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Abstract

It is well-known that the applicability of linear discriminant analysis (LDA) to high-dimensional pattern classifica-

tion tasks such as face recognition often suffers from the so-called ‘‘small sample size’’ (SSS) problem arising from the

small number of available training samples compared to the dimensionality of the sample space. In this paper, we pro-

pose a new LDA method that attempts to address the SSS problem using a regularized Fisher�s separability criterion. In
addition, a scheme of expanding the representational capacity of face database is introduced to overcome the limitation

that the LDA-based algorithms require at least two samples per class available for learning. Extensive experiments per-

formed on the FERET database indicate that the proposed methodology outperforms traditional methods such as

Eigenfaces and some recently introduced LDA variants in a number of SSS scenarios.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Face recognition (FR) has a wide range of

applications, such as face-based video indexing

and browsing engines, biometric identity authenti-

cation, human-computer interaction, and multi-
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media monitoring/surveillance. Within the past
two decades, numerous FR algorithms have been

proposed, and detailed surveys of the develop-

ments in the area have appeared in the literature

(see e.g. Samal and Iyengar, 1992; Valentin et al.,

1994; Chellappa et al., 1995; Gong et al., 2000;

Turk, 2001; Zhao et al., 2003). Among various

FR methodologies used, the most popular are the

so-called appearance-based approaches, which in-
clude two well-known FRmethods, namely, Eigen-

faces (Turk and Pentland, 1991) and Fisherfaces
ed.
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(Belhumeur et al., 1997). With focus on low-dimen-

sional statistical feature extraction, the appear-

ance-based approaches generally operate directly

on the appearance images of face object and proc-

ess them as 2D holistic patterns in order to avoid
difficulties associated with 3D modelling, and

shape or landmark detection (Turk, 2001).

Of the appearance-based FR methods, those

utilizing linear discriminant analysis (LDA) tech-

niques have shown promising results as it is dem-

onstrated in (Belhumeur et al., 1997; Zhao et al.,

1999; Chen et al., 2000; Yu and Yang, 2001; Liu

and Wechsler, 2002; Lu et al., 2003a,b; Ye and Li,
2004). However, statistical learning methods

including the LDA-based ones often suffer from

the so-called ‘‘small sample size’’ (SSS) problem

(Raudys and Jain, 1991), encountered in high-

dimensional pattern recognition tasks where the

number of training samples available for each

subject is smaller than the dimensionality of

the sample space. For example, only L 2 [1, 5]
training samples per subject are available while

the dimensionality is up to J = 17,154 in the

FR experiments reported here. As a result, the

sample-based estimation for the between- and

within-class scatter matrices is often extremely

ill-posed in the application of LDA into FR tasks.

Briefly, there are two ways to address the prob-

lem. One option is to apply linear algebra tech-
niques to solve the numerical problem of

inverting the singular within-class scatter matrix.

For example, Tian et al. (1986) utilize the pseudo

inverse to complete this task. Also, some research-

ers (e.g. Hong and Yang, 1991; Zhao et al., 1999)

recommended the addition of a small perturba-

tion to the within-class scatter matrix so that

it becomes nonsingular. The second option is a
subspace approach, such as the one followed

in the development of the Fisherfaces method

(Belhumeur et al., 1997), where principal compo-

nent analysis (PCA) is firstly used as a preprocess-

ing step to remove the null space of Sw, and then

LDA is performed in the lower dimensional PCA

subspace. However, it has been shown that the

discarded null spaces may contain significant dis-
criminatory information (Liu et al., 1992a,b,

1993). To prevent this from happening, solutions

without a separate PCA step, called direct LDA
(D-LDA) methods have been presented recently

in (Chen et al., 2000; Yu and Yang, 2001; Lu

et al., 2003b).

The basic premise behind the D-LDA ap-

proaches is that the information residing in (or
close to) the null space of the within-class scatter

matrix is more significant for discriminant tasks

than the information out of (or far away from)

the null space. Generally, the null space of a ma-

trix is determined by its zero eigenvalues. How-

ever, due to insufficient training samples, it is

very difficult to identify the true null eigenvalues.

As a result, high variance is often introduced in
the estimation for the zero (or very small) eigen-

values of the within-class scatter matrix. Note that

the eigenvectors corresponding to these eigen-

values are considered to be the most significant

feature bases in the D-LDA approaches (Chen

et al., 2000; Yu and Yang, 2001; Lu et al., 2003b).

