
efficient for the power benchmark does not necessarily imply that
it is energy-efficient for other workloads.

This paper proposes SWEEP (Synthetic Workloads for Energy
Efficiency and Performance evaluation), a framework for gener-
ating synthetic workloads with specific workload characteristics.
SWEEP can generate compute-intensive workloads, memory-inten-
sive workloads, I/0O-intensive workloads, and any mix thereof. In
particular, SWEEP enables its users to configure the workload’s
characteristics by setting the ratio of integer versus floating-point
instructions, the inter-instruction dependencies, memory access pat-
terns, disk I/O access patterns, etc. SWEEP provides a unique op-



portunity to its users: it allows for exploring the energy efficiency
and performance of computer systems by ‘sweeping’ across the
workload space. Using SWEEP we generate a range of synthetic
workloads with very different characteristics and run these work-
loads on two real hardware systems, a low-end system (Intel Atom)
as well as a high-end system (AMD Quad-Core Opteron), and eval-
uate their energy efficiency across different workload behaviors. A
preliminary validation using the PARSEC benchmarks and a num-
ber of I/O-intensive applications reveals that SWEEP can generate
workloads that exhibit a similar performance-energy trade-off as
real applications.
We make the following contributions in this paper:

e We propose using synthetic workloads for evaluating the en-
ergy efficiency of computer systems. In contrast to current
power benchmarking practice which uses specific benchmarks,
this paper proposes a framework, called SWEEP, for gener-
ating synthetic workloads with workload characteristics of
interest. SWEEP can generate synthetic benchmarks that are
compute-intensive, memory-intensive, I/O-intensive, or any
mix thereof. By varying the workload characteristics, the
SWEEP end user can sweep across the workload space and
gain insight in how energy efficiency and performance of a
computer system relates to workload characteristics.

e We propose the Energy-Delay Diagram (EDD), a novel visu-
alization method to summarize a computer system’s energy
consumption and performance relative to a reference ma-
chine. EDD clearly illustrates the trade-off in performance
versus energy, and provides more insight than the traditional
energy-delay-product (EDP) and energy-delay-square-product
(ED?P) metrics.

e Using a wide range of synthetic workloads with very differ-
ent characteristics, we evaluate the energy efficiency of two
real hardware systems, a low-end Intel Atom based machine
and a high-end AMD Quad-Core Opteron system. We con-
clude that for I/O-intensive workloads the low-end machine
tends to be more energy-efficient, i.e., it consumes much less
energy while achieving similar performance; however, the
opposite is true for compute-intensive workloads for which
the high-end machine tends to be more energy-efficient: per-
formance is much better and it consumes less or similar total
energy. For memory-intensive workloads, there is a trade-off
between both.

This paper is organized as follows. We first revisit prior work in
Section 2. Section 3 presents the SWEEP framework and discusses
how we generate a synthetic workload from an abstract workload
model. Section 4 proposes the Energy-Delay Diagram for evaluat-
ing a computer system’s energy efficiency. After detailing our ex-
perimental setup (Section 5), we then use the SWEEP framework to
evaluate the energy efficiency of two real hardware platforms using
EDDs in Section 6. We compare the energy efficiency characteris-
tics of real-life applications and benchmarks against the synthetic
workloads and we conclude that the synthetic workloads exhibit a
performance versus energy trade-off that resembles the real work-
loads (Section 7). Finally, we conclude in Section 8.

2. PRIOR WORK

2.1 Power benchmarks

Given the growing importance of energy efficiency, interest has
grown in power benchmarking methods. In the embedded domain

for example, EEMBC has released EnergyBench [6], a method for
reporting processor energy consumption when running embedded
performance benchmarks.

For the server enterprise domain, SPEC recently released SPEC-
power_ssj2008 [12] which is a system-level, server-side Java work-
load that quantifies energy efficiency under varying loads. SPEC-
power generates and completes a mix of transactions and the re-
ported throughput is the number of transactions completed per sec-
ond over a fixed period of time; the workload considers 11 levels
of load. Energy efficiency is quantified as the average number of
transactions completed per unit of time per Watt.

