Seamless BGP Migration With Router Grafting

Eric Keller
Princeton University

Abstract

Network operators are under tremendous pressure to
make their networks highly reliable to avoid service dis-
ruptions. Yet, operators often need to change the network
to upgrade faulty equipment, deploy new services, and
install new routers. Unfortunately, changes cause dis-
ruptions, forcing a trade-off between the benefit of the
change and the disruption it will cause. In this paper we
present router grafting, where parts of a router are seam-
lessly removed from one router and merged into another.
We focus on grafting a BGP session and the underlying
link—from one router to another, or between blades in
a cluster-based router. Router grafting allows an oper-
ator to rehome a customer with no disruption, compared
to downtimes today measured in minutes. In addition,
grafting a BGP session can help in balancing load be-
tween routers or blades, planned maintenance, and even
traffic management. We show that grafting a BGP ses-
sion is practical even with today’s monolithic router soft-
ware. Our prototype implementation uses and extends
Click, the Linux kernel, and Quagga, and introduces a
daemon that automates the migration process.

1 Introduction

In nature, grafting is where a part of one living organ-
ism (e.g., tissue from a plant) is removed and fused into
another organism. In this paper, we apply this concept
to routers to enable new network-management capabili-
ties which allow network changes to be made with mini-
mal disruption. We call this router grafting. With router
grafting, we view routers in terms of their parts and en-
able splitting these parts from one router and merging
them into another. This capability makes the view of the
network a more fluid one where the topology can readily
change, allowing operators to adapt their networks with-
out disruption in the service offered to users. We envision
router grafting to eventually be applicable to arbitrary

Jennifer Rexford
Princeton University

Jacobus van der Merwe
AT&T Labs - Research

subsets of router resources and/or protocols. However,
in this paper we take the first step towards this vision by
focusing how to “graft” a BGP session and the underly-
ing link from one router to another.

1.1 A Case for Router Grafting

The ability to adapt the network is an essential com-
ponent of network management. Unfortunately, to-
day’s routers and routing protocols make change diffi-
cult. Changes to the network cause disruption, forc-
ing operators to weigh the benefit of making a change
against the potential impact performing the change will
have. For example, today, the basic task of rehoming a
BGP session requires shutting down the session, recon-
figuring the new router, restarting the session, and ex-
changing a large amount of routing information typically
leading to downtimes of several minutes. Further com-
plicating matters is the fact that service-level agreements
with customers often prohibit events that result in down-
time without receiving prior approval and scheduling a
maintenance window. This hand-cuffs the operator. In
this section we provide several motivating examples of
why seamless migration is needed and why it would be
desirable to do at the level of individual sessions.

Load balancing across blades in a cluster router:
Today’s high-end routers have modular designs consist-
ing of many cards—processor blades for running rout-
ing processes and interface cards for terminating links—
spread over multiple chassis. In essence, the router itself
is a large distributed system. Load balancing is an im-
portant function in distributed systems, and routers are
no exception—today’s routers often run near their lim-
its of processing capacity [1]. Unfortunately, routers are
not built with load balancing in mind. A BGP session
is associated with a routing process on a particular blade
upon establishment, making it difficult to shift load to an-
other blade. A common approach used with Web servers
is to drain load by directing new requests to other servers

and waiting for existing requests to complete. Unfortu-
nately, this technique is not applicable to routers, since
routing sessions run indefinitely and unlike web services
have persistent state. However, with the ability to mi-
grate individual sessions, achieving better utilization of
the router’s processing capabilities is possible.
Rehoming a customer: An ISP homes a customer to
arouter based on geographic proximity and the availabil-
ity of a router slot that can accommodate the customer’s
request [2]. However, this is done only at the time when
a customer initiates service, based on the state of the net-
work at that time. Rehoming might be necessary if the
customer upgrades to a new service (such as multicast,
IPv6, or advanced QoS or monitoring features) available
only on a subset of routers. Rehoming is also necessary
when an ISP upgrades or replaces a router and needs to
move sessions from the old router to the new one. Cus-
tomer rehoming involves moving the edge link—which
can be done quickly because of recent innovations in
layer-two access networks—as well as the BGP session.

Planned maintenance: Maintenance is a fact of life
for network operators, yet, even though maintenance is
planned in advance, little can be done to keep the router
running. Consider a simple task of replacing a power
supply. The best common practice is for operators to re-
configure the routing protocols to direct traffic away from
that router and, once the traffic stops flowing, to take the
router offline. Unfortunately, this approach only works
for core routers within an ISP where alternate paths are
available. At the edge of the network, an attractive al-
ternative would be to graft all of the BGP sessions with
neighboring networks to other routers to avoid disrup-
tions in service. Migrating at the level of individual ses-
sions is preferable to migrating all of the sessions and the
routing processes as a group, since fine-grain migration
allows multiple different routers to absorb only a small
amount of extra load during the maintenance interval.

Traffic engineering: Traffic engineering is the act of
reconfiguring the network to optimize the flow of traffic,
to minimize congestion. Today, traffic engineering in-
volves adjusting the routing-protocol parameters to coax
the routers into computing new paths that better match
the offered traffic, at the expense of transient disrup-
tions during routing convergence. Router grafting en-
ables a new approach to traffic engineering, where cer-
tain customers are rehomed to an edge router that better
matches the traffic patterns. For example, if most of a
customer’s traffic leaves the ISP’s network at a particular
location, that customer could be rehomed closer to that
egress point. In other words, we no longer need to con-
sider the traffic matrix as fixed when performing traffic
engineering—instead, we can change the traffic matrix to
better match the backbone topology and routing by hav-
ing traffic enter the network at a new location.

1.2 Challenges and Contributions

The benefits of router grafting are numerous. How-
ever, the design of today’s routers and routing proto-
cols make realizing router grafting challenging. Graft-
ing a BGP session involves (i) migrating the underlying
TCP connection, (ii) exchanging routing state, (iii) mov-
ing the routing-protocol configuration from one router
to another, and (iv) migrating the underlying link. Ide-
ally, all these actions need to be performed in a manner
that is completely transparent (i.e., without involving the
routers and operators in neighboring networks) and does
not disrupt forwarding and routing (i.e., data packets are
not dropped and routing adjacencies remain up).

Unfortunately, we cannot simply apply existing tech-
niques for application-level session migration. Moving
a BGP session to a different router changes the net-
work topology and hence, the routing decisions at other
routers. In particular, the remote end-point of the session
must be informed of any routing changes—that is, any
differences between the “best routes” chosen by the new
and old homing points. Similarly, other routers in the
ISP network need to change how they route toward des-
tinations reachable through that remote end-point—they
need to learn that these destinations are now reachable
through the new homing location.

In addition, we cannot simply apply recently-proposed
techniques for virtual-router migration [3], for two main
reasons. First, the two physical routers may not be
compatible—they may run different routing software
(e.g., Cisco, Juniper, Quagga, or XORP). Second, we
want to migrate and merge only a single BGP session,
not the entire routing process, as many scenarios bene-
fit from finer granularity. Instead, we view virtual-router
migration as a complementary management primitive.

