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Abstract

Linux is increasingly used to power everything from
embedded devices to supercomputers. Developers of
such systems often start with a mainline kernel from
kernel.org and then apply patches for their appli-
cation domain. Many of these patches representcross-
cutting concernsin that they do not fit within a single
program module and are scattered throughout the kernel
sources—easily affecting over a hundred files. It requires
nontrivial effort to maintain such a crosscutting patch,
even across minor kernel upgrades due to the variability
of the kernel proper. Moreover, it is a significant chal-
lenge to ensure the kernel’s correctness when integrating
multiple crosscutting concerns. To make matters worse,
developers use simple code merging tools that directly
manipulate source file lines instead of relying on a lex-
ical, grammatical, or semantic level of abstraction. The
result is that patch maintenance is extremely time con-
suming and error prone. In this paper, we propose a new
tool, calledc4 , designed to help manipulate patches at
the level of their abstract syntax and semantics. We be-
lieve our approach will simplify the management of OS
variations and thereby improve OS evolution.

1 Introduction

Over the past years open source operating systems, par-
ticularly Linux, have experienced tremendous growth.
Industry and governments alike are relying upon such
software to reduce the cost and time-to-market of de-
veloping WiFi routers, cell phones, and telecommunica-
tions equipment and of running services on specialized
servers, clusters, and high-performance supercomputers.
One important benefit of using Linux for these systems is
that developers have access to all kernel sources and can
easily create variants that are directly tailored for their
application domains. As such, Linux also is an attractive
platform for OS research, as it offers the potential for a
speedy technology transfer.

Major variants to a mainline Linux kernel are typ-
ically represented in terms of higher-level extensions
that are implemented through so-called patch sets or,

simply, patches. For example, embedded systems re-
quire changes that reduce the kernel’s memory footprint
(e.g., Linux-Tiny [21] or uCLinux [32]), desktops require
strong security mechanisms that reduce the impact of
viruses and worms (e.g., LSM [20]), time-shared servers
require resource management subsystems to isolate users
from each other (e.g., VServer [23] or CKRM [4]), and
super computers require special resource management
modifications that scale the OS to a large number of com-
ponents (e.g., CPUSETS [9]). Many of these kernel ex-
tensions do not fit within a single source file and are scat-
tered throughout the kernel sources. As shown in the fol-
lowing table, each extension can easily cover a hundred
existing kernel files, even though it represents a logical
unit, expressing a singlecrosscutting concern:

Patch New Files Modified Kernel Files
Nooks [30] 68 108
CKRM [4] 48 53
LSM [20] 123 85

Kernel Probes [17] 13 20
LTT [22] 9 71

VServer [23] 40 211
Linux-Tiny [21] 7 142
CPUSETS [9] 1 3

ALSA [1] 200 540
LLA [24] 1 39

It requires non-trivial effort to maintain even a small
crosscutting extension between minor kernel upgrades
due to the variability of the kernel proper. Moreover, it
is a tremendous challenge to ensure the kernel’s correct-
ness when integrating multiple crosscutting kernel exten-
sions, as even for the small number of patch sets shown
in the above table there is significant overlap in the files
affected by the different extensions. To make matters
worse, developers currently use simple code merging
tools (e.g.,diff andpatch ), which are limited to in-
dicating conflicts based upon textual comparison. Expe-
rience with maintaining a variant of the Linux kernel for
PlanetLab (which contains several major variants to the
mainline code base) as well as anecdotal evidence from
the Linux and OS research communities suggest that this
approach is error prone and time consuming.



Developers wishing to merge their kernel extensions
into the mainline code base must repeatedly go through
this process, because any non-trivial change to Linux’s
architecture takes time to be reviewed and accepted.
Anecdotal evidence (e.g., LSM, LTT, ALSA) suggests
that it may take anywhere from one to three years before
a crosscutting kernel extension is fully integrated into the
mainline kernel.