Rivoire et al. [16] present JouleSort, a sort benchmark that reads
its input from a file and writes its output to a file on a non-volatile
device. There are three scale categories with 10GB, 100GB and
1TB records, and the benchmark aims at covering multiple do-
mains, from embedded, to mobile, as well as to the server domain.
The energy efficiency metric is the total energy consumed by the
sort benchmark.

SWEERP is very different in its approach. SWEEP generates syn-
thetic workloads with tunable workload characteristics, which al-
lows for understanding the relationship between energy efficiency
of a computer system with respect to workload behavior. The prior
power benchmarking proposals are tied to specific benchmarks;
SWEEDP on the other hand, can generate a range of workload be-
haviors. Our results, which will be presented later in this paper,
in fact indicate that whether one machine is more energy-efficient
compared to another machine is closely tied to its workload: for
one workload, system A may be more energy-efficient, whereas for
another workload, system B may be more energy-efficient. SWEEP
can also be used across multiple domains, from embedded to enter-
prise.

2.2 Synthetic benchmarks

Synthetic benchmarks such as Whetstone [4] and Dhrystone [18]
are manually crafted benchmarks that aimed at representing real
workloads. Manually building benchmarks though is both tedious
and time-consuming. Whetstone and Dhrystone have become less
relevant as they no longer represent current workloads.

Statistical simulation [5] collects program characteristics from
a program execution and subsequently generates a synthetic trace
from it which is then simulated on a simple, statistical trace-driven
processor simulator. The important advantage of statistical simula-
tion is that the dynamic instruction count of a synthetic trace is sev-
eral orders of magnitude smaller than for today’s industry-standard
benchmarks, making it a useful simulation speedup technique for
quickly identifying a region of interest in a large design space dur-
ing the processor design cycle.

Recent work proposed automated synthetic benchmark genera-
tion [1, 8, 10] which builds on the statistical simulation approach
but generates a synthetic benchmark rather than a synthetic trace,
which allows for running the synthetic workload on an execution-
driven simulator as well as on real hardware. Joshi et al. [11]
take the idea of synthetic benchmark generation one step further
and leverage the synthetic workload generation approach to gen-
erate stressmarks or power viruses. They use a genetic algorithm
to search the workload space to identify those workload charac-
teristics that maximize average power consumption, peak power
consumption, temperature, dl/dt, etc.

This work in statistical simulation and synthetic workload gen-
eration has traditionally focused on CPU-intensive workloads, and
does not include memory-intensive and/or I/O-intensive behavior.
SWEEP on the other hand allows for generating synthetic 1/O-
intensive and memory-intensive workloads.
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Figure 1: High-level view on the SWEEP framework.

Synthetic benchmarks have been developed to evaluate specific
aspects of a computer system. For example, the STREAM bench-
mark seeks at quantifying a computer system’s sustainable mem-
ory bandwidth using simple vector kernels [13]. IOzone [15] is
a filesystem benchmark and generates a variety of file operations.
Vasudevan et al. [17] use a set of microbenchmarks to evaluate the
energy-efficiency of FAWN (Fast Array of Wimpy Nodes) com-
puting clusters. Gamut, formerly called sstress [14], interleaves
the execution of a compute-intensive loop with periods of idle-
ness to match a target CPU utilization, and it also offers possibili-
ties for generating memory-intensive and disk-intensive workloads.
SWEEP can generate more diverse workload behaviors in a more
flexible way than these specific synthetic (micro)benchmarks.

2.3 Energy efficiency metrics

Metrics are at the foundation of experimental research and devel-
opment. Adequate metrics are absolutely crucial to steer research
and development in the right direction. There exist a number of
metrics for quantifying a computer system’s energy efficiency. Two
commonly used energy efficiency metrics are energy-delay product
(EDP) and energy-delay-square product (ED*P) [3, 7]. A major
limitation of these metrics is that they combine energy consump-
tion and performance in a single metric, which complicates under-
standing because in many cases there is a trade-off in performance
versus energy, and these metrics may not always capture this trade-
off in a comprehensive way, as we will discuss later in more detail.
We instead propose EDD, the energy-delay diagram, which visual-
izes energy consumption versus performance in an insightful way.