Fortunately, extending existing router software to sup-
port grafting requires only modest changes. The essential
state that must be migrated is often well separated in the
code. This makes it possible to export the state from one
router and import it to another without much complex-
ity. In this paper, we present an architecture for realizing
router grafting and make the following contributions:

e Introduce the concept of router grafting, and re-
alize an instance of it through BGP session mi-
gration. We demonstrate that BGP session migra-
tion can be performed in today’s monolithic rout-
ing software, without much modification or refac-
toring of the code. Our fully-automated prototype
router-grafting system is built by using and extend-
ing Click, Linux, and Quagga.

e Achieve transparency, where the remote BGP ses-
sion end-point is not modified and is unaware mi-
gration is happening. We achieve this by bootstrap-

AS100 | AS200

Exchange routes

Deliver reliable stream

Send packets

F———3

S Y
.) Migrate

Link
F——

=

Programmable
Transport Network

% Optical transport switch
Figure 1: Migration protocol layers.

ping a routing session at the new homing location,
with the old router emulating the remote end-point.
The new homing point then takes over the role of the
old router, sending the necessary routing updates to
notify the remote end-point of routing changes.

e Introduce optimizations to nearly eliminate the im-
pact of migration on other routers not directly in-
volved in the migration. We achieve this by capital-
izing on the fact that the routers already have much
of the routing information they need, and that we
know the identity of the old and new homing points.

e Describe an architecture where unplanned routing
changes (such as link failures) during the grafting
process do not affect correctness, and where pack-
ets are delivered successfully even during the mi-
gration. At worst, packets temporarily traverse a
different path than the control plane advertises—a
common situation during routing convergence.

The remainder of the paper is organized as follows.
Section 2 discusses how the operation of BGP makes
router grafting challenging. In Section 3 we present the
router grafting architecture, focusing only on the control
plane. Section 4 explains how we ensure correct routing
and forwarding, even in the face of unplanned routing
changes. In Section 5 we present our prototype, followed
by a discussion of optimizations that reduce the overhead
of grafting a BGP session in Section 6. We present an
evaluation of our prototype and proposed optimizations
in Section 7, followed by related work in Section 8 and
the conclusion in Section 9.

2 BGP Routing Within a Single AS

Grafting a BGP session is difficult because BGP rout-
ing relies on many layers in the protocol stack and many

components within an AS. In this section, we present a
brief overview of BGP routing from the perspective of
a single autonomous system (AS) to identify the chal-
lenges our grafting solution must address.

2.1 Protocol Layers: IP, TCP, & BGP

As illustrated in Figure 1, two neighboring routers ex-
change BGP update messages over a BGP session that
runs on top of a TCP connection that, in turn, directs
packets over the underlying IP link(s) between them. As
such, grafting a BGP session will require moving the IP
link, TCP connection, and BGP session from one loca-
tion to another.

IP link: An AS connects to neighboring ASes through
IP links. While a link could be a direct cable between
two routers, these IP-layer links typically correspond to
multiple hops in an underlying layer-two network. For
example, routers at an exchange point often connect via
a shared switch, and an ISP typically connects to its cus-
tomers over an access network. These layer-two net-
works are increasingly programmable, allowing dynamic
set-up and tear-down of layer-three links [4, 5, 6, 7]. This
is illustrated in Figure 1 where the link between routers
A and B is through a programmable transport network
which can be changed to connect routers A and C. These
innovations enable seamless migration of an IP link from
one location to another within the scope of the layer-two
network, such as rehoming a customer’s access link to
terminate on a different router in the ISP’s network!.

TCP connection: The neighboring routers exchange
BGP messages over an underlying TCP connection. Un-
like a conventional TCP connection between a Web
client and a Web server, the connection must stay “up”
for long periods of time, as the two routers are continu-
ously exchanging messages. Further, each router sends
keep-alive messages to enable the other router to detect
lapses in connectivity. Upon missing three keep-alive
messages, a router declares the other router as dead and
discards all BGP routes learned from that neighbor. As
such, grafting a BGP session requires timely migration
of the underlying TCP connection.

BGP session: Two adjacent routers form a BGP ses-
sion by first establishing a TCP session, then sending
messages negotiating the properties of the BGP session,
then exchanging the “best route” for each destination
prefix. This process is controlled by a state machine that
specifies what messages to exchange and how to han-
dle them. Once the BGP session is established, the two

'Depending on the technology used to realize the layer-two net-
work, the scope might be geographically contained, e.g., in the case
of a packet access network, or might be significantly more spread out,
e.g., in the case of a national footprint programmable optical transport
network.

routers send incremental update messages—announcing
new routes and withdrawing routes that are no longer
available. A router stores the BGP routes learned from
its neighbor in an Adj-RIB-in table, and the routes an-
nounced to the neighbor in an Adj-RIB-out table. Each
BGP session has configuration state that controls how
a router filters and modifies BGP routes that it imports
from (or exports to) the remote neighbor. As such, graft-
ing a BGP session requires transferring a large amount of
RIB (Routing Information Base) state, as well as moving
the associated configuration state.

2.2 Components: Blades, Routers, & ASes

A BGP session is associated with a routing process that
runs on a processor blade within one of the routers in
a larger AS. As such, grafting a BGP session involves
extracting the necessary state from the routing process,
transferring that state to another location, and changing
the routing decisions at other routers as needed.

Processor blade: The simplest router has a proces-
sor for running the routing process, multiple interfaces
for terminating links, and a switching fabric for directing
packets from one interface to another. The BGP rout-
ing process maintains sessions with multiple neighbors
and runs a decision process over the Adj-RIB-in tables
to select a single “best” route for each destination prefix.
The routing process stores the best route in a Loc-RIB ta-
ble, and applies export policies to construct the Adj-RIB-
out tables and send the corresponding update messages
to each neighbor.

IP router: Today’s high-end routers are large dis-
tributed systems, consisting of hundreds of interfaces and
multiple processor blades spread over one or more chas-
sis. These routers run multiple BGP processes—one on
each processor blade—each responsible for a portion of
the BGP sessions as shown in Figure 2. For a cluster-
based router to scale, each BGP process runs its own de-
cision process and exchanges its “best” route with the
other BGP processes in the router, using a modified ver-
sion of internal BGP (iBGP) [8]. This allows the dis-
tributed router to behave the same way as a simple router
that runs a single BGP process. Any BGP process can
handle any BGP session, since all processors can reach
the interface cards through the switching fabric. As such,
grafting a BGP session from one blade to another in the
same router (e.g., the session with X from RP1 to RP2
in Figure 2) does not require migrating the underlying
layer-three link.

Autonomous System (AS): An AS consists of mul-
tiple, geographically-distributed routers. Each router
forms BGP sessions with neighboring routers in other
ASes, and uses iBGP to disseminate its “best” route to
other routers within the AS. The routers in the same

Router W Migrate between
route processors
RP1 RP2
Route sessions: | | sessions:
Processors | X Y,Z
Switch fabric
Line Cards |:| E I:—I I:—I
—_ 1 | -
to X toY toZ

Figure 2: Migrating the session with X between route
processor blades (from RP1 to RP2).

AS 200

AS100

— >

Pa;:h tod

P N

Migrate
between routers

Figure 3: Migrating session with A between routers
(from B to C).