This leads to a natural selection of kernel extension
developers: those that are persistent and those that are
not. While this natural selection weeds out the weak,
it also eliminates strong work done by members of the
OS research community. For example, the Nooks [30]
project for recoverable Linux device drivers has garnered
best paper awards at both SOSP and OSDI. Yet the work
remains relegated to Linux 2.4.18, which was the kernel
version at the start of Nooks in Feb. 2002. The problem
is not laziness! Rather, with today’s tools, it is simply too
tedious to keep up with the changes that occur between
even minor releases of Linux, e.g., from 2.4.18 to 2.4.19.

Our position is that a better method is needed—
beyonddiff andpatch —that reduces the amount of
work it takes to maintain and review a crosscutting ker-
nel extension in Linux. The remainder of this paper de-
scribes our work towards such a solution: asemantic
patch systemcalledc4 for CrossCutting C Code. A se-
mantic patch basically amounts to a set of transformation
rules that precisely specify the conditions under which
changes need to be made and the means for rewriting the
affected code. Its compact yet human readable form lets
a community of developers easily understand and discuss
a crosscutting kernel extension, thereby helping reduce
the time and effort required to evolve the kernel.

2 Motivating Observations

We studied a number of patch files—LTT, Kernel Probes,
LSM, and CKRM—that introduce new kernel extensions
as well as patch files that update existing code in Linux.
In general, the changes introduced by these patch files
fall into three categories∗:

• Intraprocedural changes.Modifications to the in-
ternal logic of an existing function. These changes
may eliminate bugs, but they do not change the type
of the function and normally do not change its orig-
inal intended semantics.

• Intramodule changes. A coherent collection of
modifications encapsulated within an existing mod-
ule. These changes may modify many of the func-
tions within a particular module, but they do not
change the externally visible interface. Clients of
the module do not need to change their code and us-
age patterns. We use the word “module” loosely

∗A fourth category comprises modifications to Makefiles etc.,
which we do not consider.

here to mean any collection of components with
a well-defined external interface including kernel
subsystems. In particular, a module is not limited
to a single kernel source file. For instance, chang-
ing all file operations to use ACLs rather than stan-
dard UNIX permissions would be an intramodule
change.

• Intermodule changes.Modifications that change
intermodule interfaces or the visible semantics of
an existing interface in fundamental ways. For in-
stance, modifications of a function’s type or the field
makeup of a non-ADT data structure (e.g., adding,
deleting, or changing the type of a field) are inter-
module changes.

Our preliminary analysis of patches that update ex-
isting kernel functionality shows that the bulk fall into
the intraproceduraland intermodulechanges categories
with very fewintramodulechanges category. In contrast,
patches that introduce new kernel extensions fall primar-
ily into the intramoduleand, to a lesser extent, theinter-
modulechanges categories.

As the size and scale of a kernel modification moves
from intraprocedural to intramodule to intermodule, it
becomes more and more difficult to apply and maintain
the modification using the low-level line-by-line diffs
that result frompatch . There are two important reasons
for this. First, the more expansive intra- and intermodule
changes almost always encapsulate a newcoherentunit
of functionality. However, patch sets provide the pro-
grammer with no help in understanding the new unit of
functionality in isolation. Since patch sets do not even
operate on the concrete syntax of the programming lan-
guage, they are often syntactically invalid fragments of
code. They may also contain free variables that can only
be resolved when the patch is applied to the kernel. Con-
sequently, it is impossible to assign patches any precise
semantics separately from the modules they modify.

Second, as the scope of a kernel modification extends,
it becomes more and more likely that the change will
conflict with other changes being made simultaneously
to the kernel. The difficult and error-prone part of main-
taining patches is attempting to understand these con-
flicts. Often, spurious conflicts arise due to the fact that
patches operate on a line-by-line basis without regard ei-
ther to the basic syntax of the language or, more impor-
tantly, to its semantics. In other words, when different
developers modify the same lines of a file,patch will
signal a conflict and a programmer must analyze, under-
stand and modify the code at that location, even though
the changes may be semantically independent of one an-
other. Due to the complete lack of any abstraction or
semantic meaningfulness of patches, it is easy to make
mistakes during this process.