Rivoire et al. [16] use total energy consumption as their energy
efficiency metric. The winner is the system with the minimum to-
tal energy use. While this may be adequate for some workloads,
e.g., batch-style background and throughput processes, it is not for
performance-critical and latency-sensitive applications such as in-
teractive applications, real-time applications, commercial applica-
tions (e.g., web servers, OLTP), etc. Energy usage by itself may
be misleading as an energy-efficiency metric because it does not
account for the energy versus performance trade-off. For exam-
ple, a system that consumes marginally less energy than another
system while yielding substantially less good performance is still
considered the winner. The EDD instead captures the energy ver-
sus performance trade-off.

3. SWEEP

3.1 High-level overview

Figure 1 presents a high-level overview of the SWEEP frame-
work. The end user specifies a set of desired workload characteris-
tics in the abstract workload model from which the SWEEP frame-
work then generates a synthetic workload. The abstract workload
is specified in XML format which allows for easily configuring the

synthetic workload. SWEEP’s output is the synthetic workload, a
C program, which is subsequently compiled and run on a simulator
or on real hardware.

The concept of the SWEEP framework is such that the workload
generator considers a number of building blocks, with each build-
ing block representing a different type of behavior. In particular,
there is a building block to represent a linear sequence of code (a
basic block), a loop, a thread, an access sequence to a data struc-
ture in memory, an access sequence to a data structure stored on
disk. These building blocks can be configured at will in terms of
their length, their characteristics (e.g., instruction mix, amount of
ILP), memory reference locality, etc. For example, the basic block
building block specifies the number of instructions, their types and
inter-instruction dependencies; the loop building block specifies
how many times the loop needs to be iterated; an access sequence
to memory specifies the data structure that is to be traversed (array,
linked list, tree) and how it is to be traversed.

The SWEEP framework is modular in the sense that it allows for
combining these building blocks at will. This allows for building
a synthetic workload of interest. For example, one could build a
multi-threaded synthetic workload with extensive locking in order
to evaluate a particular synchronization primitive. Or, one could
build a workload with extensive I/O operations in order to evaluate
a system’s I/O performance. In this work, we will use the frame-
work to synthesize workloads that are compute-intensive, memory-
intensive or I/O-intensive for evaluating a computer system’s en-
ergy efficiency across these three major classes of workload behav-
iors.

3.2 The SWEEP building blocks

There are five building block types in total, which we briefly
discuss now.

3.2.1 Basic block

The ‘basic block’ building block represents a linear sequence of
instructions and is an atomic unit of work. The basic block can be
configured through a number of parameters, such as the number of
instructions in the basic block, their types (integer or floating-point)
and their inter-instruction dependencies. The latter determines the
amount of instruction-level parallelism (ILP) in the program. The
inter-instruction dependency distance is defined as the number of
dynamically executed instructions between writing a data value and
reading it. Hence, a large inter-instruction dependency distance
implies high ILP, and a small dependency distance implies low ILP.

An additional parameter specifies the probability for the basic
block to be executed. This is useful for generating conditional con-
trol flow in the synthetic workload (e.g., if-then-else statement).

3.2.2 Loop

The ‘loop’ building block specifies that the enclosed building
blocks need to be iterated a number of times. The number of itera-
tions is to be set by the SWEEP end user. The loop building block
can include other loop building blocks which allows for building
nested loops of any depth. Also, it can include basic blocks that
the loop will iterate on, and if the basic blocks have conditional
execution probabilities associated with it, then the generator will
generate conditional control flow within the loop (e.g., if-then-else
statements with a hard-to-predict branch within the loop).

3.2.3 Memory

The ‘memory’ building block specifies a memory-intensive pro-
gram sequence. The main attribute specifies the data structure and
its size that is to be accessed; there are three options: an array, a



linked list and a binary tree. Also, there are a number of possible
access patterns. For the array, one can have a sequential, strided or
random access pattern; for the linked list, the only access pattern
is to sequentially traverse the linked list; for the tree data structure,
the end user has the ability to select a breadth-first or depth-first
access pattern. These access patterns can be either reads or writes,
and are initiated within a loop.