AS also run an Interior Gateway Protocol (IGP), such
as OSPF or IS-IS to compute paths to reach each other.
Each router in the AS runs its own BGP process(es) and
selects its own best route for each prefix. The routers
may come to different decisions about the best route,
not only because they learn different candidate routes
but also because the decision depends on the IGP dis-
tances to other routers (in a practice known as hot-potato
routing). This can be seen in Figure 3 where routers B
and C have different paths to the destination d. As such,
grafting a BGP session from one router to another (e.g.,
the session with A from router B to C in Figure 3) may
change the BGP routing decisions.

3 Router Grafting Architecture

Seamless grafting of a BGP session relies on a care-
ful progression through a number of coordinated steps.
These steps are summarized in Figure 4, which shows
a migrate-from router that hands off one of its BGP ses-
sions to a migrate-to router in the same AS. These routers
do not need to run the same software or be from the
same vendor—they need only have the added support

for router grafting. When the grafting process starts, the
migrate-from router is responsible for handling a BGP
session with the remote end-point router A (not shown).
This BGP session with router A is to be migrated. The
migrate-from router begins exporting the routing infor-
mation and the migrate-to router is initialized with its
own session-level data structures and a copy of the policy
configuration, without actually establishing the session
(Figure 4(a)). Then, the TCP connection is migrated, fol-
lowed by the underlying link (Figure 4(b)). Finally, the
migrate-to router imports the routing state and updates
the other routers (Figure 4(c)), resulting in the migrate-
to router handling the BGP session with the remote end-
point ((Figure 4(d)). This section focuses exclusively on
control-plane operations, deferring discussion of the data
plane until Section 4.

3.1 Copying BGP Session Configuration

Each BGP session end-point has a variety of configu-
ration state needed to establish the session with the re-
mote end-point (with a given IP address and AS num-
ber) and apply policies for filtering and modifying route
announcements. The network operators, or an auto-
mated management system, configure the session end-
point by applying configuration commands at the router’s
command-line interface or uploading a new configura-
tion file. The router stores the configuration information
in various internal data structures.

Rather than exporting these internal data structures,
we capitalize on the fact that the current configuration
is captured in a well-defined format in the configura-
tion file. Our design simply “dumps” the configura-
tion file for the migrate-from router, extracts the com-
mands relevant to the BGP session end-point, and applies
these commands to the migrate-to router, after appropri-
ate translation to account for vendor-dependent differ-
ences in the command syntax. This allows the migrate-
to router to create its own internal data structures for the
configuration information.

However, the migrate-to router is not yet ready to as-
sume responsibility for the BGP session. To finish ini-
tializing the migrate-to router, we extend the BGP state
machine to include an ‘inactive’ state, where the router
can create data structures and import state for the ses-
sion without attempting to communicate with the remote
end-point. The migrate-to router transitions from the ‘in-
active’ state to ‘established’ state when instructed by the
grafting process.

3.2 Exporting & Resetting Run-Time State

A router maintains a variety of state for BGP session
end-points. To meet our goals, BGP grafting need

only consider the Routing Information Bases (RIBs)—
the other state may be simply reinitialized at the migrate-
to router?.

Routing Information Bases (RIBs): The most im-
portant state associated with the BGP session-end-point
is stored in the routing information bases—the Adj-RIB-
in and Adj-RIB-out. In our architecture, we dump the
RIBs at the migrate-from router to prepare for import-
ing the information at the migrate-to router. While the
RIBs are represented differently on different router plat-
forms, the information they store is standardized as part
of the BGP protocol. In most router implementations, the
RIB data structure is factored apart from the rest of the
routing software, and many routers support commands
for “dumping” the current RIBs. Even though the RIB
dump formats vary by vendor, de facto standards like the
popular MRT format [9] do exist.

State in the BGP state machine: A BGP session end-
point stores information about the BGP state machine.
We can forgo migrating this state — the BGP session is
either ‘established’ or not. If the session is in one of
the not-established states, we can simply close the ses-
sion at the migrate-from router and start the migrate-to
router in the idle state. This does not trigger any tran-
sient disruption—since the session is not “up” anyway.
If the session at the migrate-from router is ‘established,’
we can start the new session at the migrate-to router in
the ‘inactive’ state.

BGP timers: BGP implementations also include a va-
riety of timers, many of which are vendor-dependent. For
example, some routers use an MRAI (Minimum Route
Adpvertisement Interval) timer to pace the transmission of
BGP update messages. This is purely a local operation
at one end-point of the session, not requiring any agree-
ment with the remote end-point. Another common timer
is the keep-alive interval that drives the periodic send-
ing of heartbeat messages, and a hold timer for detect-
ing missing keep-alive messages from the remote end-
point. Fortunately, missing a single keep-alive message,
or sending the message slightly early or late, would not
erroneously detect a session failure because routers typ-
ically wait for three missed keep-alive messages before
tearing down the session. As such, we do not migrate
BGP timer values and instead simply initialize whatever
timers are used at the migrate-to router.

BGP statistics: BGP implementations maintain nu-
merous statistics about each session and even individual
routes. These statistics, while broadly useful for network
monitoring, are not essential to the correct operation of
the router. They only have meaning at the local session

2Router grafting does not preclude the remaining state from being
included, simply we chose not to in order to keep code modifications at
aminimum while still meeting our goals of (i) routing protocol adjacen-
cies staying up and (ii) all routing protocol messages being received.

Migrate-from Migrate-from

bgpd bgpd Delete
Peer

Migrate-to

toA Migrate-to /

bgpd

Network stack

L]

bgpd

Pre-
Config

Network stack

(a) Pre-config, Export RIB. (b) Migrate link and TCP.

Migrate-from Migrate-from
bgpd bgpd

B
Network stack \

Network stack

Migrate-to
bgpd

bgpd

RIB,

Import

stack ck

config,

Send
updates

(c) Import RIB.

(d) After migration.

Figure 4: Router grafting mechanisms — migrating a session with Router A (not shown) from router Migrate-from to router
Migrate-to. The boxes marked bgpd and network stack are the software programs. The boxes marked RI B4, configa, and

T C P4 are the routing, configuration, and TCP state respectively.

end-point. In addition, these statistics are vendor depen-
dent and not well modularized in the router software im-
plementations. As such, we do not migrate these statis-
tics and instead allow the migrate-to router to initialize
its own statistics as if it were establishing a new session.

3.3 Migrating TCP Connection & IP Link

As part of BGP session grafting, the TCP connection
must move from the migrate-from router to the migrate-
to router. Because we do not assume any support from
the remote end-point, the migrate-to router must use the
same IP addresses and sequence and acknowledgment
numbers that the migrate-from router was using. In BGP,
IP addresses are used to uniquely identify the BGP ses-
sion end-points and not the router as a whole. Further,
we assume the link between the remote end-point and
the migrate-from (or migrate-to) router is a single hop IP
network where the IP address is not used for reachability,
but only for identification. As such, the session end-point
can easily retain its address (and sequence and acknowl-
edgment numbers) when it moves. That is, the single IP
address identifying the migrating session can be disasso-
ciated from the migrate-from router and associated with
the migrate-to router. Our architecture simply migrates
the local state associated with the TCP connection from
one router to another.

