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a b s t r a c t

Portable libraries of highly-optimized hardware cores can significantly reduce the develop-
ment time of reconfigurable computing applications. This paper presents the tradeoffs and
challenges in the design of such libraries. A set of library development guidelines is pro-
vided, which has been validated with the RCLib case study. RCLib is a set of portable
libraries with over 100 cores, targeting a wide range of applications. RCLib portability
has been verified in three major High-Performance reconfigurable computing architec-
tures: SRC6, Cray XD1 and SGI RC100. Compared to full-software implementations,
applications using RCLib hardware acceleration cores show speedups ranging from one
to four orders of magnitude.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

When reconfigurable computers first appeared in the late 1980s [1], they were basically FPGA coprocessing boards con-
nected to a conventional computer. The logic resources of the FPGA were used to create coprocessors that accelerated a given
application, obtaining significant speedups by exploiting hardware fine-grain parallelism. However, these machines implied
a dedicated design of coprocessors. The application was analyzed in order to find the sections of the code that performed
poorly on the processor. Those sections, especially the ones that showed a high degree of parallelism, were ported to the
FPGA. As a result, each application required a custom hardware design. Due to the customization process, these machines
were also known as custom computers [2].

The concept of High-Performance Reconfigurable Computer (HPRC) appeared in the early 2000s, when the idea of recon-
figurable computing was first applied to High-Performance Parallel Computing (HPC) systems [3]. HPRCs are parallel
computing machines that have multiple processors and multiple FPGAs, so they combine fine-grain hardware parallelism
with system-level HPC parallelism. The benefits that reconfigurable computing provides in terms of hardware acceleration
are amplified with the scalability offered by HPC systems. In fact, speedups reaching three or four orders of magnitude have
been reported, as well as one order of magnitude power consumption reductions and improvements in both cost and area
[4,5]. However, the design methodology for HPRCs still resembles their custom computing origins. For each application, a
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dedicated hardware accelerator has to be designed and implemented. The scalability achieved at the system level is not re-
flected at the tool level, and the execution speedups achievable with HPRCs might easily be eclipsed by long development
cycles. Moreover, this methodology does not take advantage of the significant amount of overlap among different applica-
tions in a field. For example, many image processing applications use the same kernels, and many public-key cryptography
algorithms use the same modular operations. This lack of efficient design reuse strategies causes a significant part of the
development time to be wasted in implementing hardware similar to that of previous projects.

This paper proposes the use of portable libraries of highly-optimized hardware cores to address these issues. The ben-
efits of optimized portable libraries have been demonstrated at the software level by the many proprietary and open
source packages available to the HPC community. This work is aimed at expanding this idea to the HPRC arena, that is,
to the hardware level. The goal is to provide the end-user with a collection of acceleration cores that can be used among
different HPRC machines. These portable libraries allow end-users to develop applications by simply instantiating hard-
ware cores, significantly reducing development time and the requirements for hardware design skills. In order to be effi-
cient, the contents of the library have to be chosen in such a way that the available cores can apply to many different
algorithms in a given application field or fields. In addition, cores should be highly optimized in order to obtain the max-
imum possible performance.

This paper is based on the experience gained in the Reconfigurable Computing Library (RCLib) project, developed by The
George Washington University (GWU) and academic partners such as George Mason University (GMU) and University of
South Carolina (SC). To the best of our knowledge, this is the first set of libraries that provide a comprehensive collection
of optimized hardware cores that can be ported among different HPRC systems (SRC, Cray, SGI). Although other open source
hardware repositories exist, such as Opencores [6], they are neither geared towards HPRC systems, nor do they provide a
systematic approach to portability. Throughout the development cycle of RCLib, different tradeoffs and challenges in the de-
sign of such libraries were identified. Additionally, a library development guideline was created to assist developers through-
out the process. This guideline addresses key concerns such as performance vs. portability, code reuse vs. application specific
needs, collaboration between multiple sites, generic vs. architecture specific library distribution, licensing issues.

This paper is broken into 7 sections. Section 2 introduces the related work in this field. Section 3 provides a brief intro-
duction about HPRC and how to develop hardware acceleration cores for these systems. Section 4 discusses the tradeoffs and
challenges in the design of portable libraries of hardware cores. Section 5 presents the proposed library development guide-
line, and shows how it was applied to the RCLib case study. Section 6 presents usage and performance results of the RCLib
implementation on the SRC6, Cray XD1, and SGI RC100 platforms. Finally, section 7 concludes the paper and presents future
work.

2. Related work

The use of optimized libraries is a common practice in the development of high-performance scientific applications. Li-
braries provide the basic mathematical building blocks necessary to construct these applications, such as linear algebra
packages, matrix operations, transforms, convolutions, etc. HPC vendors provide users with comprehensive libraries such
as SGI/Cray SCSL [7], HP MLIB [8] or IBM ESSL [9]. Most of them are based on classic projects such as BLAS [10] or LAPACK
[11]. Vendor’s libraries are not the only resource available to users, open-source projects such as GNU’s Scientific Library
(GSL) [12] or GNU’s Multiple Precision Library (GMP) [13] also provide good alternatives. The use of optimized libraries still
has a number of open issues, such as productivity and maintenance. In [14],Van De Vanter et al. proposed a HPC software
productivity infrastructure, placing an emphasis on portability. Using Component-Based Software Engineering in HPC scien-
tific applications has also been suggested [15]. Other authors such as Ratiu et al. [16] stress the importance of libraries, focus-
ing on their utility in actual applications rather than trying to create a generalized library.