To overcome the above problem, a new LDA

method for FR tasks is proposed in this letter.
The LDA method developed here is based on a

novel regularized Fisher�s discriminant criterion,

which is particularly robust against the SSS prob-

lem compared to the original one. The purpose of

regularization is to reduce the high variance re-

lated to the eigenvalue estimates of the within-class

scatter matrix at the expense of potentially in-

creased bias. It will be shown that by adjusting
the regularization parameter, we can obtain a set

of LDA variants, such as the D-LDA of Yu and

Yang (2001) (hereafter YD-LDA) and the D-

LDA of Lu et al. (2003b) (hereafter JD-LDA).

The trade-off between the variance and the bias,

depending on the severity of the SSS problem, is

controlled by the strength of regularization. Exten-

sive experiments indicate that there exists an opti-
mal regularization solution for the proposed

method, which outperforms some existing FR

approaches including Eigenfaces, YD-LDA and

JD-LDA. In addition, a scheme of expanding the

representational capacity of face database is intro-

duced to overcome a known limitation of the LDA

style learning methods, which require at least two

samples per class available for training. Further-
more, experimentation shows that the scheme also

enhances the overall FR performance of the pro-

posed LDA method.
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2. Methods

2.1. The small sample size (SSS) problem

Given a training set, Z ¼ fZ igCi¼1, containing C

classes with each class Z i ¼ fzijgCi
j¼1 consisting of a

number of localized face images zij, a total of

N ¼
PC

i¼1Ci face images are available in the set.

For computational convenience, each image is rep-

resented as a column vector of length J( = Iw · Ih)
by lexicographic ordering of the pixel elements, i.e.

zij 2 RJ , where (Iw · Ih) is the image size, and RJ

denotes the J-dimensional real space.
LDA finds a set of M(� J) feature basis vec-

tors, denoted as fwmg
M
m¼1, in such a way that the

ratio of the between- and within-class scatters of

the training sample is maximized (Fisher, 1936).

The maximization problem is generally formulated

as

W ¼ argmax
W

jWTSbWj
jWTSwWj

;

W ¼ ½w1; . . . ;wM �; wm 2 RJ ð1Þ

where Sb and Sw are the between- and within-class

scatter matrices, having the following expressions,

Sb ¼
1

N

XC
i¼1

Cið�zi � �zÞð�zi � �zÞT

¼
XC
i¼1

Ub;iU
T
b;i ¼ UbU

T
b ð2Þ

Sw ¼ 1

N

XC
i¼1

XCi

j¼1

ðzij � �ziÞðzij � �ziÞT ð3Þ

where Ub;i ¼ ðCi=NÞ1=2ð�zi � �zÞ, Ub = [Ub,1, . . . ,Ub,c],
and �zi ¼ 1

Ci

PCi
j¼1zij is the mean of the class Zi. The

optimization problem of Eq. (1) is equivalent to

the following generalized eigenvalue problem,

Sbwm ¼ kmSwwm; m ¼ 1; . . . ;M ð4Þ
Thus, when Sw is non-singular, the basis vectors

W sought in Eq. (1) correspond to the firstM most

significant eigenvectors of ðS�1
w SbÞ, where the ‘‘sig-

nificant’’ means that the eigenvalues correspond-

ing to these eigenvectors are the first M largest

ones. Due to the SSS problem, often an extremely
degenerated Sw is generated in FR tasks. Let us as-

sume that A and B represent the null spaces of Sb
and Sw respectively, while A0 ¼ RJ � A and B0 ¼
RJ � B denote the orthogonal complements of A
and B. Traditional methods, for example Fisher-
faces (Belhumeur et al., 1997), attempt to solve

the problem by utilizing an intermediate PCA step

to remove A and B. Nevertheless, it should be

noted at this point that the maximum of the ratio

in Eq. (5) can be reached only when jWTSwWj = 0

and jWTSbWj 5 0. This means that the discarded

null space B may contain the most significant dis-

criminatory information. On the other hand, there
is no significant information, in terms of the max-

imization in Eq. (5), to be lost if A is discarded. It

is not difficult to see at this point that when W 2 A,

the ratio jWTSbWj
jWTSwWj drops to its minimum value, 0.