As with any TCP migration technique, the network
must endure a brief period of time when neither router
is responsible for the TCP connection. TCP has its own
retransmission mechanism that ensures that the remote
end-point retransmits any unacknowledged data. As long
as the transient outage is short, the TCP connection (and,
hence, the BGP session) remains up. TCP implementa-
tions tolerate a period of at least 100 seconds [10] with-
out receiving an acknowledgment—significantly longer
than the migration times we anticipate. The amount of

TCP state is relatively small, and the two routers are
close to one another, leading to extremely fast TCP mi-
gration times.

The underlying link should be migrated (e.g., by
changing the path in the underlying programmable trans-
port network) close to the same time as the TCP connec-
tion state, to minimize the transient disruption in con-
nectivity. Still, the network may need to tolerate a brief
period of inconsistency where (say) the TCP connec-
tion state has moved to the migrate-to router while the
traffic still flows via the migrate-from router. During
this period, we need to prevent the migrate-from router
from erroneously responding to TCP packets with a TCP
RST packet that resets the connection. This is easily
prevented by configuring the migrate-from router’s in-
terface to drop TCP packets sent to the BGP port (i.e.,
179). The migrate-from route can successfully deliver
regular data traffic received during the transmission, as
discussed later in Section 4.

3.4 Importing BGP Routing State

Once link and connection migration are complete, the
migrate-to router can move its end-point of the BGP ses-
sion from the ‘inactive’ state to the ‘established’ state. At
this time, the migrate-to router can begin “importing” the
RIBs received from the migrate-from router. However,
the import process is not as simple as merely loading
the RIB entries into its own internal data structures. The
migrate-from and migrate-to routers could easily have a
different view of the “best” route for each destination
prefix, as illustrated in Figure 5. In this scenario, be-
fore the migration, A reaches E’s prefixes over the di-
rect link between them, and B reaches E’s prefixes via
A; after the migration, A should reach E’s prefixes via
B, and B should reach E’s prefixes over the direct link.
Similarly, suppose routers C and D connect to a common

Announces :
192.168.0.0/163

AS|350iAS 400

Figure 5: A topology where AS 200 has migrate-from
router A, migrate-to router B, internal router F, and ex-
ternal routers C, D, and G, and remote end-point E.

prefix. Before the migration, E follows the AS path “100
200 3007 (through C) to reach that prefix; after the mi-
gration E follows the AS path “100 200 400” (through
D). Reaching these conclusions requires routers A and
B to rerun the BGP decision process based on the new
routes, and disseminate any routing changes to neighbor-
ing routers.

To make the process transparent to the remote end-
point, we essentially emulate starting up a new session
at router B, with router A temporarily playing the role
of the remote end-point to announce the routes learned
from E. This requires router A to replay the Adj-RIB-
in state associated with E to router B. Router B stores
these routes and reruns its BGP decision process, as nec-
essary, to compute the new best routes to prefixes E is
announcing. This will cause update messages to be sent
to other routers within the AS and, sometimes, to exter-
nal routers (like C and D). If the attributes of the route
(e.g., the AS-PATH) do not change, as is the case in Fig-
ure 5, other ASes like AS 300 and AS 400 do not re-
ceive any BGP update message (since, from their point
of view, the route has not changed), thus minimizing the
overhead that router grafting imposes on the global BGP
routing system.

Next, we update E with the best routes selected by
B. Here, we take advantage of the fact that E has al-
ready learned routes from the migrate-from router A.
The change in topology might change some of those
routes, and we need to account for that. To do so, the
migrate-to router runs the BGP decision process to com-
pare its currently-selected best route to the route learned
from the migrate-from router. If the best route changes,
B sends an update message to its neighbors, including
router E. This is in fact exactly the same operation the
router would perform upon receiving a route update from
any of its neighbors. We expect that routers A and B

would typically have the same best route for most pre-
fixes, especially if A and B are relatively close to each
other in the IGP topology. As such, most of the time
router B would not change its best route and hence would
not need to send an update message to router E.

4 Correct Routing and Forwarding

Router grafting cannot be allowed to compromise the
correct functioning of the network. In this section, we
discuss how grafting preserves correct routing state (in
the control plane) and correct packet forwarding (in the
data plane), even when unexpected routing changes oc-
cur in the middle of the grafting process.

4.1 Control Plane: BGP Routing State

Routing changes can, and do, happen at any time. BGP
routers easily receive millions of update messages a day,
and these could arrive at any time during the grafting pro-
cess — while the migrate-from router dumps its routing
state, while the TCP connection and underlying link are
migrated, or while the migrate-to router imports the rout-
ing state and updates its routing decisions. Our grafting
solution can correctly handle BGP messages sent at any
of these times.

While the migrate-from router dumps the BGP
routing state: The goal is to have the in-memory Rout-
ing Information Base (RIB) be consistent with the RIB
that was dumped as part of migration. Here, we take
advantage of the fact that the dumping process and the
BGP protocol work on a per-prefix basis. Consider a
Adj-RIB-in with three routes (p1, p2, p3) corresponding
to three prefixes, of which (p1 and p2) have been dumped
already. When an update p3’ (for the same prefix as p3)
is received, the in-memory RIB can be updated since it
corresponds to a prefix that has not been dumped, — to
prevent dumping a prefix while it is being updated, the
single entry in the RIB needs to be locked. If we re-
ceive an update p1° (for the same prefix as pl), process-
ing it and updating the in-memory RIB without updating
the dumped image will cause the two to be inconsistent
— delaying processing the update is an option, but that
would delay convergence as well. To solve this, we cap-
italize on BGP being an incremental protocol where any
new update message implicitly withdraws the old one.
Since we treat the dumped RIB as a sequence of update
messages, we can process the update immediately and
append p1’ to the end of the dumped RIB to keep it con-
sistent.

While the TCP connection and link are migrating:
BGP update messages may be sent while the TCP con-
nection and the underlying link are migrating. If a mes-
sage is sent by the remote end-point, the message is not

delivered and is correctly retransmitted after the link and
TCP connection come up at the migrate-to router. If an
update message is sent by another router to the migrate-
from router over a different BGP session, there is not a
problem because the migrate-from router is no longer re-
sponsible for the recently-rehomed BGP session. There-
fore, the migrate-from router can safely continue to re-
ceive, select, and send routes. If an update message is
sent by another router to the migrate-to router over a dif-
ferent BGP session, the migrate-to router can install the
route in its Adj-RIB-in for that session and, if needed,
update its selection of the best route — similar to when a
route is received before the migration process.

While the migrate-to router imports the routing
state: The final case to consider is when the migrate-to
router receives a BGP update message while importing
the routing state for the rehomed session. Whether from
the remote end-point or another router, if the route is for
a prefix that was already imported, there is no problem
since the migration of that prefix is complete. If it is for
a prefix that has not already been imported, only mes-
sages from the remote end-point router need special care.
(BGP is an asynchronous protocol that does not depend
on the relative order of processing for messages learned
from different neighbors.) A message from the remote
end-point must be processed after the imported route but
we would like to process it immediately. Since the update
implicitly withdraws the previous announcement (which
is in the dump image), we mark the RIB entry to indicate
that it is more recent than the dump image. This way, we
can skip importing any entries in the dump image which
have a more recent RIB update.