In the reconfigurable computing domain, the use of pre-built hardware components to address the difficulties of FPGA
design is also a common practice. FPGA vendors provide libraries of highly parameterizable components. For example,
the Xilinx Coregen tool [17] provide cores ranging from low-level functions, such as memories and logic blocks, to complex
communication blocks such as Ethernet controllers and a wide collection of encoders and decoders. Altera provides a similar
solution called IP Base Suite [18], but both focus more on communications and signal processing applications than in scien-
tific ones. An interesting approach to component-based hardware design is the use of graphical tools. One example is System
Generator from Xilinx [19], which uses a set of Coregen parameterizable cores in the context of Matlab’s Simulink tool. A
comparable solution, RCToolbox [20], is provided by DSPLogic. However, all these Simulink-based tools are strongly geared
towards DSP applications. Some reconfigurable computing vendors also provide graphical, component-based tools. Two
good examples of such tools are Viva from Starbridge systems [22] and CoreFire from Annapolis Micro [23].

In summary, the existing libraries of hardware cores provided by either FPGA or RC vendors certainly ease application
development, but they lack two important characteristics. First, portability, as the designs created with the libraries and
tools provided by one vendor cannot be used in a system supplied by another vendor. Moreover, it is not uncommon to
see libraries that are not portable between different architectures of a same vendor. A major application redesign is needed
when the application is ported to a newer system. A second problem is the granularity of the operations provided by the
cores. In most cases, cores offer a basic and limited functionality, making the development of complex scientific applications
difficult.
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Apart from the core libraries and associated tools provided by FPGA and RC vendors, there are a number of open-source
hardware core repositories. One of the most prominent ones is Opencores [6]. However, these repositories work as big ware-
houses where contributors freely download their designs, without having to adhere to any coding or interfacing conventions.
Although the cores usually are vendor-agnostic, portability is jeopardized because of the lack of a common interface. Open-
cores tried to address this problem by defining the Wishbone interface, but this is a bus oriented towards System-on-a-Chip
designs, with limited use in HPRC systems. Unfortunately, standard core interfaces are still lacking in the HPRC arena, but
there are a number of ongoing efforts in the HPRC community geared towards this standardization, most notably OpenFPGA
[24] and The Spirit Consortium [25].

3. Hardware acceleration in HPRC systems

This section provides a brief overview of how hardware acceleration is implemented in HPRC systems. HPRC architectures
are introduced in section 3.1. It is then followed in Section 3.2 by the description of core services, the components provided
by vendors to implement the communication between the core and rest of the system. Finally, the broad spectrum of design
tools available HPRC users of systems is briefly outlined in Section 3.3.

3.1. HPRC Architectures

Fig. 1 shows the two basic types of HPRC systems [29], uniform node/non-uniform system (UNNS)seen on Fig. 1a [5], and
non-uniform node/uniform system (NNUS) on Fig. 1b [5]. In the former, nodes are uniform because they contain only one
type of computing device, but the system is non-uniform because it has two different kinds of nodes, either processors or
FPGAs. This is the approach used for example in the SGI RC100 and SRC6 platforms. Nodes containing just shared memory
are also possible, as in the SRC6 platform. Non-uniform node/uniform system architectures have nodes containing two dif-
ferent computing devices, namely processors and FPGAs (non-uniform nodes) but there is only one type of compute node
(uniform system). This is the approach used in the Cray XD1 platform.

All HPRC systems have two important points in common. First, the communication between the microprocessors and the
FPGAs is performed via high-speed, usually proprietary links. Standard busses such as PCI-X do not provide the bandwidth
and low latency required by HPRC systems. Second, FPGAs have a local memory at their disposal, typically 2 to 6 banks of
high-speed SRAM.

3.2. Core services

HPRC vendors provide users with mechanisms to support core development, commonly known as core services. They
come in the form of pre-built software and hardware components that implement the communication between micropro-
cessor and FPGA (that is, data exchange and synchronization) and provide access to FPGA local memories.

On the hardware side, core services free developers from having to deal with the complex protocols used by the proprie-
tary communication links and local memories. Core services hide all the communication details, providing a simpler inter-
face to the core. As it can be seen in Fig. 2, the implementation of cores in an HPRC system follows a layered approach. The

Fig. 1. Basic HPRC architectures: (a) uniform node/non-uniform system and (b) non-uniform node/uniform system [5].
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first step is to design the core that implements the algorithm that has to be accelerated. This core is instantiated in a wrap-
per, which adapts the core interface to the signals provided by the core services. Finally, the wrapper is connected to the core
services provided by the vendor, which creates the top level that is synthesized and implemented in the FPGA.

On the software side, core services provide an API which offers procedures to download the bitstreams, to manage data
movements between microprocessor and FPGA, and to control hardware execution.

3.3. Development tools

To implement their cores, users can choose among many different languages and design tools. The reason for this
diversity comes from the growing interest to provide easy-to-use alternatives to classic HDLs. Tools such as Carte-C [21],
Impulse-C [26], Mitrion-C [27], and Handel-C [28] offer text-based high level language (HLL) synthesis. The other alternative,
presented earlier in Section 2, are graphical tools based on the instantiation of elements from a library of parameterizable
cores. Some examples of these tools are DSPlogic’s RC Toolbox [20], Xilinx’s SysGen [19], Starbridge Viva [22] and Annapolis
CoreFire [23].

However, none of these higher-level solutions provide performance similar to that of HDLs. Fig. 3, as presented in [30],
summarizes the results of a comprehensive study we undertook at The George Washington University. This figure shows
the tradeoff between ease-of-use and performance. The metrics are normalized, so that 100% efficiency and 0% ease-of-
use corresponds to an optimal HDL design, an 100% ease-of-use and 0% efficiency relates to a plain C implementation.