Therefore, many researchers (e.g. Liu et al.,

1992a,b, 1993; Chen et al., 2000) consider the

intersection space (A 0 \ B) to be spanned by the

optimal discriminant feature bases.

Based on the above principle, Yu and Yang

(2001) proposed the so-called direct LDA (YD-

LDA) approach in order to prevent the removal
of useful discriminant information contained in

the null space B. However, it has been recently

found that the YD-LDA performance may deteri-

orate rapidly when the SSS problem becomes se-

vere (Lu et al., 2003c). The deterioration should

be attributed to the influence of the two factors,

variance and bias. Firstly, it is well-known that

the Sw estimate based on Eq. (3) produces biased
estimates of the eigenvalues. As a result, the largest

ones are biased high and the smallest ones are

biased toward values that are too low. Secondly,

the estimate of the null space B can be highly

unstable, giving rise to high variance. Both the var-

iance and biasing degrees are determined by the

degree of the SSS problem. A relevant method

developed by Friedman (1989) in similar situations
is the regularized quadratic discriminant analysis,

where each sample class covariance matrix esti-

mate Si could be highly ill-posed. The solution

proposed by Friedman (1989) is to introduce a reg-

ularization term, which is a multiple of the identity

matrix, c Æ I, so as to have Si = Si + cI, where c is

the regularization parameter and I is the identity
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matrix. Such a regularization has the effect of

decreasing the larger eigenvalues and increasing

the smaller ones, thereby counteracting the bias-

ing. Another effect of the regularization is to stabi-

lize the smallest eigenvalues. Furthermore, it
should be noted that the within-class scatter ma-

trix Sw considered here is equivalent to the average

of the individual class covariance matrices Si, i.e.
Sw ¼ 1

C

PC
i¼1Si. This encourages us to conceive a

similar solution to handle the SSS situations that

the D-LDA type methods may encounter.

2.2. A regularized Fisher�s discriminant criterion

Motivated by the success of Friedman (1989), a

variant of D-LDA is developed here by introduc-

ing a regularized Fisher�s criterion, which can be

expressed as follows:

W ¼ argmax
W

jWTSbWj
jgðWTSbWÞ þ ðWTSwWÞj

ð5Þ

where 0 6 g 6 1 is a regularization parameter.
Although Eq. (5) looks quite different from the

conventional Fisher�s criterion (Eq. (1)), it can be

shown that they are exactly equivalent by the fol-

lowing theorem.

Theorem 1. Let RJ denote the J-dimensional real

space, and suppose that 8w 2 RJ , u(w) P 0, v(w) P
0, u(w) + v(w) > 0 and 0 6 g 6 1. Let q1ðwÞ ¼
uðwÞ
vðwÞ and q2ðwÞ ¼

uðwÞ
g�uðwÞþvðwÞ. Then, q1(w) has the

maximum (including positive infinity) at point w� 2
RJ iff q2(w) has the maximum at point w*.

Proof. Since u(w) P 0, v(w) P 0 and 0 6 g 6 1, we

have 0 6 q1(w) 6 +1 and 0 6 q2ðwÞ 6 1
g.

(1) If g = 0, then q1(w) = q2(w).
(2) If 0 < g 6 1 and v(w) = 0, then q1(w) = +1 and

q2(w) = 1/g.
(3) If 0 < g 6 1 and v(w) > 0, then
q2ðwÞ ¼
uðwÞ=vðwÞ

1þ guðwÞ=vðwÞ

¼ q1ðwÞ
1þ gq1ðwÞ

¼ 1

g
1� 1

1þ gq1ðwÞ

� �
It can be seen that in this case, q2(w) increases
iff q1(w) increases.

Combining (1)–(3), we have the theorem. h

The modified Fisher�s criterion is a function of

the parameter g, which controls the strength of

regularization. Within the variation range of g,
two extremes should be noted. In one extreme

where g = 0, the modified Fisher�s criterion is re-

duced to the conventional one with no regulariza-
tion. In contrast with this, rather strong

regularization is introduced in another extreme

where g = 1. In this case, Eq. (5) becomes W ¼
argmaxW

jWTSbWj
jWTðSbþSwÞWÞj, which as a variant of the

original Fisher�s criterion has been also widely

used for example in the D-LDA method (JD-

LDA) of Lu et al. (2003b) and others (see e.g.

Liu et al., 1992a,b, 1993; Chen et al., 2000; Lu

et al., 2003a). The advantages of introducing the

regularization strategy will be seen during the

development of the new LDA algorithm proposed
below.