4.2 Data Plane: Packet Forwarding

Thus far, this paper has focused on the operation of the
BGP control plane. However, the control plane’s only
real purpose is to select paths for forwarding data pack-
ets. Fortunately, grafting has relatively little data-plane
impact. When moving a BGP session between blades in
the same router, the underlying link does not move and
the “best” routes do not change. As such, the forwarding
table does not change, and data packets travel as they did
before grafting took place — the data traffic continues to
flow uninterrupted.

The situation is more challenging when grafting a
BGP session from one router to another, where these
two routers do not have the same BGP routing infor-
mation and do not necessarily make the same decisions.
Because the TCP connection and link are migrated be-
fore the migrate-to router imports the routing state, the
remote end-point briefly forwards packets through the
migrate-fo router based on BGP routes learned from the
migrate-from router. Since BGP route dissemination

Migrate-from Router

Remote
Modified graft click-based End-point
Quagga daemon link migration Router
SockMi.ko \ Handler
Comm Quagga
Linux 2.6.19.7 I B
Migrate-to Router
Modified graft Linux 2.6.19.7-click] | Linux 2.6.19.7
Quagga daemon
SockMi.ko
Linux 2.6.19.7

Figure 6: The router grafting prototype system.

within the AS (typically implemented using iBGP) en-
sures that each router learns at least one route for each
destination prefix, the two routers will learn routes for
the same set of destinations. Therefore, the undesirable
situation where the remote end-point forwards packets
that the migrate-to router cannot handle will not occur.
Although data packets are forwarded correctly, the
end-to-end forwarding path may temporarily differ from
the control-plane messages. For example, in Figure 5,
data packets sent by E will start traversing the path
through AS 400, while E’s control plane still thinks the
AS path goes through AS 300. These kinds of temporary
inconsistencies are a normal occurrence during the BGP
route-convergence process, and do not disrupt the flow
of traffic. Once the migrate-to router finishes importing
the routes, the remote end-point will learn the new best
route and control- and data-plane paths will agree again.
Correct handling of data traffic must also consider
the packets routed foward the remote end-point. Dur-
ing the grafting process, routers throughout the AS for-
ward these packets to the migrate-from router until they
learn about the routing change (i.e., the new egress point
for reaching these destinations). Since the migrate-
from router knows where the link, TCP connection, and
BGP session have moved, it can direct packets in flight
there through temporary tunnels established between the
migrate-from router and the migrate-to router.

5 BGP Grafting Prototype

We have developed an initial prototype to demonstrate
router grafting. Figure 6 depicts the main components of
the prototype. These include (i) a modified Quagga [11]
routing software, (ii) the graft daemon for controlling the
entire process, (iii) the SockMi [12] kernel module for
TCP migration, and (iv) a Click [13] based data plane
for implementing link migration.

The controlling entity in the prototype is the graft dae-
mon. This is the entity that initiates the BGP session

grafting, interacting with each of the other components
to perform the necessary steps. We assume each graft
daemon can be reached by an IP address. With this,
the graft daemon on the migrate-from router will initi-
ate a TCP connection with the daemon on the migrate-to
router. Once established, the migration process follows
the six general steps discussed in the following subsec-
tions.

5.1 Configuring the Migrate-To Router

In our architecture, configuration state is gleaned from
a dump of the migrate-from router’s configuration file,
rather than its internal data structures. The graft daemon
first extracts BGP session configuration from the config-
uration file of the migrate-from router, including the rules
for filtering and modifying route announcements. Then
the extracted configuration commands are applied to the
migrate-to router. Our current implementation includes
a simplistic parser for Quagga’s commands for configur-
ing BGP sessions®. In order to configure the migrate-to
router before migrating the TCP connection, we added an
‘inactive’ state to the BGP state machine. We also added
a configuration command to the Quagga command-line
interface:

neighbor w.x.y.z inactive

that triggers the router to create all internal data struc-
tures for the session, without attempting to open or ac-
cept a socket with the remote end-point.

5.2 Exporting Migrate-From BGP State

Once the migrate-to router is configured, the grafting
process can proceed to the second step, which is ini-
tiating the export of the routing state on the migrate-
from router. The grafting daemon on the migrate-from
router initiates the export process by calling a command
in Quagga that we added:

neighbor w.x.y.z migrate out

When this command is executed, our modified Quagga
software traverses the internal data structures, dumping
the necessary routing state (Adj-RIB-in and the selected
routes in the loc-RIB) to a file.

3As we add support for XORP, we will develop a more complete
parser as the configuration will require translating between configura-
tion languages—generally a hard problem, though easier in our case
because we focus on a relatively narrow aspect of the configuration.

5.3 Exporting Migrate-From TCP State

Once the routing state is dumped, the modified Quagga
calls the export_socket function as part of the
SockMi API to migrate the TCP state. This function
makes an ioctl call to the kernel module, passing the
socket’s file descriptor. The SockMi kernel module is
a Linux kernel module for kernels 2.4 through 2.6—we
tested with kernel version 2.6.19.7. The ioctl call
causes the kernel module to interact with Linux’s inter-
nal data structures. It removes the TCP connection from
the kernel, writing the socket state to a character device.
Note that part of this state is related to the protocol itself
(e.g., the current sequence number) as well as the buffers
(e.g., the receive queue and the transmit queue of packets
sent, but not acknowledged). When this state is written,
the kernel module sends a signal to the graft daemon on
the migrate-from router, which can read from the char-
acter device and send to the daemon on the migrate-to
router.

5.4 Importing the TCP State

The next step is to initiate the import of the TCP state at
the migrate-to router. Upon receiving the state from the
migrate-from router, the graft daemon on the migrate-to
router first notifies Quagga that it is about to import state
for a given ‘inactive’ session. This is done through a
command we added:

neighbor w.x.y.z migrate in

Upon executing the command, our modified Quagga in-
vokes the import_socket function in the SockMi
API. This function blocks until a TCP connection is im-
ported. During this time, the graft daemon makes an
ioctl to the SockMi kernel module. The graft daemon
then passes the TCP session state to a character device
which is read by the kernel module. The SockMi ker-
nel module accesses the Linux data structures to add a
socket with that TCP connection state, which unblocks
the import_socket function.

5.5 Migrating the Layer-Three Link

At this point, the graft daemon of the migrate-to router
triggers the migration of the underlying link. This in-
cludes removing the migrating session’s IP address from
the migrate-from router, adding the IP address to the
migrate-to router, and migrating the layer-two link. As
we did not have access to equipment to use a pro-
grammable transport network, we instead built our own
simple layer-two network that connects both the migrate-
from and migrate-to router to the remote end-point with a
Click [13] configuration that emulates a ‘programmable

transport’. This Click configuration performs a simple
switching primitive that connects the remote end-point to
either the migrate-from or the migrate-to router. In one
setting, packets from the migrate-from router are sent to
the remote end-point router, packets from the migrate-
to router are dropped, and packets from the remote end-
point router are sent to the migrate-from router. With
the alternative setting, the reverse occurs, forming a link
between the migrate-to router and the remote-end point
router. This switch value is settable via a handler, making
it accessible to the graft daemon running on the migrate-
from router.