4. Tradeoffs in the development of hardware libraries

This section is aimed at identifying the design tradeoffs, as well as listing the similarities and differences in the develop-
ment process of hardware and software libraries. In particular, five key issues related to building portable libraries are dis-
cussed. The first issue is domain analysis, required to establish the library scope and contents. The second issue is with
respect to adhering to a standard interface definition. This enables quick porting of cores to new architectures. The third

Fig. 2. Implementation of hardware acceleration cores in a HPRC system.

Fig. 3. Tradeoff between efficiency and ease-of-use for several development tools and languages [30].
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issue addresses code portability. Balance between portability and performance needs to be taken into consideration when
defining guidelines for library core development. The fourth issue is in regards to quality control. Verifying the library at each
step of the development process helps alleviate integration issues, particularly when dealing with a large number of contrib-
utors. And finally the issue of library distribution, licensing, and collaboration is addressed. The management of intellectual
property (IP) and navigation among the complex license agreements are necessary to ensure that the distribution of the li-
brary is done correctly.

4.1. Domain analysis

Hardware libraries can take advantage of the domain analysis techniques used in software engineering for specifying li-
brary components [31]. Finding common elements in a given domain can be very valuable for identifying the cores that a
hardware library should contain. There are two important issues that have to be taken into account. First, not all algorithms
are suitable for hardware implementation. Prohibitive resource requirements or poor speedup can negate the benefits of
hardware. Once the library scope and the target applications are specified, the developers should identify the performance
bottlenecks and analyze how they can be improved with hardware acceleration. The existing literature in reconfigurable
computing can provide valuable guidelines to ease this process.

Another important difference between hardware and software comes when considering the tradeoff between generality
and application-specific functionality. This tradeoff will determine the granularity of the cores. Breaking down the func-
tionality into finer and more generic units allows for more re-use. However, the performance of an application-specific
implementation is expected to be better than the one constructed out of generic blocks. Moreover, it might be difficult
for the end-user to build a real application out of small and generic cores.

4.2. Standard interfaces

The use of standard interfaces is key [32] to ensuring portability. This is easy to achieve in other domains where standard
busses exist, such as the CoreConnect, AMBA or Wishbone standards used for SoC connectivity. However, in the HPRC field
there are no standard interfaces. Since the interfaces are unique for each vendor, the end user is responsible for creating the
necessary wrappers to communicate with the library cores for each platform. These wrappers implement the interface to the
vendor core services used for sending/collecting data to/from the core, see Section 3.2. Here there is a tradeoff between por-
tability and end-user design effort. In order to ensure portability, architecture-specific details should not be defined inside
the core, but instead should be specified in the core wrapper by the end-user.

As long as standard interfaces are not available, the library designer will have to specify a common interface to be used by
all cores. As it was mentioned in Section 2, this is an active topic being addressed by groups such as OpenFPGA [24] and the
Spirit Consortium [25]. Two basic requirements for interfaces have been identified in this work, namely simplicity and mod-
ularity. Simplicity facilitates the design of the core wrappers. Modularity, as previously mentioned, is important since only
the basic building blocks are implemented and not complete algorithms. Depending on the resources available and the per-
formance required, several blocks may have to be cascaded in order to implement part of or the full algorithm.

To simplify the interface definition it is necessary to identify the minimum requirements of the core interface. First, cores
should be synchronous, so a clock and reset signal will always be present. Second, the developer should use a dataflow mod-
el, where a core has several data inputs and an output for the results of the processed data. Processing can be either pipelined
or non-pipelined. In the former case, results appear at the output after a given number of clock cycles. In the latter case, exe-
cution takes a certain number of cycles so a handshake protocol is needed.

4.3. Code portability

The first step to ensure portability is to use a design flow available in all reconfigurable platforms. As discussed in Section
3.3, there are many different development tools in the market, including hardware compilers for high-level languages such
as C or Matlab. However, currently HDL (VHDL or Verilog) is the only design flow that exists in all reconfigurable platforms.
The same is also true for software development, standard languages such as C or Fortran plus MPI are most commonly used
in reconfigurable platforms due to their ubiquity.

HDLs are relatively low-level languages and are known for their lengthy design time and steep learning curves, see Sec-
tion 3.3. Here the tradeoff is design time vs portability. The only common design tools in all reconfigurable computers are
HDL compilers. Compilers for high-level languages such as Handel-C or Mitrion-C are not available as part of the standard
development tools and must be purchased separately. Moreover, some of these tools rely on the existence of drivers for each
platform. As a result, a reduced development time may be offset by the increased effort in the necessary wrappers and inter-
faces for the target system.

HDL alone does not ensure portability. Optimized HDL cores that rely on the instantiation of FPGA components like
embedded memories and multipliers are not portable. The tradeoff here is between speed and portability. The best perfor-
mance is attained when proprietary component instantiations and placement constraints are used. However, the only por-
table coding style HDL is RTL behavioral.

P. Saha et al. / Parallel Computing 34 (2008) 245–260 249
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Another key issue in code portability is setting a minimum clock speed. The goal is to achieve an effective portability, that
is, not only guarantee that the core compiles and executes in all systems, but also that a uniform performance is achieved
among all target architectures.

4.4. Quality control

The process of ensuring the quality of a library follows the normal software engineering principles, namely unit testing,
regression testing, release builds, and benchmarks. The main difference is that the testing will be performed at two levels,
HDL simulation and actual hardware implementations. HDL simulation is useful during the early stages of the design to sup-
port code development with relatively basic functional simulations. As HDL simulation is known to be very slow, more sys-
tematic tests need to be performed on real implementations of the core. This approach is known to be several orders of
magnitude faster than HDL simulation, but requires the core to be synthesized and physically implemented in the FPGA. This
is a very time consuming process and it is not uncommon to see cores requiring hours to be synthesized, placed and routed.