To illustrate these problems in more detail, consider
the patch set for the Class-Based Kernel Resource Man-
agement (CKRM) project [4]. CKRM is a new ker-
nel mechanism that provides differentiated services for
shared system resources, including CPU time, tasks,
memory, and disk I/O. The application of this patch set
results in a new Linux kernel variant suitable for servers
that require stronger resource usage guarantees than the
egalitarian approach used by the unmodified mainline
kernel.

The actual CKRM extension consists of a set of
files that specify where “hunks” of code are applied by
patch , identifying specific line numbers or relative off-
sets within specific files. For example, this portion of the
CKRM patch:

--- a/kernel/sys.c Sat Sep 18 19:28:57 2004
+++ b/kernel/sys.c Tue Feb 01 22:03:15 2005
@@ -638,6 +642,9 @@

else
return -EPERM;

+
+ ckrm_cb_gid();
+

return 0;
@@ -726,6 +733,8 @@

current->suid = current->euid;
current->fsuid = current->euid;

+
+ ckrm_cb_uid();
+

return security_task_post_setuid(old_ruid,

instruments kernel/sys.c with calls to the
ckrm cb gid()/uid() functions. Line numbers are
represented as relative offsets indicated by@@line-
info@@. Upon closer inspection of the patch we observe
a pattern: all calls to ckrmcb gid()/uid() (6 in total)
directly precede return statements.

The same pattern emerges for other kernel extensions,
such as LSM and VServer, that hook themselves into
specific Linux subsystems. Thus, composing several
such kernel extensions or updating to a new release of
the kernel may result in unnecessary patch conflicts.
Such conflicts typically need to be resolved manually,
which is clearly tedious. Section 3 presents our solu-
tion to this problem, which transforms theseintramodule
changesinto aspectsusing aspect-oriented software de-
velopment [2] (AOSD) techniques.

Intermodule changesoften involve modifications to
either a function’s signature or the field makeup of a
data structure. But changing a function’s signature or
deleting/changing a data structure’s fields can have far-
reaching consequences: it requires updating all modules
that directly use them. Consequently, capturing such
changes withdiff andpatch requires manually up-
dating all dependent modules. This is prohibitive when
the interface changes are in the kernel proper or in the

generic device driver framework and trigger correspond-
ing changes in specific device drivers—there might be
hundreds.

The Bossa project [13, 27] encapsulates new function-
ality for Linux in a single component, where the compo-
nent interface specifies rewrite rules to compose the code
with the base program. The rewrite rules leverage tem-
poral logic to describe execution points in the program.
Lawall et al. [19] attack this problem at a different level,
percolating interface changes throughout the Linux code
base. Similar to our approach, this work builds on a kind
of semantic patch, which relies on code rewriting rules
to automate the task of updating dependent modules.
While this appears promising, we observe thatintermod-
ule changesmight be better handled by: (1) a system-
atic conversion of non-ADTs used across Linux subsys-
tems to ADTs, thereby making further changes to them
intramodule changes, and (2) using well-established in-
terface versioning techniques such as Microsoft’s Com-
ponent Object Model (COM).

3 Thec4 Semantic Patch Compiler

Recognizing that intramodule and intermodule changes
are common to new kernel extensions for Linux, our
approach is to make them part of the kernel’s archi-
tecture by leveraging AOSD techniques. More specif-
ically, our approach is to express these changes as se-
mantic patches using aspects, which provide a language-
supported methodology for integrating crosscutting con-
cerns with a program. The benefits of aspects are
twofold. First, they provide a well-defined specification
of domain-specific features that is separate from base-
line functionality, yet can be automatically integrated
with the kernel. Second, we believe that aspects en-
able tools that perform automatic analysis of the impli-
cations of composing several crosscutting concerns and
identify true semantic conflicts as opposed to the line-by-
line conflicts identified bypatch .