3.2.4  Multi-threading

There are three building blocks related to multi-threaded exe-
cution. (1) The ‘thread’ building block initiates a thread in the
synthetic workload. An attribute of the thread building block is
whether the data structures accessed within the enclosed memory
building blocks are private (access by the given thread only) or
global (accessed by all threads). (2) The ‘thread group’ building
block can be used inside the loop building block and allows for
initiating parallel work done by threads that join (barrier synchro-
nization) before proceeding to the next iteration. (3) The ‘mutex’
building block specifies that the enclosed building blocks are part
of a critical section and thus need synchronization using locks.

3.2.5 Input/Output

Finally, the ‘I/O’ building block initiates reads and writes to a
file stored on disk. There are three attributes: (1) the size of the
file, (2) the access pattern (sequential, strided or random), and (3)
whether the file is to be read or written. In order to fully stress the
disk, there is an option to eliminate the buffering by the operating
system and disk.

4. ENERGY-DELAY DIAGRAM

As mentioned in the introduction, we use the SWEEP frame-
work to generate different flavors of workload behaviors in order to
evaluate a computer system’s energy efficiency. Now, quantifying
energy efficiency is by itself a non-trivial issue. Traditionally, two
metrics are being used for evaluating a computer system’s energy
efficiency, namely energy-delay product (EDP) and energy-delay-
square product (ED?P). EDP is defined as the total energy con-
sumed to execute a unit of work multiplied by the execution time;
ED?P is defined as energy multiplied by the square of the execu-
tion time — hence, ED?P puts more emphasis on performance than
EDP. EDP and ED?P are appealing because they quantify energy
efficiency by a single number. However, evaluating a computer
system’s energy efficiency by a single metric may be misleading or
at least it may complicate understanding the energy versus perfor-
mance trade-off.

The Energy-Delay Diagram (EDD) visualizes the energy versus
performance trade-off in an intuitive way, see Figure 2. The vertical
axis shows the logarithm of the ratio of the energy consumption on
the target machine relative to the reference machine:

Energyiarget
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The horizontal axis shows the logarithm of the ratio of the execu-
tion time on the target machine relative to the reference machine:
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The origin of the EDD represents the reference machine. The first
quadrant (I) represents cases in which the reference machine is
more energy-efficient than the target machine, i.e., the reference
machine consumes less energy and execution time is shorter. The
third quadrant (II) represents the opposite situation: the target
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Figure 2: Energy-Delay Diagram.

machine is more energy-efficient than the reference machine, i.e.,
the target machine consumes less energy and yields better perfor-
mance. The second (II) and fourth (IV) quadrants represent trade-
offs. For example, in quadrant II, the reference machine yields
better performance at the cost of consuming more energy; in quad-
rant IV, we have the dual situation: the target machine yields bet-
ter performance at the cost of consuming more energy. An im-
portant feature of the EDD is that, because it uses the logarithm
of the energy and performance ratios, the EDP and ED?P met-
rics can be visualized as straight lines in the EDD. The EDP line,
which denotes points where the target and the reference machines
are equally energy-efficient according to the EDP metric, is shown
as the anti-bisector in Figure 2; the ED?P line is shown as well.

The EDD visualizes the energy efficiency trade-off in an intuitive
way. For example, a target system that is equally energy-efficient as
the reference machine according to the EDP metric will appear on
the anti-bisector. If the target system appears in quadrant II (on the
EDP line), this means that the target system consumes less energy
at the cost of a proportional loss in performance; if it appears in
quadrant IV, this means that the target system consumes more en-
ergy at the benefit of a proportional performance gain. As another
example, a target system appearing above the EDP line in quadrant
II, implies that the reference system is more energy-efficient than
the target system according to the EDP metric; however, the EDD
shows that there is a trade-off: the reference system consumes less
energy, but this comes at a performance hit (however, the perfor-
mance hit is relatively small compared to the reduction in energy).
In other words, the EDD clearly illustrates the trade-off in energy
consumption versus performance.