Frequent unit testing and regression testing ensure that the implementation quality is maintained throughout the devel-
opment process. The unit tests are made up of short verification tests designed to detect functional and compilation errors.
Regression tests allow for a comprehensive capture of errors and failures in a hardware library. Builds and regression tests help
developers quickly determine the stability of their contributions and verify that previously working modules still function as
expected. Although frequent builds are encouraged, they may be cost prohibitive due to time taken by the FPGA toolchain
(synthesis, place and route). A typical build process can take several hours to properly run a single core through the toolchain.

Finally, benchmarks serve as a quality assurance check to ensure that the current release exceeds and/or meets the per-
formance of previously released libraries. Here, the term benchmark refers to the performance measurements of the hard-
ware library components, most notably speedup, and does not necessarily reflect any industry specific benchmark.
Benchmarks can also be utilized by the end-user to find out which HPRC platform is more adequate for their applications.

4.5. Collaboration, distribution and licensing

Libraries tend to be large projects with a large number of contributors working on multiple branches and deliverable
schedules. To avoid any conflicts, access and submission procedures and policies are essential. Fortunately, these issues
are similar for both hardware and software developments, so existing software engineering practices also apply here. An
important management and policy enforcement resource is source control software. This is a topic that can easily fill vol-
umes, but is often underestimated by hardware developers. Developers not familiar with software engineering practices, of-
ten overlook the simplicity and resource management provided by source control software such as CVS [33] and SVN [34].
Licensing and distribution policy is yet another often overlooked aspect in library development.

There are two key decisions to be made when releasing a library. First is the distribution format, that is choosing between
HDL source code or precompiled binaries. While precompiled binaries are convenient to the end user, it is challenging for
library developers to keep up with the various HPRC platforms and the different releases of the vendor core services and APIs.
Perhaps the more straightforward choice is to provide the HDL source code of the core along with corresponding documen-
tation. Here the user is responsible for creating the wrapper required to utilize the library on their target system. Although
this solution has clear advantages in terms of library development time and portability, the main drawback is the hardware
design skills required from the end-user. The end-user is not only required to implement the core wrappers, but also to mod-
ify the core in order to meet vendor-specific requirements such as timing, port lists, registers, and etc.

The second major decision is selecting a license to use. Licensing is perhaps one of the most confusing aspects of a soft-
ware distribution or library distribution in the open source community. Unfortunately, violating or ignoring the original con-
sent by the authors not only diminishes the value and efforts of the open source contributors, but can also inadvertently
create legal worries for further distribution of work spawned. It is important to understand the level of freedom the project
wishes to bestow upon the community, and still respect the original contributors’ intent and intellectual property. Compre-
hensive information about licenses and licensing models can be found at the Open Source Initiative [35].

The incorporation of various different types of licenses brings about the confusing part in building a library. While chip
manufacturers (Xilinx, Altera, etc) and/or system vendors (SRC, AMS, Cray, SGI, etc.) provide basic cores freely to their users,
license restrictions allow the use only on particular platforms and architectures. This may require that certain soft cores,
regardless of how trivial they may be, be re-written to prevent litigation and to allow for free distribution. Soft cores from
open source communities may also impose a different license agreement, requiring careful understanding of parts that may
or may not be bundled with other license agreements. The end user may also suffer from similar confusion as they may not
be able to determine which license agreement holds precedence.

5. RCLib a case study

This section presents the proposed library development guideline using the RCLib as a case study. Fig. 4 presents the
development flow suggested in this guideline, including main inputs to the design decisions and actions that should be taken
to validate the processes.
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5.1. Domain analysis

During domain analysis, it is necessary to take into consideration application acceleration, resource utilization and study
of design patterns. The goal is that all cores satisfy three basic principles namely, speedup, generality, and simplicity. The
first ensures that the acceleration provided by the core is high enough so that even considering Amdahl’s law, the final appli-
cation speedup will be significant. The second, ensures that the core is useful for a wide range of applications in a given do-
main, as stated by the design pattern analysis. Finally, the third ensures portability. The resource analysis identifies cores
whose resource requirements compromise their portability. The objective is to avoid cores so complex that they can only
be implemented in the highest-end FPGA families.

The application scope of RCLib was chosen based on input from the RC community as well as domain experts in the
respective fields. Various different domains were targeted including secret key ciphers, binary Galois field arithmetic, elliptic
curve cryptography, long integer arithmetic, image processing, bioinformatics, sorting, and matrix arithmetic, see Table 1. A
comprehensive list of cores implemented in RCLib is detailed in Appendix A.

Often times, efficient implementations of an application keep the cores at too high a level, thereby diminishing the reuse
of the core. In such cases the domain applications were re-examined to find overlap between applications and were rede-
signed to utilize the common cores. RCLib also utilized novel approaches such as variable size operands and common skel-
etons to efficiently instantiate hardware implementations of various image processing and elliptic curve cryptography
applications.

5.2. Standard interfaces

Cores should have a standard interface, as this is a key issue to ensure portability, see Section 4.2. The RCLib core interface
followed a few guidelines. First cores utilized single clock domain and reset ports. Second, the interface was kept as simple as
possible, typically one or many data inputs and one data output. Operand size and coding were made compatible to existing
C types such as 16, 32 or 64-bit integers or IEEE-754 floating point numbers. Finally, handshaking and/or synchronization
mechanisms were utilized by adding two more signals, one to start processing the data, and another to signal that the pro-
cessing is complete. More complex protocols were not necessary and thus were avoided.

5.3. Code portability

A simple set of coding guidelines is proposed to ensure portability. First, use HDLs (Verilog or VHDL) to develop the cores,
writing only behavioral RTL descriptions. Higher-level tools do not currently enjoy ubiquity among platforms, so they are not

Fig. 4. Library Development Guidelines. Main Flow, inputs and validation actions.

