Notes on Subsets of $\{1, 2, ..., n\}$ that Contain No Consecutive Integers

Dennis Walsh Middle Tennessee State University

Let [n] denote the set of the first n positive integers, that is, $[n] = \{1, ..., n\}$. There are 2^n subsets of [n]. How many of these subsets contain no consecutive integers? In particular, how many size-k subsets contain no consecutive integers? Let c(n, k) denote the number of size-k subsets that contain no consecutive integers.

Example 1. (i) If n = 8 and k = 2, the subsets are

giving us a count $c(8,2) = 1 + 2 + ... + 6 = {7 \choose 2} = 21$.

(ii) If n = 8 and k = 3, the subsets are

$$\{1,3,5\}, \{1,3,6\}, \{1,3,7\}, \{1,3,8\} \\ \{1,4,6\}, \{1,4,7\}, \{1,4,8\} \\ \{1,5,7\}, \{1,5,8\} \\ \{1,6,8\} \\ \{2,4,6\}, \{2,4,7\}, \{2,4,8\} \\ \{2,5,7\}, \{2,5,8\} \\ \{2,6,8\} \\ \{3,5,7\}, \{3,5,8\} \\ \{3,6,8\} \\ \{4,6,8\}.$$

There are $c(8,3) = {5 \choose 2} + {4 \choose 2} + {3 \choose 2} + {2 \choose 2} = {6 \choose 3} = 20$ subsets.

(iii). If n = 8 and k = 4 the subsets are

$$\begin{array}{l} \{1,3,5,7\},\ \{1,3,5,8\},\ \{1,3,6,8\},\ \{1,4,6,8\}\\ \{2,4,6,8\} \end{array}$$

There are $c(8,4) = {5 \choose 4} = 5$ subsets.

I. Size-2 Subsets that Contain No Consecutive Integers

We first look at the case of size-2 subsets. For example, there are 6 size-2 subsets of $\{1,2,3,4,5\}$, namely, $\{1,3\}$, $\{1,4\}$, $\{1,5\}$, $\{2,4\}$, $\{2,5\}$, and $\{3,5\}$. Hence c(5,2)=6. To find a general formula for c(n,2), we use the principle of inclusion/exclusion to obtain

$$c(n,2)=$$
 the number of all size-2 subsets
- the number of subsets that contain i and $i+1$ where $i\in[n-1]$
 $=\binom{n}{2}-(n-1)$
 $=\binom{n-1}{2}.$ (1)

An alternative approach to formula (1) uses the number of size-2 subsets that contain no consecutive integers and that has minimum element m which we denote by c(n,2,m). Clearly c(n,2,m)=n-m-1 since the subsets being counted are $\{m,m+2\},\{m,m+3\},...,\{m,m+n-m\}$. Therefore,

$$c(n,2) = \sum_{m=1}^{n-2} c(n,2,m)$$

$$= \sum_{m=1}^{n-2} (n-m-1)$$

$$= \sum_{j=1}^{n-2} j \text{ (upon reversing the order of summation)}$$

$$= {n-1 \choose 2}.$$
(2)

[See OEIS integer sequence A161680, at http://oeis.org/A161680, which sequence is given by $a(n) = \binom{n}{2}$, and $\binom{n}{2} = \text{number of size-2 subsets of } \{0, 1, ..., n\}$ that contain no consecutive integers.]

Initial Values for c(n, 2).

		J = U	• ~(••, –	,•							
											10	
c(n,2)	0	0	0	1	3	6	10	15	21	28	36	45

II. Derivation of A General Formula for c(n, k), the Number of Size-k Subsets of [n] that Contain No Consecutive Integers

Consider a string of symbols consisting of k A's and (n+1-2k) B's. There are $\binom{n+1-k}{k}$ ways to shuffle the symbols in the string. For each resulting string, replace each B symbol in the string with the number 0. If k=2, replace the first A with the numbers 1 0 and the last A with the numbers 0 1. If $k\geq 3$, replace the first and the last A's in the string with the number 1, replace the second A with the numbers 0 1 0, and if there are any more A's, replace each of them with the numbers 1 0. The resulting string $\langle s_1s_2...s_n\rangle$ is a string of k ones and (n-k) zeros with no consecutive ones. The corresponding subset S of [n] is given by $S=\{i\in[n]:s_i=1\}$. Since the string has no consecutive ones, S has no consecutive integers. Hence there are $\binom{n+1-k}{k}$ such subsets S. We have derived the following theorem.