Use case #1:
Comparing machines for a fixed workload.

One possible use case for EDDs is to visualize the energy and
performance trade-off of computer systems. For example, plotting
different machines in the EDD enables a quick and intuitive com-
petitor analysis in terms of the energy efficiency of computer sys-
tems for a given benchmark or a set of benchmarks. Figure 3 shows
an illustrative EDD with four machines, A (the reference machine),
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Figure 3: Comparing machines’ energy efficiency using the
EDD.

B, C and D. Machine B achieves the same EDP as machine A as
they lie on the anti-bisector EDP line. Also, C and D achieve the
same EDP as they lie on a straight line parallel with the EDP line.
This is a key feature of the EDD: design points that achieve the
same EDP lie on a straight line parallel with the EDP line — this is
a result of representing the logarithm of energy and execution time
on the vertical and horizontal axes.

In this same example, machine C is less energy-efficient than
both A and B: energy consumption is higher and performance is
lower. Machine D on the other hand represents a trade-off relative
to A: D consumes less energy than A at the cost of delivering worse
performance.

Use case #2:
Comparing machines across workloads.

Another use case, which we will explore further in this paper,
is to consider two computer systems (a reference and a target ma-
chine) and a range of workloads, and then provide data points for
each of the workloads in the EDD. This enables exploring whether
the energy efficiency of one system compared to another is sub-
ject to the workload. And given the SWEEP framework, this will
enable us to explore how energy efficiency of a computer system
relates to workload characteristics.

S. EXPERIMENTAL SETUP

Figure 4 illustrates our runtime power monitoring setup. The
probe (Tektronix TCP 202) of an oscilloscope (Tektronix TDS 7104)
is connected to the power cord of the System Under Test (SUT).
The probe measures the current flowing through the power cord
which enables measuring the total power consumed by the SUT.
The oscilloscope is connected to a logging machine, which allows
for post-processing the experiment data. This setup is similar to the
one used by others [9].

We consider two SUTs in our experiments, a low-end Intel Atom
machine and a high-end AMD Quad-Core Opteron server, see Ta-
ble 1. The Intel Atom processor is a dual-core processor. Each core
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Figure 4: Runtime power monitoring setup.

is an in-order SMT core with two thread contexts. The cache hi-
erarchy is private to each core. The AMD Opteron is a quad-core
processor. Each core is a superscalar out-of-order core (without
SMT). The L1 and L2 caches are private and the L3 cache is shared
among the cores. Both machines have a comparable 7200 rpm hard
disk. The Thermal Design Power (TDP) is very different: the TDP
for the Intel Atom is rated to be 8 Watt whereas the TDP for the
AMD Opteron is rated to be 95 Watt.

6. REAL SYSTEM EVALUATION

We now exploit the unique property offered by SWEEP to ‘sweep’
the workload space and gain insight in how the energy efficiency of
a computer system is affected by the characteristics of its work-
load. We systematically vary workload characteristics in the ab-
stract workload, generate synthetic workloads, and run these syn-
thetics on both of our SUTSs. In the EDDs to follow, we consider the
high-end AMD Opteron server as the reference machine. We orga-
nize the discussion along three major flavors of workload types:
CPU-intensive, memory-intensive and I/O-intensive workloads.

6.1 CPU-intensive workloads

The first synthetic workload that we generate is a compute-inten-
sive workload. It involves a limited number of memory accesses
(and all memory accesses are cache hits), and performs no disk
I/0. The workload consists of floating-point operations and the
workload characteristic that we vary here is the inter-instruction
dependency distance. An inter-instruction dependency distance of
one means that an instruction is dependent on the instruction be-
fore it in the dynamic instruction stream. In other words, the syn-
thetic workload involves a long chain of dependent instructions,
and hence, there is no ILP. Increasing the inter-instruction depen-
dency distance increases the opportunities for exploiting ILP and
hence, performance improves.