Table 1
Scope of RCLib

Library Domain Typical Cores

Secret Key Cipher Cryptography Encryption, decryption, breaking, key scheduling
Bioinformatics Computational biology Scoring, find max
Elliptic curve cryptography Cryptography Scalar, projection, point arithmetic
Binary Galois field arithmetic Cryptography Squaring, multiplication, inversion
Image processing Image and signal processing Filtering, buffering, transformation, correlation, histograming, remote sensing
Long integer arithmetic Cryptography Modular arithmetic
Matrix arithmetic Vector processing Bit manipulation, Bit transpose
Sorting Data processing Merging, sorting algorithms
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recommended for library development. Additionally, HDLs still provide the best performance (see section 3.3), at the cost of
longer development times.

A standard packaging format should be adhered to, which includes HDL code, debug/simulation code, black box file with
interface and constraint definitions, core documentation, and a Makefile. By maintaining a minimal set of files, future library
maintainers and developers have enough information required to modify the library package should constraints change in
the future. A good example of this is when the timing constraints are changed to adapt to faster clock speeds. This also helps
in the automation of library builds and distribution.

FPGA technology specific components should not be instantiated within the core. Instead the developer should use infer-
ence from behavioral HDL instead. However, code written in a manner that infers underlying resources is allowed and fa-
vored. For example, adjusting the size of the operands will cause the synthesis tool to use the embedded multipliers in
the FPGA. Advanced vendor-specific features, for example Xilinx’s RPMs, should be avoided.

Libraries included in the RCLib follow a minimum clock speed of 100 MHz (10 ns) as accepted in the SRC, Cray XD1, and
SGI RASC RC systems. The RCLib also provides detailed documentation as to the pipeline latency and a timing diagram to help
the end user and library developers get a better understanding as to the usage of the core. A standard set of extensions for the
file names and a consistent naming convention was chosen to facilitate library integration. Following a naming convention
prevents any name space clashes, ensures that library cores are not overwritten when they are built/archived, and avoids
runtime and compile time errors during the integration phase.

Auxiliary functions with identical names posed a significant problem during our library integration step. Several libraries
utilized similar performance measurement routines and test functions and thus clashed with the inclusion of multiple li-
braries due to the lack of support for overloading in C. To prevent this from occurring, a common library was created for
the auxiliary functions.

Although all hardware cores in the RCLib project currently target Xilinx FPGAs, they were designed with very little to no
assumption of available peripherals, memory, hard cores. This ensures that future porting to different reconfigurable ele-
ments such as Altera or future architectures can be done with minimal effort.

5.4. Quality control

Correctness and performance are essential qualities of a library. To control the quality of a library through the develop-
ment cycle, it is important that guidelines are in place at each step. Software engineering practices such as unit testing,
regression testing, builds, and benchmarking are essential for ensuring quality.

The tests can be performed utilizing simulation and software benchmark suites, but it is still important to execute on the
target HPRC. This section proposes simple guidelines to allow verification of the library cores, see Fig. 5. First, test suites and
benchmarks should be designed for the respective domains rather than adopting a more generalized test suite. Second, HDL-
based simulations are only valid to help in developing the cores, and should not be used for their systematic testing due to
the low speed. Third, advanced verification techniques like coverage-driven and assertion-based simulations are encouraged
and should be used to identify bugs before comprehensive testing. And finally cross library tests should be designed to iden-
tify any compatibilities issues between library cores from different application domains.

To carry out the systematic testing of the cores, tests should be run on a target HPRC system, and test software program(s)
can be used to verify functionality, typically using large databases of input vectors and expected results. This approach has
been chosen because it provides two important advantages. First, executions on real systems are known to be orders of mag-
nitude faster than HDL simulations. Second, it verifies the core in real conditions, so FPGA implementation and HPRC inte-
gration are also covered by this test. All developed software test programs make up the regression test suite that every
release build must pass.

Fig. 5. Quality control flow.
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Unit tests were created to quickly verify that the RCLib hardware cores compiled, built, and passed simple functionality
tests. This step was sufficient to catch simple failures. Regression tests were used to go through an entire suite of tests to
ensure that there are no conflicts. For a comprehensive check against an entire library, regression tests checked for compat-
ibility with each individual library core, the runtime environment, compiler options, tool chain. Regression tests detected
more subtle faults that would otherwise go undetected in simple tests, such as identifying cross library errors. Frequent
builds were done to ensure the stability of user contributions and verify the functionality of previously working modules.

5.5. Collaboration, distribution and licensing

A strict methodology for collaborative work is mandatory to keep the project manageable. Well-known software engi-
neering guidelines are proposed. First, identify the source control software supported by the target platforms. Second, estab-
lish a policy for setting access privileges to the repositories. This is essential for build schedules as they tend to be quite
lengthy for a hardware library. Finally, decide on a framework for contributions to allow for users to easily extend existing
library cores.

The collaboration and development framework for the RCLib took into consideration vendor compatibility, to ensure that
the libraries created were readily usable. The source control software CVS was largely chosen due to support by SRC Com-
puters. SRC’s scripts allowed the pull, parsing, and building of the library for unit testing, regression testing, and finally re-
lease build.

Distribution format of the library is a key decision in the library build process and should be addressed early on. The rec-
ommended method is to provide HDL source code. Only the cores will be supplied, not the vendor-specific wrappers.
Although it implies an extra effort for the end-user to implement the wrappers, its main advantage is that it does not require
any maintenance effort by the library developers.

Alternatively, offering binary solutions is also possible. Binaries such as architecture specific netlists and pre-compiled
bitstreams ease development efforts for the end-user. With the use of simple APIs a developer is able to instantiate a design
without needing to write the necessary wrappers to interface with the library core. An added advantage of binary releases is
that tool chain changes will not affect the behavior of the hardware library core. Even if a limited number of reconfigurable
systems are to be supported, the problem is that core services and APIs might be changed with a new version of the devel-
opment tools, so a continuous effort to keep core wrappers up to date has to be done. This is not feasible for most projects,
which have a limited time scope. Providing the behavioral HDL source code for the cores will have minor backward compat-
ibility issues.