5.6 Importing Routing State

As the final step, when the importing of the TCP connec-
tion is complete and the import_socket function is
unblocked, the modified Quagga reads the routing state,
which was stored in a file when the local graft daemon
read it in from the graft daemon running on the migrate-
from router. Much as the “normal” operation of the
router, which receives a BGP message from a socket and
then calls a function to handle the update, the importing
process will read the Adj-RIB-in from a file and call the
same function to process the routing update. For compar-
ing the RIB from the migrate-from router to the migrate-
to router, the importing process reads the route from the
file, looks up the route in the local RIB, and compares
them. If they differ, it will use existing functions to send
out the route to the peer.

6 Optimizations for Reducing Impact

Grafting a BGP session requires incrementally updating
the remote end-point as well as the other routers in the
AS. In this section, we present optimizations that can
further reduce the traffic and processing load imposed
on routers not directly involved in the grafting process.
These optimizations capitalize on the knowledge that
grafting is taking place and the routers’ local copy of
the routes previously learned from the remote end-point.
First, we discuss how we can keep routers from send-
ing unnecessary updates to their eBGP neighbors. Sec-
ond, we then discuss how the majority of iBGP messages
can be eliminated. Finally, we consider the intra-cluster
router case where the routes do not change.

6.1 Reducing Impact on eBGP Sessions

Importing routes on the migrate-to router, and with-
drawing routes on the migrate-from router, may trigger
a flurry of update messages to other BGP neighbors.
Consider the example in Figure 5, where before graft-
ing router E had announced 192.168.0.0/16 to router A,

10

which in turn announced the route to B and C. Eventu-
ally two things will happen: (i) the migrate-from router
A will remove the 192.168.0.0/16 route from E and (ii)
the migrate-to router B will add the 192.168.0.0/16 route
from E. Without any special coordination, these two
events could happen in either order.

If A removes the route before B imports it, then A’s
eBGP neighbors (like router C) may receive a withdrawal
message, or briefly learn a different best route (should A
have other candidate routes), only to have A reannounce
the route upon (re)learning it from B. Alternatively, if B
adds the route before A sends the withdrawal message to
C, then A may have both a withdrawal message and the
subsequent (re)announcement queued to send to router
C, perhaps leading to redundant BGP messages. In the
first case, C may temporarily have no route at all, and in
the second case C may receive redundant messages. In
both cases these effects are temporary, but we would like
to avoid them if possible.

To do so, rather than deleting the route, A can mark the
route as “‘exported”’—safe in the knowledge that, if this
route should remain the best route, A will soon (re)learn
it from the migrate-to router B. For example, suppose the
route from E is the only route for the destination prefix—
then A would certainly (re)learn the route from B, and
could forgo withdrawing and reannouncing the route to
its other neighbors. Of course, if A does not receive the
announcement (either after some period of time or im-
plicitly through receiving an update with a different route
for that prefix), then it can proceed with deleting the ex-
ported route.

So far we only considered the eBGP messages the
migrate-from router would send. A similar situation can
occur on the eBGP sessions of the other routers in the
AS (e.g., router F). This is because these other routers
must be notified (via iBGP) to no longer go through A
for the routes learned over the migrating session (i.e.,
with E). Therefore, the migrate-from router must send
out withdrawal messages to its iBGP neighbors and the
migrate-to router must send out announcements to its
iBGP neighbors. This may result in the other routers in
the AS (e.g., router F) temporarily withdrawing a route,
temporarily sending a different best route, or sending a
redundant update to their eBGP neighbors. Because of
this, we have the migrate-from router send the marked
list to each of its iBGP neighbors and a notification that
these all migrated to the migrate-to router — this list is
simply the list of prefixes, not the associated attributes.
We expect this list to be relatively small in terms of total
bytes. With this list, the other routers in the AS can per-
form the same procedure, and eliminate any unnecessary
external messages.

6.2 Reducing Impact on iBGP Sessions

While using iBGP unmodified is sufficient for dealing
with the change in topology brought about by migration,
it is still desirable to reduce the impact migration has on
the iBGP sessions. Here, since the route-selection pol-
icy will likely be consistent throughout an ISP’s network,
we can reduce the number of update messages sent by
extending iBGP (an easier task than modifying eBGP).
When the migrate-from and migrate-to routers select the
same routes, the act of migration will not change the
decision. Since all routers are informed of the migra-
tion, the iBGP updates can be suppressed (the migrate-
from router withdrawing the route and the migrate-to
router announcing the route). When the migrate-from
and migrate-to routers select different routes, it is most
likely due to differences in IGP distances. For the
migrate-to router, the act of migration will cause all
routes learned from the remote end-point router to be-
come directly learned routes, as opposed to some dis-
tance away, and therefore the migrate-to router will now
prefer those routes (except when the migrate-to router’s
currently selected route is also directly learned). This
change in route selection causes the migrate-to router to
send updates to its iBGP neighbors notifying them of the
change. However, since it is more common to change
routes, we can reduce the number of updates that need to
be sent with a modification to iBGP where updates are
sent when the migrate-to router keeps a route instead of
when it changes a route. Other routers will be notified of
the migration and will assume the routes being migrated
will be selected unless told otherwise.

6.3 Eliminating Processing Entirely

Re-running the route-selection processes is essential as
migration can change the topology, and therefore change
the best route. When migrating within a cluster router,
the topology does not change, and therefore we should
be able to eliminate processing entirely. The selected
best route will be a consistent selection on every blade.
Therefore, even when migrating, while the internal data
structures might need to be adjusted, no decision pro-
cess needs to be run and no external messages need to be
sent. In fact, there is no need for any internal messages
to be sent either. With the modified iBGP used for com-
munication between route processor blades, the next hop
field is the next router, not the next processor blade —i.e.,
iBGP messages are only used to exchange routes learned
externally and do not affect how packets are forwarded
internally. Therefore, upon migration, there is no need
to send an update as the routes learned externally have
already been exchanged.

While exchanging messages and running the decision

11

process can be eliminated, transferring the routing state
from the exporting blade to the importing blade is still
needed. Being the blade responsible for a particular BGP
session requires that the local RIB have all of the routes
learned over that session. While some may have been
previously announced by the migrate-from blade, not all
of them were. Therefore, we need to send over the Adj-
RIB-in for the migrating session in order to know all
routes learned over that session as well as which subset
of routes the migrate-from blade announced were asso-
ciated with that session.

7 Performance Evaluation

In this section, we evaluate router grafting through exper-
iments with our prototype system and realistic traces of
BGP update messages. We focus primarily on control-
plane overhead, since data-plane performance depends
primarily on the latency for link migration—where our
solution simply leverages recent innovations in pro-
grammable transport networks. First, we evaluate our
prototype implementation from Section 5 to measure the
grafting time and CPU utilization on the migrate-from
and migrate-to routers. Then we evaluate the effective-
ness of our optimizations from Section 6 in reducing the
number of update messages received by other routers.