Figure 5 shows the EDD for the CPU-intensive workloads for a
varying inter-instruction dependency distance (see the legend). A



Low-end Intel Atom machine

CPU 1.6GHz Intel Atom 330, two cores, two SMT threads per core
56KB private L1, 512KB private L2

TDP: 8 Watt
Memory DDR2-800, 2GB
Disk WD Scorpio Blue 7200 rpm

Power supply | Antec Trio 550 (85% efficiency)

High-end AMD Quad-Core Opteron

CPU 2GHz Quad-core AMD Opteron 2350 Barcelona
128KB private L1, 512KB private L2, 2MB shared L3

TDP: 95 Watt
Memory DDR2-667, 4GB
Disk Samsung SATA 7200 rpm

Power supply | Antec EA 380D Green (80% efficiency)

Table 1: The Systems Under Test considered in this paper: a low-end and a high-end machine.
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Figure 5: EDD for a CPU-intensive workload with varying
inter-instruction dependency distance (see legend).

workload with no or limited ILP (i.e., a short inter-instruction de-
pendency distance of 1 or 2) is more energy-efficiently run on the
low-end machine than on the high-end machine, according to both
the EDP and ED?P metrics: the points corresponding to an inter-
instruction dependency distance of 1 and 2 lie under the EDP and
ED?P lines. At higher degrees of ILP, the high-end server is more
energy-efficient: the points lie above the EDP and ED?P lines. And
for high degrees of ILP (inter-instruction dependency distance of
7 and higher), the high-end machine clearly is the most energy-
efficient machine: it consumes less total energy and execution time
is shorter. This result can be explained by the fact that the high-end
machine is a superscalar out-of-order processor which can better
exploit the available ILP than the low-end in-order processor can.
Clearly, for the high-end processor and workloads with high lev-
els of ILP, the shorter execution time outweighs the higher power
consumption of the processor, which ultimately leads to an overall
reduction in the total amount of energy consumed. The interest-
ing observation is that compute-intensive, high-ILP workloads are
more energy-efficiently run on high-end processors, i.e., high-end
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Figure 6: EDD for memory-intensive, multi-threaded work-
loads.

processors yield better performance at lower total energy use.

6.2 Memory-intensive workloads

Our next experiment considers memory-intensive multi-threaded
workloads. These workloads access a 150MB binary tree, and each
thread accesses a private tree. All threads perform a breadth-first
tree search and read all the values along the tree (over 85% of the
instructions are loads). The IPC (for a single thread) on the high-
end AMD Opteron processor is fairly low, namely 0.24. The reason
is twofold: relatively high cache miss rates in the L2 and L3 caches,
and low branch prediction accuracy. Figure 6 shows that both ma-
chines are comparable in terms of their energy-efficiency accord-
ing to the EDP metric (for one thread and two threads). For four
threads, the high-end quad-core processor is more energy-efficient
compared to the low-end dual-core (two-way SMT per core) pro-
cessor. The reason is the more aggressive memory hierarchy of
the high-end processor (more on-chip cache space and more mem-
ory bandwidth) along with the fact that each thread on the high-end
machine runs on a private core. On the other hand, the low-end ma-
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Figure 7: EDD for I/0O-intensive workloads.

chine’s memory hierarchy is less aggressive, and two SMT threads
per core share many of the resources. The memory system per-
formance advantage of the high-end processor outweighs the ad-
ditional energy consumed by the additional cores. The important
observation here is that there is a trade-off in energy versus per-
formance for memory-intensive workloads: the high-end processor
yields better performance at the cost of consuming more energy;
the low-end processor on the other hand consumes less total energy
but performance is worse.

6.3 1/O-intensive workloads

For I/O-intensive workloads that read randomly or sequentially
through a 12GB file, the low-end processor tends to be more energy-
efficient than the high-end processor according to both the EDP
and ED?P metrics, see Figure 7. The low-end processor yields
slightly less performance than the high-end processor, however, it
consumes much less energy. The reason is that the processor is
waiting for the disk to return while it is consuming power, and
since the high-end processor is consuming more power than the
low-end processor, the end result is that the low-end processor is
more energy-efficient for this type of workloads. This also explains
why the low-end processor is relatively more energy-efficient for
the random read access pattern than for the sequential read pattern,
i.e., the random access patterns introduces even more wait time for
the processor than the sequential access pattern does.