The RCLib project provides two package formats. The first format is a binary release designed for the SRC6 platform. The
library build and distribution process was done via the vendor’s guidelines to ensure usability across available SRC platforms.
The second format provided is a source code package which includes the HDL source code, black box interface file, documen-
tation file, test code, test vectors. This package format was used in porting the library on to the Cray XD1 and SGI RASC
platforms.

Addressing licensing and IP (intellectual property) is an important aspect in the distribution of the library. There are var-
ious open source licenses available, and picking one was not a trivial task. Choosing a popular licensing model can help in
modifying, utilizing, and integrating other existing work with similar licensing agreements, such as GNU General Public Li-
cense (GPL) [36]. GNU GPL, written and maintained by the Free Software Foundation, is widely used by the open source com-
munity, particularly for software developed for the Linux environment. The terms of this license are quite simple and aimed
at complete freedom of use. GPL only requires that the parts modified be shared with the community for wider adoption and
to also prevent derivative work from becoming proprietary. Another popular license in the open source community is the
Berkeley Software Distribution (BSD) license [37]. This license is particularly friendly to commercial users who do not wish
to release their modified source back into the community and allows the packages to be re-licensed into a proprietary license
if needed.

To reduce the litigation burden and offer freely distributable libraries, the recommended method is to avoid utilizing
third-party cores all together. When doing so is not an option, providing pre-requisites for utilizing the hardware library will
alleviate the need to bundle third-party libraries and packages. This includes requiring the end user to pre-install the nec-
essary hardware and software libraries, and in effect will satisfy the third-party licensing requirements.

Licensing was perhaps one of the most daunting aspects of the RCLib project. The mixing of proprietary licenses with open
source libraries was especially challenging, as shown in Table 2. During our library development process, we were posed

Table 2
Third-party tools and licensing models utilized in RCLib

Tool/Core License Redistributable

Xilinx Soft Cores Xilinx Free Software Yes, for use with Xilinx FPGAs only
SRC Carte Library Support SRC Proprietary Available directly from SRC only
GMP GNU Yes
LiDIA LiDIA-Group Proprietary Yes, non-commercial only
OpenSSL BSD Yes
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with several licensing decisions such as whether to use freely available cores from Xilinx and/or system vendors (SRC, Cray,
SGI, etc.) and cope with the license restrictions that allow use only on particular platforms and architectures. The alternative
was to re-write the cores, regardless of how trivial they may be to allow for open distribution. We were also faced with sim-
ilar licensing concerns with soft cores, such as those provided free for use from tools such as Xilinx SysGen and others, which
at times provided vague licensing restrictions. Licensing concerns also crept up during the development of the library regres-
sion testing and benchmarking suites. Open source licenses such as GNU Multi-precision (GMP) library with GPL licensing,
LiDIA’s non-commercial use license, as well as OpenSSL BSD style license provided similar concerns. It was often difficult to
determine which license agreement held precedence.

Trying to discover other third-party tools that are compatible with the preferred license may not be trivial either. Not all
third-party tools are alike, and require the scrutiny of thorough research as to their ease of use, features, documentation,
performance, development language, and other tradeoffs. Although it is possible to recreate software that can enable com-
mon functionality offered by the third-party tools, it may not meet the specifications or performance requirements necessary
for the library.

To alleviate the need to include the necessary tools with the library, the RCLib assumes that the end user is responsible for
the availability of the necessary third-party libraries and tools on their systems. All effort is made to ensure that the tools are
available to the public and are well maintained.

Due to the complex nature of the library development which includes the use tools with varying degrees of restrictions,
the chosen license format is fashioned after the GNU LGPL [38] license. RCLib assumes that the end user is in compliance
with the license restrictions imposed by the third-party components.

6. Usage and performance of RCLib hardware libraries

In this section, two application examples are used to describe the usage models of portable hardware libraries in HPRC
applications. Section 6.1 presents a single-node remote sensing application, where different RCLib cores are used to accel-
erate the critical section of a wavelet-based dimension reduction algorithm. Section 6.2 presents a bioinformatics algorithm
where parallelism is achieved at two levels. First, multiple RCLib hardware cores are instantiated in each FPGA accelerator.
Second, conventional HPC techniques are used to run multiple hardware-accelerated nodes in parallel. Finally, Section 6.3
summarizes the benefits in terms of speedup, power and cost arising from the use of hardware libraries such as RCLib.

6.1. Single-node usage of RCLib

The first application example is Wavelet-Based Dimension Reduction of Hyperspectral Imagery. Dimension reduction is a
transformation that brings data from a high order dimension to a low order dimension. This transformation is used in remote
sensing applications and is known to have large computational requirements. The general description of the automatic
wavelet dimension reduction algorithm is shown in Fig. 6. ‘‘PIXEL LEVEL” is the most computational intensive function on
traditional platforms. Based on the separability property of individual pixels, the algorithm lends itself to parallelization
and full pipelining within this specific function. Fig. 7 shows the top hierarchical level of the implementation architecture.
A major component is the DWT_IDWT module. This module utilizes both the Discrete Wavelet Transform (DWT) and the
Inverse Discrete Wavelet Transform (IDWT) cores of RCLib, thus producing respectively the decomposition spectrum, i.e.
L1-L5, as well as the reconstruction spectrum, i.e. Y1-Y5, see Fig. 7. The second major component utilized from RCLib was
the Correlator. It implements a correlation function (q) between the original spectral signature (X) and its reconstructed
approximation (Y) which results from applying the DWT and IDWT. The final RCLib component used is the Histogram core.
This module is implemented with counters which are updated according to the correlation-threshold inequality, i.e. q P TH.
All these cores use fixed-point arithmetic.