2.3. A regularized LDA: R-LDA

In this work, we propose a regularized LDA

(hereafter R-LDA) method, which attempts to

optimize the regularized Fisher�s criterion of Eq.

(5). The R-LDA method follows the D-LDA pro-
cess of Yu and Yang (2001) and Lu et al. (2003b).

To this end, we first solve the complement space of

Sb, A
0. Let Um = [u1, . . . ,um] be the eigenvectors of

Sb corresponding to its first m largest nonzero

eigenvalues Kb, where m 6 C � 1. The comple-

ment space A 0 is spanned by Um, which is further-

more scaled by H ¼ UmK�1=2
b so as to have HTSb

H = I, where I is the (m · m) identity matrix. In
this way, it can be seen that the denominator of

Eq. (5) is naturally transformed to the regulariza-

tion expression of Friedman�s style, gI + HTSwH,

in the subspace spanned by H. We then seek a

set of feature bases, which minimizes the regular-

ized denominator. It is not difficult to see that

the sought feature bases correspond to the

M(6 m) eigenvectors of HTSwH, PM = p1, . . . ,pM],
with the smallest eigenvalues Kw. Combining these

results, we can obtain the sought solution, W =

HPM(gI + Kw)
�1/2, which is considered a set of
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optimal discriminant feature basis vectors. The de-

tailed process to implement the R-LDA method is

depicted in Fig. 1.

It can be seen from Fig. 1 that R-LDA reduces

to YD-LDA and JD-LDA when g = 0 and g = 1,
respectively. Varying the values of g within [0,1]

leads to a set of intermediate D-LDA variants be-

tween YD-LDA and JD-LDA. Since the subspace

spanned by W may contain the intersection space

(A 0 \ B), it is possible that there exist zero or very

small eigenvalues in Kw, which have been shown to

be high variance for estimation in the SSS environ-
ments (Friedman, 1989). As a result, any bias aris-

ing from the eigenvectors corresponding to these

eigenvalues is dramatically exaggerated due to

the normalization process ðPMK�1=2
w Þ. Against the

effect, the introduction of the regularization helps
to decrease the importance of these highly unstable

eigenvectors, thereby reducing the overall vari-

ance. Also, there may exist the zero eigenvalues

in Kw, which are used as divisors in YD-LDA

due to g = 0 so that the YD-LDA process can

not be carried out. However, it is not difficult to

see that the problem can be avoided in the
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R-LDA solution, W = HPM(gI + Kw)
�1/2, simply

by setting the regularization parameter g > 0.
Table 1

The number of images divided into the standard FERET

imagery categories, and the pose angle, a (degree), of each

category

Ct. fa fb ba bj bk ql qr rb rc

No. 567 338 5 5 5 68 65 32 62

a 0 0 0 0 0 �22.5 +22.5 10 �10
3. Discussion: a different viewpoint to the SSS
problem

The works described above are attempting to

solve the SSS problem from the viewpoint of

improving existing LDA algorithms. On the other

hand, the problem can be addressed by expanding

the representational capacity of the available

training database. For example, given a pair of
prototype images belonging to the same class, Li

and Lu (1999) proposed a linear model, called

the nearest feature line (NFL), to virtually gener-

alize an infinite number of variants of the two

prototypes under variations in illumination and

expression.

However, like LDA, the NFL method requires

at least two training samples per subject to be
available. To deal with the extreme case where

only one training image per subject is available,

Huang et al. (2003) recently proposed a method,

which constructs more samples by rotating and

translating the prototype image. Nevertheless, the

method introduces bias inevitably when face rec-

ognition is performed on a set of well-aligned face

images for example along with the centers of the
eyes as did in the experiments reported here.