7.1 Grafting Delay and Overhead

The first experiment measures the impact of BGP ses-
sion grafting on the migrate-from and migrate-to routers.
To do this we supplemented the topology shown in Fig-
ure 5 with a router adjacent to E (in a different AS) and a
router adjacent to B (in a different AS). These two extra
routers were fed a BGP update message trace taken from
RouteViews [14]. This essentially fills the RIB of B and
E with routes that have the same set of prefixes, but dif-
ferent paths. We used Emulab [15] to run the experiment
on servers with 3GHz processors and 2GB RAM.*

The time it takes to complete the migration process is
a function of the size of the routing table. The larger it
is, the larger the state that needs to be transferred and
the more routes that need to be compared. To capture
this relationship, we varied the RIB size by replaying
multiple traces. The results, shown in Figure 7, include
both the case where migration occurs between routers
(when the migrate-to router must run the BGP decision
process) and the case where migration is between blades
(where the decision process does not need to run because
the underlying topology is not changed). The “between
blades” curve, then, illustrates the time required to trans-
fer the BGP routes and import them into the internal data

4This is roughly comparable to the route processors used in com-
mercially available high-end routers.

=]

Between

Rnufy‘

Between
Blades o

~

@

w

-
e
T

0 50000

N

Migration Time (seconds)
-~

[=]

100000 150000 200000

RIB size (# prefixes)

250000

Figure 7: BGP session grafting time vs. RIB size.

structures. Note that these results do not imply that TCP
needs to be able to handle this long of an outage where
packets go unacknowledged — the TCP migration process
takes less than a millisecond. Instead, when compared
to rehoming a customer today, where there is downtime
measured in minutes, the migration time is small. In
fact, since in our setup AS100 and AS200 have a peer-
ing agreement, the actual migration time would be less if
AS100 were a customer of AS200 (since AS100 would
announce fewer routes to AS200).

The CPU utilization during the grafting process is also
important. The BGP process on the migrate-from router
experienced only a negligible increase in CPU utiliza-
tion for dumping the BGP RIBs. The migrate-to router
needs to import the routing entries and compare routing
tables. For each prefix in the received routing informa-
tion, the migrate-to router must perform a lookup to find
the routing table entry for that prefix. Figure 8 shows
the CPU utilization at 0.2 second intervals, as reported
by top, for the case where the RIB consists of 200,000
prefixes. There are three things to note. First, the CPU
utilization is roughly constant. This is perhaps due to the
implementation where the data is received, placed in a
file, then iteratively read from the file and processed be-
fore reading the next. This keeps the CPU utilization
at only a fraction as computation is mixed with reads
from disk. Second, the CPU utilization is the same for
both migrating between routers and migrating between
blades. The case between routers merely takes longer be-
cause of the additional work involved in running the BGP
decision process. Third, migration can be run as a lower
priority task and use less CPU but take longer — prevent-
ing the migration from effecting the performance of the
router during spikes in routing updates, which commonly
results in intense CPU usage during the spikes.

7.2 Optimizations for Reducing Impact

While the impact on the migrate-from and migrate-to
routers is important, perhaps a more important metric is

12

Between A

2 2 C Routers { !
15
VY l
10
Between

5 Bfades l
Y B

02 08 14 2 26 32 38 44 5 56 62 68

CPU Utllizatlon (%)

time (seconds)

Figure 8: The CPU utilization at the migrate-to router
during migration, with a 200k prefix RIB.

the impact on the routers not involved in the migration,
including other routers within the same AS as well as the
eBGP neighbors. If the overhead of grafting is relatively
contained, network operators could more freely apply the
technique to simplify network-management tasks.

First and foremost, the remote end-point experiences
an overhead directly proportional to the number of ad-
ditional BGP update messages it receives. The num-
ber of messages depends on how many best routes dif-
fer between the migrate-from and migrate-to router—the
migrate-from router must send an update message for ev-
ery route that differs. The exact amount depends heav-
ily on the proximity of the migrate-from and migrate-
to routers—if the two routers are in the same Point-of-
Presence of the ISP, perhaps no routes would change.
As such, we do not expect this overhead to be signifi-
cant. Since the sources of overhead for the remote end-
point are relatively well understood, and it is difficult to
acquire the kinds of intra-ISP measurement data neces-
sary to quantify the number of route changes, we do not
present a plot for this case.

Perhaps the more significant impact is on the other
routers, both within the AS and in other ASes, that may
have to learn new routes for the prefixes announced by
the remote end-point. To evaluate this, we measured the
number of updates that would be sent as a function of the
fraction of prefixes where the migrate-from router had
selected a different route than the migrate-to router. By
doing so, this covers the entire range of migration targets
(i.e. it does not limit our evaluation to migration within
a PoP). Recall that this difference is what needs to be
corrected. Also recall that the prefixes being considered
here are the ones learned from the router at the remote
end-point of the session being migrated, not the entire
routing table, as these are the routes that could impact
what is sent to other routers. For our measurement, we
use a fixed set of 100,000 prefixes. However, the results
are directly proportional to the number of prefixes, and
can therefore be scaled appropriately — for migrating a
customer link, the number of prefixes would be signifi-
cantly smaller, for migrating a peering link, the number

500000

500000 1

450000

500000

400000 400000

350000

300000

400000

300000

250000

200000

300000

200000 K

Updates Sent
Updates Sent

150000

100000

50000

0 02 04 06 08 1 0 02

Fraction RIBs differ

05
03
L e a3
100000 : o3 |
01
o 1
N ol E

04

Fraction RIBs differ

Updates Sent

0
0

4 0

200000 s
0

0

GRENE

100000

oe 08 N 0 02 04 05 08 1

Fraction RIBs differ

(a) Without optimization.

(b) Reducing eBGP impact.

(c) Reducing iBGP impact.

Figure 9: Updates sent as a result of migration.

of prefixes could be higher.

The results are shown in Figure 9, with the three
graphs representing the three different cases as discussed
in Section 6: (a) direct approach with no optimizations,
(b) optimizations to reduce eBGP messages by capital-
izing on redundant information in the network, and (c)
optimizations to reduce iBGP messages by treating the
route selection changing as the common case. For the
graphs, each line represents a fixed fraction of differ-
ing routes that change the selected route as a result of
the grafting. For example, consider where the migrate-
from router selects a particular route different than the
migrate-to router. In this case, after migration, the
migrate-to router selects the route the migrate-from se-
lected (i.e., it changes its own route). Each line repre-
sents the fraction of times this change occurs—for ex-
ample, the line labeled 0.2 in Figure 9 is where 20% of
the routes that differ will change to the routes selected by
the migrate-from router.

There are several things of note from the graphs. First
is that the direct (unoptimized) approach must send sig-
nificantly more messages. In the case where the selected
routes do not differ much, which we consider will be
a most likely scenario, the optimized approaches hardly
send any messages at all. Second, when comparing Fig-
ure 9(b) with Figure 9(c), we can see that depending
on what would be considered the common case, we can
choose a method that would result in the fewest updates.
For (b), the assumption is that when the routes differ,
the migrate-to router will not change to the routes the
migrate-from selected. Whereas in (c), the assumption is
that when the routes differ, the migrate-from router will
change to the routes the migrate-from router selected.
The reason they would change is that the routes learned
from the remote end-point of the session being migrated
will now be directly learned routes, rather than via iBGP.
It is likely that the policy of route selection is consistent
throughout the ISPs network, and therefore differences
will be due to IGP distances and changing the router will
change those routes to be more preferable. We are work-
ing on characterizing when these differences would oc-

13

cur in order to enable us to predict the impact a given mi-
gration might have. Third, and perhaps most important,
migration can be performed with minimal disruption to
other routers in the likely scenario where there are few
differences in routes selected.