The main research questions raised by our approach
are (1) how to extend C with aspects without impact-
ing compatibility, readability, or performance and (2)
how to automate the identification and resolution of con-
flicts between aspects. However, fully exploring these
research questions requires building the corresponding
tools. To reduce the required engineering effort, we are
not implementing a self-contained C compiler for our
AOSD-enhanced C language, calledc4 for CrossCutting
C Code. Rather, we leverage existing platform support
for C and rely on a pipeline that first invokes the C pre-
processor, which resolves all # directives, then thec4
compiler to translate aspect-enhanced code to plain C,
and finally gcc, which performs traditional optimizations
and code generation. To further reduce the engineer-
ing effort required for buildingc4 , we are implement-



ing c4 on top of thextc compiler framework [14, 15],
which provides a toolkit for building extensible source-
to-source transformers. In the rest of this section, we
present the proposed aspect-oriented language enhance-
ments to C by example and then discuss our approach to
non-interference analysis for aspects.

3.1 Thec4 Language
In c4 , which is based on AspectC [8], aspects struc-
ture and modularize concerns that crosscut functions.
Due to space constraints, we do not define thec4
language in detail. Rather, we illustrate the gist of
its features on the example of instrumenting the ker-
nel with calls to ckrmcb gid()/uid() after the exe-
cution of syssetregid()/setreuid(), syssetgid()/setuid(),
and syssetresgid()/setresuid(), respectively:

aspect (CKRM) {
pointcut setuid() :

execution(long sys_setreuid(..)) ||
execution(long sys_setresuid(..)) ||
execution(long sys_setuid(..));

after setuid() { ckrm_cb_uid(); }

pointcut setgid() :
execution(long sys_setregid(..)) ||
execution(long sys_setresgid(..)) ||
execution(long sys_setgid(..));

after setgid() { ckrm_cb_gid(); }
}

The executionkeyword refers to principled points in
the execution of a program calledjoin points (e.g.,
sys setreuid ). A pointcutstatement groups one or
more join points, which can then be referenced byad-
vice to define actions for these join points. In our exam-
ple, we only useafter advice, which indicates that the
actions (the explicit C code) should be performed after
theexecutionof the join points.

The aspect code thus structures the modifications to
the mainline code, which are automatically merged, or
weaved, with the appropriate C code by thec4 compiler.
In contrast to the line-by-line patch shown in Section 2,
the interaction with the kernel becomes explicit at the
level of functions and parameters involved; hence, code
becomes more amenable to semantic analysis and devel-
opers can reason about any interactions at a higher level.
Previous work has shown that this reduces the complex-
ity of crosscutting concerns [6, 7, 28].

Note that thec4 language is richer than suggested by
this example. In particular, it supports not onlyafter, but
alsobeforeandaround, with the latter replacing an ex-
isting mainline function. Coady describes this in further
detail for AspectC [8], upon whichc4 is based. Fur-
ther note that we aim to reduce developers’ exposure
to c4 as much as possible. In particular, we are ex-
ploring how to support simple annotations of the form

aspect(Name) {... }, which can be added inline at
the beginning or end of system functions and are then
automatically extracted and converted into fully-featured
aspects by thec4 compiler.

3.2 Program Analysis
Our initial research goal is to support thesyntacticsep-
aration of crosscutting concerns through aspects. On
their own, syntactic separation and automatic weaving
of crosscutting concerns free developers from many low-
level, time-consuming, and error-prone details of main-
taining and applying kernel patches. However, in ad-
dition to supporting syntactic separation of crosscut-
ting concerns, we are also targetingsemanticseparation
through the detection of interference between concerns.
When two concerns are semantically separate, the execu-
tion of one concern is guaranteed not to change the exe-
cution behavior of the other. For instance, semantically
separate concerns do not mutate shared data structures
either directly or indirectly through a series of function
calls. Semantically separate concerns are of critical im-
portance in large systems such as Linux, in which multi-
ple developers work independently on their own system
extensions. When concerns are semantically separate,
these independent developers need not coordinate their
work, analyze the code of the other developers, or even
be aware that other projects are being developed. By def-
inition, the work of one developer does not interfere with
the other.

In addition to separating multiple “after-the-fact” con-
cerns, it is useful to determine the degree to which a par-
ticular concern is separate from, or, conversely, interferes
with, the mainline code. If a developer can prove, via
an automated program analysis, that their concern does
not interfere with the mainline code, then owners of the
mainline are much more likely to integrate it into their
system. Even if the owners themselves will not integrate
the new concern, users will be less hesitant to download
and apply the non-interfering kernel extension. We be-
lieve that analysis of noninterference properties of as-
pects can greatly speed technology transfer and integra-
tion of new ideas into Linux (and other open source soft-
ware).