To avoid the bias, an alternative approach may

be the use of the mirrored versions of the available

training samples. Based on the symmetrical prop-

erty of face object, intuitively it is reasonable to

consider the mirrored view of a face image to be

a real and bias-free sample of the face pattern. In

this way, the size of the training set can be dou-
bled. In addition, the mirrored version of any test

sample can also be utilized to enhance the per-

formance of a FR system. For example, we can

verify the classification result of a given query

using its mirror. A recognition process is accepted

only when the query and its mirror are given the

same class label, otherwise the query is rejected

to recognition. More sophisticated rules to com-
bine the results from multiple classifiers can be

found in (Kittler et al., 1998), but such a develop-

ment is beyond the scope of this letter.
4. Experimental results

4.1. The FR evaluation design

A set of experiments are included in the paper
to assess the performance of the proposed R-

LDA method. To show the high complexity of

the face patterns� distribution, a medium-size sub-

set of the FERET database (Phillips et al., 2000) is

used in the experiments. The subset consists of

1147 gray-scale images of 120 people, each one

having at least 6 samples so that we can generalize

a set of SSS learning tasks. These images as de-
picted in Table 1 cover a wide range of variations

in illumination, facial expression/details, and pose

angles. We follow the preprocessing sequence rec-

ommended by Phillips et al. (2000), which includes

four steps: (1) images are translated, rotated and

scaled (to size 150 · 130) so that the centers of

the eyes are placed on specific pixels; (2) a standard

mask as shown in Fig. 2(Middle) is applied to re-
move the nonface portions; (3) histogram equali-

zation is performed in the masked facial pixels;

(4) face data are further normalized to have zero

mean and unit standard deviation. Fig. 2(Right)

and Fig. 3 depict some examples after the prepro-

cessing sequence is applied. For computational

requirement, each image is finally represented as

a column vector of length J = 17,154 prior to the
recognition stage.

The SSS problem is defined in terms of the

number of available training samples per subject,

L. Thus the value of L has a significant influence

on the required strength of regularization. To

study the sensitivity of the performance, in terms

of correct recognition rate (CRR), to L, five tests

were performed with various L values ranging
from L = 1 to L = 5. For a particular L, the FER-

ET subset is randomly partitioned into three data-



Fig. 2. Left: Original samples in the FERET database. Middle: The standard mask. Right: The samples after the preprocessing

sequence.

Fig. 3. Some samples of eight people come from the normalized FERET evaluation database.
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sets: a training set, a validation set and a test set.

The training set is composed of (L · 120) samples:
L images per person were randomly chosen. The

validation set is composed of (2 · 120) samples: 2

images per person were randomly chosen. The

remaining (1147 � L · 120 � 2 · 120) images are

used to form the test set. There is no overlapping

between the three. To enhance the accuracy of

the assessment, five runs of such a partition were

executed, and all of the experimental results re-
ported below have been averaged over the five

runs.

4.2. CRR performance with varying

regularization parameter

The first experiment is designed to test the CRR

performance of R-LDA with varying regulariza-
tion parameter in various SSS scenarios. To this

end, the R-LDA method is applied to a testing grid

of (g,M) values, defined by the outer product of
g = [10�4:0.01:1] and M = [20:1:119], where the

expression [b1:b2:b3] denotes a spaced vector con-
sisting of round((b3 � b1)/b2) elements from b1 to

b3 with step b2, and g is initiated from 10�4 instead

of zero to avoid numerical singularities in

(HTSwH). For every pair of (g,M) values in the

grid, R-LDA is first trained with the training set.

Since there is no requirement for parameter selec-

tion in this experiment, the learned R-LDA (g,M)

machine is then directly applied to an evaluation
dataset consisting of the validation and test sets.

The CRRs obtained by R-LDA (g,M) on the com-

bined evaluation set are depicted in Fig. 4.

The parameter g controls the strength of regu-

larization, which balances the tradeoff between

variance and bias in the estimation for the zero

or small eigenvalues of the within-class scatter ma-

trix. Varying the g values within [0,1] leads to a set
of intermediate LDA variants between YD-LDA

and JD-LDA. In theory, YD-LDA with no extra

bias introduced through g should be the best



Fig. 4. CRRs obtained by R-LDA as a function of (M,g). Top: L = 2,3; Bottom: L = 4,5, where L is the number of training samples

per subject.
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performer among these variants if sufficient train-

ing samples are available. It can be observed at this
point from Fig. 4 that the CRR peaks gradually

moved from the right side (g = 1) toward the left

side (g = 0) that is the case of YD-LDA as L in-

creases. Small values of g have been good enough

for the regularization requirement in many cases

(LP 4) as shown in Fig. 4. However, it also can

be seen from Fig. 4 that YD-LDA performed

poorly when L = 2,3. This should be attributed
to the high variance in the estimate of Sw due to

insufficient training samples. In these cases, even

HTSwH is singular or close to singular, and the

resulting effect is to dramatically exaggerate the

importance associated with the eigenvectors corre-
sponding to the smallest eigenvalues. Against the

effect, the introduction of regularization helps to
decrease the larger eigenvalues and increase the

smaller ones, thereby counteracting for some ex-

tent the bias. This is also the reason why JD-

LDA outperforms YD-LDA when L is small.