Theorem 1. The number c of size-k subsets of [n] that contain no consecutive integers is given by

$$c = c(n,k) = {\binom{n+1-k}{k}}. (4)$$

Example. Suppose n=7 and k=3. Then $c(7,3)=\binom{8-3}{3}=\binom{5}{3}=10$. Look at all the shufflings of AAABB:

Shuffling	Resulting Binary Strings	Corresponding Subsets
AAABB	1010100	$\{1, 3, 5\}$
AABAB	1010010	$\{1, 3, 6\}$
AABBA	1010001	$\{1, 3, 7\}$
ABAAB	1001010	$\{1, 4, 6\}$
ABABA	1001001	$\{1, 4, 7\}$
ABBAA	1000101	$\{1, 5, 7\}$
BAAAB	0101010	$\{2,4,6\}$
BAABA	0101001	$\{2,4,7\}$
BABAA	0100101	$\{2, 5, 7\}$
BBAAA	0010101	${3,5,7}$

A Table of Initial Values for c(n, k), $0 \le k \le \lfloor \frac{n+1}{2} \rfloor$.

$n \backslash k$	0	1	2	3	4	5	6	7
0	1							
1	1	1						
2	1	2						
3	1	3	1					
4	1	4	3					
5	1	5	6	1				
6	1	6	10	4				
7	1	7	15	10	1			
8	1	8	21	20	5			
9	1	9	28	35	15	1		
10	1	10	36	56	35	6		
11	1	11	45	84	70	21	1	
12	1	12	55	120	126	56	7	
13	1	13	66	165	210	126	28	1

Note. The diagonals form rows of Pascal's triangle and the recursive formula c(n,k) = c(n-1,k) + c(n-2,k-1) holds. The *Maple* code to generate the values in the table above is given by

>seq(seq(binomial(n+1-k,k),k=0..floor(n/2+1/2)),n=0..13);

Generating functions for c(n, k)

The generating function g_k for c(n,k) when k is fixed is given by

$$g_k(x) = \frac{x^{2k-1}}{(1-x)^{k+1}}. (5)$$

Derivation.

$$g_k(x) = \sum_{n=0}^{\infty} c(n,k) x^n = \sum_{n=2k-1}^{\infty} {n+1-k \choose k} x^n = \sum_{j=0}^{\infty} {j+k \choose k} x^{j+2k-1}$$

$$= x^{2k-1} \sum_{j=0}^{\infty} {j+k \choose k} x^j = x^{2k-1} \left(\frac{1}{1-x}\right)^{k+1}$$

$$= \frac{x^{2k-1}}{(1-x)^{k+1}} \qquad \diamond$$

These generating functions generate the column sequences for the c(n,k) table of values. For example,

$$g_3(x) = \frac{x^5}{(1-x)^4} = x^5 + 4x^6 + 10x^7 + 20x^8 + 35x^9 + 56x^{10} + 84x^{11} + 120x^{12} + 165x^{13} + \dots$$

III. The Number of Subsets of $\{1,...,n\}$ that Contain No Consecutive Integers

To find the number c(n) of all subsets of [n] that contain no consecutive integers, we sum c(n,k) over all subset sizes k:

$$c(n) = \sum_{k=0}^{\left\lfloor \frac{n+1}{2} \right\rfloor} c(n,k) = \sum_{k=0}^{\left\lfloor \frac{n+1}{2} \right\rfloor} {n+1-k \choose k} = F_{n+2}, \tag{6}$$

the (n+2)nd Fibonacci number. We note that $F_n=\frac{(1+\sqrt{5})^n-(1-\sqrt{5})^n}{2^n\sqrt{5}}$, and therefore

$$c(n) = \frac{(1+\sqrt{5})^{n+2} - (1-\sqrt{5})^{n+2}}{2^{n+2}\sqrt{5}}. (7)$$

Table of Initial Values for c(n)

n		0	1	2	3	4	5	6	7	8	9	10	11	12	13
c(r	i)	1	2	3	5	8	13	21	34	55	89	144	233	377	610

Note that c(n) satisfies the recursive formula c(n+2)=c(n+1)+c(n) with c(0)=1 and c(1)=2.

Generating function for c(n)

$$g(x) = \sum_{n=0}^{\infty} c(n)x^n = x \sum_{n=0}^{\infty} c(n-1)x^{n-1} + x^2 \sum_{n=0}^{\infty} c(n-2)x^{n-2}$$

$$= x \left(\sum_{n=1}^{\infty} c(n-1)x^{n-1} + c(-1)x^{-1}\right)$$

$$+ x^2 \left(\sum_{n=2}^{\infty} c(n-2)x^{n-2} + c(-2)x^{-2} + c(-1)x^{-1}\right)$$

$$= x(g(x) + \frac{1}{x}) + x^2(g(x) + 0 + \frac{1}{x})$$

$$= xg(x) + 1 + x^2g(x) + x,$$

which implies $g(x) = \frac{1+x}{1-x-x^2}$. (8)