We have begun to investigate how to design a static
program analysis that will detect whether a new concern
interferes with the mainline computation [10] or with
another, existing concern [3]. This analysis makes use
of previous work developed by programming language
and security researchers on detecting and enforcing data
integrity properties via information flow analysis. Our
analysis is designed as a form of type-and-effect system
that separates state into different logical protection do-
mains, with one protection domain for each concern and
one domain for the mainline computation. The analysis
is designed to detect situations, in which code from one



domain mutates state in another, either directly or indi-
rectly through a series of function calls. We have for-
mally proven a powerful non-interference result for our
analysis.

While an important step, there still are considerable
challenges to using this analysis in the context of C and
the Linux kernel. A first step for this research will be
to refactor crosscutting concerns in Linux and to analyze
the degree to which various concerns really are separate
from one another and the mainline kernel. This experi-
ence will be crucial in refining the theoretical analysis
and in understanding the specific noninterference prop-
erties that will be useful (and possible) to specify and
enforce. The next step will be to extendc4 with a sys-
tem of annotations that let developers specify their non-
interference and semantic separation requirements. Even
without an analysis, the annotation system will be use-
ful as a systematic form of documentation of developer
intentions and requirements. The last step is to imple-
ment the analysis itself and test it on kernel extensions in
Linux.

4 Related Work

Both IBM and Microsoft recently announced their in-
tentions on using AOSD to improve the evolvability of
complex software systems [18, 31]. Our work differs
from these industry initiatives in three important aspects.
First, we are investigating aspect-oriented programming
within C as opposed to existing efforts on C++, C#, or
Java. Consequently, our work directly applies to a large,
existing code base. Second, we are specifically targeting
the software architecture of a major open source operat-
ing system, which provides us with an opportunity to ad-
dress a real-world problem faced by many organizations.
Finally, we plan to develop formal semantics for reason-
ing about aspect-oriented technology in this domain, and
use this formalization to develop program analysis tools
to further aid systems programmers in general.

AOSD techniques have been previously applied to op-
erating systems. Both Coady et al. [8] and Spinczyk
et al. [25] demonstrate that concerns that crosscut tradi-
tional layers in OS structure can be cleanly defined and
applied using aspects.

Over the last several years, a number of researchers
have begun to build semantic foundations for aspect-
oriented programming [34, 11, 16, 26, 5, 33]. This foun-
dational, theoretical work provides a starting point for
analyzing the properties of aspect-oriented programs, de-
veloping principled new programming features, and de-
riving useful program analyses. We plan to exploit our
knowledge of and experience with these semantic foun-
dations and type-based analyses as we develop thec4
language.

Recently, programming language researchers have

also begun to try to understand and analyze interactions
between separate concerns. For instance, Bauer et al. [3]
introduces a theoretical language that includes several
different ways for combining concerns and a type system
for detecting when concerns apply to the same program
points. In similar work, Douence et al. [12] analyze as-
pects defined by recursion together with parallel and se-
quencing combinators. They develop a number of formal
laws for reasoning about their combinators and an algo-
rithm that is able to detect aspect independence. These
proposals present interesting techniques for detecting in-
terference, but it appears that additional reasoning facili-
ties will be required for analyzing crosscutting concerns
in the Linux kernel, as many of the “separate” concerns
actually reference the same program points. We believe
that more recent work by Rinard [29] and Dantas [10],
which analyzes aspect code to determine its memory ef-
fects, will help solve this problem.

5 Summary

Our position is that current techniques for evolving op-
erating systems are ineffective, since they solely operate
at a line-by-line level. Our work introduces a semantic
patch system based onaspectsthat offers the ability to
more rapidly and seamlessly move from idea to design
to implementation for new OS features. Aspects’ inher-
ent separation of code from an operating system’s main-
line eases the maintenance of crosscutting concerns, thus
speeding up the technology transfer of a new kernel ex-
tension from early prototype, through multiple design it-
erations, to a mainlined feature of an operating system
that continues to evolve.
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