Fig. 6. Automatic Wavelet Spectral Dimension Reduction Algorithm [39].
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The results from this application example, detailed in [39], show that management of the data transfers between the
microprocessor memory and FPGA onboard memory becomes critical to achieve a significant speedup. In a full-software
implementation, data movements only take 8% of the execution time. On the contrary, I/O might reach 75% of the total exe-
cution time on a SRC-6 HPRC implementation. It is therefore mandatory to use techniques such as sharing of memory banks
or overlapping of memory transfers with computations in order to reduce the I/O overhead. Using such techniques, a speed-
up of 32.04x in comparison to a full-software version of the algorithm was measured for the SRC6 implementation.

6.2. Multi-node usage of RCLib

This section presents a bioinformatics application example where the two parallelism levels of a HPRC computer, chip-
level and system-level, are exploited in order to obtain the maximum speedup. Chip-level parallelism is achieved through
the instantiation of multiple RCLib cores, system-level parallelism is gained using conventional HPC techniques. The selected
bioinformatics application is the Smith-Waterman algorithm,. This is a well-known algorithm to perform local sequence
alignments, that is, to determine similar regions between two nucleotide or two protein sequences [40].

Two RCLib cores, i.e. Scoring Maximum and Score Search, were utilized to calculate the similarity matrix. A 2-bit encoding
was used in DNA sequencing to represent the four nucleotides (AGCT), whereas Protein sequencing required 5-bits to encode
the twenty amino acids. RCLib cores are highly parameterized, easily allowing for different schemes of encoding. A virtualiza-
tion and scheduling technique was needed to handle the large sequences, and a 2-D sliding window was used to traverse the
entire virtual similarity matrix. A 16 by 16 sliding window was initially proposed but proved to be inefficient since it does not
engage the system to its full capacity [41]. Taking advantage of the full parameterization of RCLib cores, the window geometry
was changed to 32 by 1, a size that proved to be more efficient by decreasing the stalling time of reloading the sequences.

Table 3 shows the performance of the Protein and DNA sequencing over the Cray XD1 and SRC6 as compared to the FASTA
open source software running on a 2.4 GHz Opteron processor. The throughput metric used was Giga cell updates per second
(GCUPS). The XD1 had an advantage with its FPGA chips running at 200 MHz, while the SRC machine had a restriction to run
the FPGAs only at 100 MHz. The table shows both the expected and measured speedups, the difference is mainly due to the
communication overhead. The results also show the throughput when system-level parallelism is used. In the case of SRC6 (a
UNNS system), one microprocessor allocates four FPGA accelerators and distributes the workload among them. In Cray XD1,
a NNUS system, nodes only have one FPGA available. Conventional MPI-based parallel programming techniques are used to
distribute the workload among the six nodes available in the chassis. In this case, performance does not scale as good as in
the SRC6 example due to the MPI communications overhead.

The maximum speedup of 2794x was achieved by means of the two levels of parallelism and the higher clock frequency of
Cray XD1. Chip-level parallelism was accomplished by packing 8 kernels on each FPGA chip, providing a 695x speedup. Then,
system-level parallelism was used to make the six nodes in the Cray XD1 chassis work in parallel, thus achieving the final
2794x speedup.

6.3. Cost, power and space savings of HPRCs using RCLib

This section estimates the required FPGA resources, the speed, power consumption and size improvements that can be
achieved by HPRCs when using RCLib. In order to do so, the performance of the HPRC implementations is maximized using

Fig. 7. Architecture of the hardware accelerator for the PIXEL LEVEL function [39].
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a two-level parallelism approach similar to the one presented in the previous section. The size of a computer cluster that can
achieve the same level of performance is estimated, and the equivalent power consumptions, size and cost are deduced.
From all of that, the level of improvements in performance, cost, power consumption, and size that can be achieved by a
HPRC over a PC cluster is obtained. Tables 4–6 summarize those results.

In this analysis, a 100x speedup of an HPRC, means that the power, size and cost of the HPRC are compared to that of a 100
processor Beowulf cluster. The estimates are conservative, because when parallel efficiency is considered, a 100 processor

Table 3
Speedup of protein and DNA sequencing [4,5]

Expected Measured

Throughput (GCUPS) Speedup Throughput (GCUPS) Speedup

Opteron 2.4 GHz DNA NA NA 0.065 1
Protein NA NA 0.130 1

SRC 100 MHz (32 � 1) DNA 1 Engine/Chip 3.2 49.2 3.19 ? 12.2 49 ? 188
1 ? 4 Chips 1 ? 4 Chips

4 Engines/Chip 12.8 197 12.4 ? 42.7 191 ? 656
1 ? 4 Chips 1 ? 4 Chips

8 Engines/Chip 25.6 394 24.1 ? 74 371 ? 1138
1 ? 4 Chips 1 ? 4 Chips

Protein 3.2 24.6 3.12 ? 11.7 24 ? 90
1 ? 4 Chips 1 ? 4 Chips

XD1 200 MHz (32 � 1) DNA 1 Engine/Chip 6.4 98 5.9 ? 32 91 ? 492
MPI 1 ? 6 nodes PI 1 ? 6 nodes

4 Engines/Chip 25.6 394 23.3 ? 120.7 359 ? 1857
MPI 1 ? 6 nodes MPI 1 ? 6 nodes

8 Engines/Chip 51.2 788 45.2 ? 181.6 695 ? 2794
MPI 1 ? 6 nodes MPI 1 ? 6 nodes

Protein 6.4 49 5.9 ? 34 45 ? 262
MPI 1 ? 6 nodes MPI 1 ? 6 nodes

Table 4
Sample RCLib cores on an SRC 6 system compared with Opteron 2.4 GHz microprocessors