7. REAL-LIFE APPLICATIONS

So far, we have considered synthetic workloads only. We now
consider real applications (both benchmarks and GNU programs)
and we evaluate whether the real applications lie in a region that is
comparable to the region covered by the synthetics. In other words,
we want to do some preliminary validation to gain confidence with
respect to whether the synthetic workloads generate a performance
versus energy trade-off that somehow relates to real application be-
havior. It is not our intent to validate that SWEEP can generate syn-
thetic workloads that can serve as proxies for real-life applications,
rather we want to evaluate whether the conclusions we obtained in
the previous section using synthetics hold true when considering
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Figure 8: The EDD considering some of the PARSEC bench-
marks.

real applications.

Our first set of applications is taken from the multi-threaded
PARSEC benchmark suite [2]. We consider four benchmarks, fre-
gmine, raytrace, swaptions and streamcluster, see Figure 8;
each benchmark runs four threads. The high-end machine is clearly
more energy-efficient than the low-end machine for these bench-
marks. Especially for streamcluster, the high-end machine yields
better performance and consumes less energy; for swaptions, the
high-end machine yields better performance at the same energy as
the low-end machine. For the other benchmarks, freqmine and
raytrace, there is a trade-off, however, the high-end machine is
more energy-efficient according to both the EDP and ED*P met-
rics. This result suggests that the PARSEC benchmarks are primar-
ily CPU-intensive, exhibit substantial ILP and have limited mem-
ory requirements.

Our second set of applications comprises well-known GNU tools,
namely tar and gzip. The tar tool creates an archive and is I/O-
intensive: it reads a number of files and writes them in an archive,
the tarfile. The second tool combines tar with gzip: it tars a number
of files and then compresses it in a gzipped tarfile. We consider two
compression levels here: 1 and 5 (5 means higher compression than
1). Figure 9 shows the EDD for the tar and gzip applications. In-
terestingly, the low-end machine is more energy-efficient for the tar
workload, whereas the high-end machine is more energy-efficient
for the tar+gzip workload. The reason for this difference is that the
tar workload involves I/O operations almost exclusively, whereas
the tar+gzip workload also involves substantial CPU-intensive op-
erations during compression. This is further explained by the ob-
servation that the high-end machine is even more energy-efficient
for gzip’s CPU-intensive compression level 5 than for compression
level 1.

8. CONCLUSION

This paper proposed SWEEP, a framework for generating syn-
thetic workloads with specific behavioral characteristics. SWEEP
can generate compute-intensive, memory-intensive and I/O-intensive
workloads, and any mix thereof. SWEEP enables novel capabili-
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Figure 9: The EDD considering the tar and gzip Linux tools.

ties to study a computer system'’s energy efficiency. Whereas prior
work in power benchmarking is tied to specific benchmarks, such
as EnergyBench, SPECpower and JouleSort, SWEEP enables sweep-
ing the workload space and study how energy efficiency is tied to
the workload characteristics. We conclude that whether one ma-
chine is more energy-efficient than another machine is very much
workload dependent. SWEEDP is a useful tool to explore these trade-
offs.

This paper also presented the Energy-Delay Diagram (EDD), a
novel way of visualizing a machine’s energy efficiency relative to
a reference machine. The EDD represents the trade-off in perfor-
mance versus energy in a more intuitive way than the traditionally
used EDP and ED?P metrics do.

We believe this paper points towards an interesting avenue of fu-
ture work. The observation that some workloads are more energy-
efficiently run on one machine whereas other workloads are more
energy-efficiently run on another machine, suggests that heteroge-
neous datacenters may be an energy-efficient solution. In a het-
erogeneous datacenter, workloads would be steered dynamically
towards the most energy-efficient server. Given the trend towards
cloud computing which suggests many different workloads running
in consolidated environments, there may be opportunities for ex-
ploiting workload diversity in the datacenter for improving overall
energy efficiency and decreasing (operational) cost.
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