8 Related Work

High availability and ease of network management are
goals of many systems, and therefore router grafting has
much in common with them. In particular, ones that
attempt to minimize disruptions during planned main-
tenance. One possibility is to reconfigure the routing
protocols such that traffic will no longer be sent to the
router about to undergo maintenance [16, 17]. Alter-
natively, others have decoupled the control plane and
data plane such that the router can continue to forward
packets while the control plane goes off-line (e.g., re-
booted) [18, 19]. However, unlike router grafting, these
require modifications to the remote end-point router and
they are only useful for temporarily shutting down the
session on a given physical router, rather than enabling
the session to come back up on a different router as in
router grafting.

In this regard, router grafting shares more in common
with VROOM [3], which makes use of virtual machine
migration [20] to ease network management. Mainte-
nance could be performed without taking down the router
simply by migrating the virtual router to another phys-
ical router. This requires the two physical routers to
be compatible (running the same virtualization technol-
ogy), a limitation router grafting does not have. In fact,
router grafting does not rely on virtual machine technol-
ogy. Kozuch showed the ability to migrate without the
use of virtualization [21], but did so at the granularity
of the entire operating system and all running processes.
With a coarse granularity, the physical router where the
virtual router is being migrated to must be able to handle
the entire virtual router’s load.

Router grafting is also similar to the RouterFarm
work [6], which targeted re-homing a customer. How-

ever, it required restarting the session and is more dis-
ruptive than router grafting. Along similar lines, high-
availability routers enable switching over to a different
router or blade in a router [22]. This, however, is done
either through periodically check-pointing, which pre-
serves the memory image, or running two complete in-
stances of the router software concurrently, which is an
inefficient use of resources.

While we presented router grafting in the context of a
BGP session, we envision it being more general. Along
these lines, partitioning the prefix space across multiple
routers or blades is a possibility. ViAggre [23] partitions
the prefix space across multiple routers, however it is
a static architecture not one which dynamically reparti-
tions the prefix space as router grafting could.

Finally, we made use of TCP socket migration to han-
dle change or disruption in end-points. One alternative
is to modify the TCP protocol to include the ability to
change IP addresses [24]. Since the IP address of the
end-points in router grafting can remain the same, we do
not need this capability, but could make use of it.

9 Conclusions

Router grafting is a new technique that opens many new
possibilities for managing a network. It does this by en-
abling, without disruption, the migration of a routing ses-
sion between (i) physical routers, (ii) blades in a cluster
router, and (iii) routers from different vendors. We were
able to do this while being transparent to the remote end-
point. We handled the changes in topology through in-
cremental updates, only sending out the necessary up-
dates to convey the difference. Importantly, we did not
affect the correctness of the network as the data plane
will continue to forward packets and routing updates do
not cause the migration to be aborted.

Going forward, we plan to explore the motivating ap-
plications for router grafting to further demonstrate the
usefulness of our new technique. We are particularly in-
terested in exploring the role of router grafting in traffic
engineering. Finally, this work raises interesting ques-
tions about what exactly a router is, and the various ways
routers can be “sliced and diced.” We plan to explore
these questions in our ongoing work.

References

[1] S. Agarwal, C. Chuah, S. Bhattacharyya, and C. Diot, “Impact of
BGP dynamics on router CPU utilization,” in Passive and Active
Measurement, April 2004.

J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang, “Auto-
mated provisioning of BGP customers,” IEEE Network Maga-
zine, November/December 2003.

Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rex-
ford, “Virtual Routers on the Move: Live Router Migration as

[2]

14

[4]

[3]

(6]

(71

(8]

[9]

[10]

[11]
[12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

a Network-Management Primitive,” in ACM SIGCOMM, August
2008.

J. Wei, K. Ramakrishnan, R. Doverspike, and J. Pastor, “Conver-
gence through packet-aware transport,” Journal of Optical Net-
working, vol. 5, April 2006.

“Ciena CoreDirector Switch.” http://www.ciena.com.

M. Agrawal, S. Bailey, A. Greenberg, J. Pastor, P. Sebos, S. Se-
shan, J. van der Merwe, and J. Yates, “RouterFarm: Towards a
dynamic, manageable network edge,” in Proc. ACM SIGCOMM
Workshop on Internet Network Management (INM), September
2006.

A. Rostami and E. Sargent, “An optical integrated system for
implementation of NxM optical cross-connect, beam splitter,
mux/demux and combiner”” IJCSNS International Journal of
Computer Science and Network Security, July 2006.

M. Tahir, M. Ghattas, D. Birhanu, and S. N. Nawaz, Cisco I0S
XR Fundamentals. Cisco Press, 2009.

“IETF draft: MRT routing information export for-
mat,” July 2009. http://tools.ietf.org/id/
draft-ietf-grow-mrt-10.txt.

R. Braden, “Requirements for Internet Hosts - Communication
Layers.” RFC 1122, October 1989.

“Quagga software routing suite,” www . quagga .net.

M. Bernaschi, F. Casadei, and P. Tassotti, “SockMi: a solution
for migrating TCP/IP connections,” in Proc. Euromicro Interna-
tional Conference on Parallel, Distributed and Network-Based
Processing, 2007.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek,
“The Click modular router,” in ACM Trans. Comp. Sys., August
2000.

“Route views project,” http://www.routeviews.org.

B. White, J. Lepreau, L. Stoller, R. Ricci, G. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar, “An integrated
experimental environment for distributed systems and networks,”
in OSDI, December 2002.

R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of
hot-potato routing in IP networks,” IEEE/ACM Trans. Network-
ing, December 2008.

P. Francois, M. Shand, and O. Bonaventure, “Disruption-free
topology reconfiguration in OSPF networks,” in Proc. IEEE IN-
FOCOM, May 2007.

A. Shaikh, R. Dube, and A. Varma, “Avoiding instability during
graceful shutdown of multiple OSPF routers,” IEEE/ACM Trans.
Networking, vol. 14, pp. 532-542, June 2006.

E. Chen, R. Fernando, J. Scudder, and Y. Rekhter, “Graceful
Restart Mechanism for BGP.” RFC 4724, January 2007.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,”
in Proc. Networked Systems Design and Implementation, May
2005.

M. A. Kozuch, M. Kaminsky, and M. P. Ryan, “Migration without
virtualization,” in Proc. Workshop on Hot Topics in Operating
Systems, May 2009.

“Cisco IOS high availability curbs downtime with faster
reloads and upgrades.” http://www.cisco.com/en/
US/products/ps6550/prod_white_papers_list.
html.

H. Ballani, P. Francis, T. Cao, and J. Wang, “Making Routers
Last Longer with ViAggre,” in Proc. of USENIX Symposium on
Networked Systems Design and Implementation, April 2009.

A. Snoeren and H. Balakrishnan, “An end-to-end approach to
host mobility,” in Proc. ACM MOBICOM, (Boston, MA), August
2000.