Application Core Information Speedup Savings

Resource Utilization (% Slices per core) Cores per Chip Cost Power Size

Smith Waterman 6 8 1138 6 313 34
DES Breaker 7 10 6757 34 1856 203
IDEA Breaker 18 4 641 3 176 19
RC5 Breaker 99 1 1140 6 313 34

Table 6
Sample RCLib cores on an SGI RC100 system compared with Opteron 2.4 GHz microprocessors

Application Core Information Speedup Savings

Resource Utilization (% Slices per core) Cores per Chip Cost Power Size

Smith Waterman 4 30 8723 22 779 253
DES Breaker 3 38 38514 96 3439 1116
IDEA Breaker 7 2 961 2 86 28
RC5 Breaker 39 2 6838 17 610 198

Table 5
Sample RCLib cores on a Cray XD1 system compared with Opteron 2.4 GHz microprocessors

Application Core Information Speedup Savings

Resource Utilization (% Slices per core) Cores per Chip Cost Power Size

Smith Waterman 12 8 2794 28 140 29
DES Breaker 23 6 12162 122 608 127
IDEA Breaker 27 5 2402 24 120 25
RC5 Breaker 87 1 2321 23 116 24
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cluster will likely produce a speedup that is much less than 100 folds. In other words, the competing cluster was assumed to
have 100% efficiency. It was also assumed that one cluster node consumes about 220 W, and that 100 cluster nodes have a
foot print of 6 square feet. Based on the actual prices for these systems, the cost was assumed to be 1:100 in the case of Cray
XD1 and 1:200 in the case of SRC6.

The results show that HPRCs using RCLib might achieve many orders of magnitude improvements in performance, cost,
power and size over conventional high performance computers. Moreover, when the cost factors associated with power (e.g.
cooling and size) are taken into account, the reduction in cost is much more significant than even the reported in Tables 4–6.
However, the speedups, power savings, cost savings and size savings shown in these tables can be viewed as realistic upper
bounds of the performance of HPRC technology using RCLib. This is because the selected applications in these tables are all
compute intensive integer applications, a class of applications for which HPRCs clearly excel and hence around which RCLib
was developed. With additional FPGA chip improvements in size, floating point support, and with improved data transfer
bandwidths between FPGAs and local memory or microprocessor, a much wider range of applications will be able to harness
similar levels of benefits with minimal modifications to RCLib.

7. Conclusions

In the recent years, the hardware capabilities of reconfigurable computers in general, and HPRC systems in particular,
have grown exponentially. Unfortunately the development tools have not evolved at the same pace. Among other prob-
lems, current tools have poor support for design reuse. This paper proposes the use of portable libraries of hardware
optimized cores to solve this issue. The idea is to expand the well-known HPC core libraries to the hardware level. How-
ever, the development of hardware libraries poses many specific challenges. This paper provides a list of the tradeoffs
and challenges that the developer will face. Unlike software libraries, there is to the best of our knowledge no previous
experience in the development of a comprehensive and portable library of hardware cores. Therefore a new set of guide-
lines for development of such libraries had to be conceived, that should address the major concerns. These include do-
main analysis, code reuse, packaging, interface definition, portability, collaboration, benchmarking and testing,
distribution and licensing. This guidelines have been fully validated by means of a comprehensive case study covering
more than 100 different cores, targeting applications such as image processing, cryptography, bioinformatics, and long
integer arithmetic. Using the RCLib case study, portability was demonstrated by implementing these libraries in ma-
chines from major HPRC vendors. The speedup results, as well as the cost, area and power savings, confirmed the ben-
efits of this approach.

Future work include assessing portability in other non-Xilinx architectures, such as Xtreme Data XD2000i and SRC7. Work
is underway for automatic generation of the vendor-specific wrappers, to help end-users in portability. Additionally, co-
scheduling algorithms are currently being developed to optimize the synergy of microprocessors and hardware acceleration
cores.

Finally, to request a copy of the RCLib hardware library package or for more information please visit http://hpc.gwu.edu/
library.
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Appendix A. RCLib cores

See Tables 7–14.

Table 7
Bioinformatics cores in RCLib

Application Cores

Bioinformatics
Smith Waterman Scoring

Maximum Score Search
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Table 8
Secret-key ciphering and hashing cores in RCLib

Application Cores

Secret Key Ciphers
IDEA Encryption

Decryption
Breaking

DES Encryption
Decryption
Breaking

RC5 Key Scheduling
Encryption
Decryption
Breaking

Table 9
Elliptic curve cryptography cores in RCLib

Application Cores

Elliptic curve cryptography
Scalar multiplication Normal basis

Polynomial basis
Project to affine Normal basis

Polynomial basis
Point addition Normal basis

Polynomial basis
Point doubling Normal basis

Polynomial basis

Table 10
Binary galois field arithmetic cores in RCLib

Application Cores

Binary Galois Field Arithmetic
Polynomial basis
Trinomial Squaring

Multiplication
Inversion

Pentanomial Squaring
Multiplication
Inversion

Special Field Squaring
Multiplication
Inversion

NIST Squaring
Multiplication
Inversion

Normal basis
NIST Squaring

Multiplication
Inversion

Table 11
Image processing cores in RCLib

Application Cores

Image processing
Wavelet Discrete Wavelet Transform

Inverse Discrete Wavelet Transform
Correlation and Histograming

Filtering Gaussian filtering
Smoothing filtering
Sharpening filtering
Blurring filtering
Prewitt filtering
Sobel edge filtering
Median filtering

Buffering Line buffer
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