4.3. Quantitative comparison with other FR methods

To further study the performance of the R-
LDA method, we conducted a more strict ex-

periment for a quantitative comparison among

R-LDA, YD-LDA and JD-LDA in this section.

The Eigenfaces method (Turk and Pentland,

1991) was also implemented to provide a perform-
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ance baseline. For all the four methods compared

here, the CRR is a function of the number of ex-

tracted feature vectors, M, and the number of

available training examples per subject, L. In addi-

tion, R-LDA�s performance depends critically on
the regularization parameter, g. It has been shown

by last experiment that R-LDA is capable of out-

performing both YD-LDA and JD-LDA. How-

ever, it should be noted that the performance

improvement is subject to the selection of the

parameters (g,M). Thus, to make a fair compari-

son, the parameter selection process should be in-

cluded in the experiment. To this end, we take
advantages of the three splits: the training, valida-

tion and test sets. Each method compared here is

first trained on the training set to generalize a set

of models with various parameter configurations,

for example, all the possible M values for Eigen-

faces, YD-LDA and JD-LDA, and the (g,M) grid

described in Section 4.2 for R-LDA. These models

are evaluated on the validation set, and then the
best found model is applied to the test set. The

CRRs obtained by the four methods on the test

set are reported in Table 2, where M* and g* de-

note the parameter values corresponding to the

best configuration determined by using the valida-

tion set.

From Table 2, it can be clearly seen that R-

LDA is the top performer amongst all the methods
compared here. Also, the characteristics of the

three LDA-based methods are demonstrated again
Table 2

Comparison of the CRRs (%) obtained on the test set and their

corresponding parameter values without using mirrored

samples

L 1 2 3 4 5

Eigenfaces 46.48 57.96 65.19 65.81 65.26

(M*) 117 145 217 287 405

YD-LDA – 17.42 75.69 83.61 88.73

(M*) – 114 116 108 106

JD-LDA – 69.60 76.71 81.17 85.26

(M*) – 116 116 117 112

R-LDA – 69.66 78.10 83.47 88.98

(M*) – 116 119 112 114

(g*) – 0.983 0.24 0.048 10�4

L is the number of training samples per subject.
in this experiment. YD-LDA showed excellent per-

formance on one side (L = 5) of the SSS settings

but failed on the other side (L = 2), while JD-

LDA performed on the contrary. In contrast with

this, by introducing the adjustable regularization
parameter, R-LDA systematically combines the

strengths of YD-LDA and JD-LDA while at the

same time overcomes their shortcomings and limi-

tations. On the other hand, it should be noted that

compared to other methods, the determination of

the optimal parameter values (M*,g*) for R-

LDA is computationally demanding as it is based

on an exhaust search in the present (g,M) grid
by using the validation set. Nevertheless, some

heuristics may be applied to reduce the grid size.

For example, it is not difficult to see that the opti-

mal regularization parameter g* decreases monot-

onously as the number of training samples per

subject, L, increases. It seems that the relationship

is not linear. This is the reason why the values of

the best found g* in Table 2 appear to be [0.983,
0.24,0.048,10�4] corresponding to L = [2,3,4,5].

Also it should be noted that small values of g have

been good enough for the regularization require-

ment in the cases of LP 4. In addition to L, our

recent experiments indicated that the g* value in-

creases as the number of subjects, C, increases. It

is similar at this point to the learning capacity of

the LDA machines, which is generally considered
to be directly proportional to the number of train-

ing samples per subject L, while reciprocally pro-

portional to the number of the training subjects

C. Therefore, further exploring the mathematical

relationship among these parameters L, C, g, and
the training/generalization errors may be an inter-

esting future research direction to reveal the nature

of discriminant learning under small sample size
scenarios.

4.4. Performance improvement with the introduction

of mirrored images

The LDA based algorithms require at least two

training samples for each class. However, with the

introduction of the mirrored training samples, it
becomes possible to overcome the limitation. In

this experiment, R-LDA is trained with a com-

bined set consisting of the training samples and
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their mirrors. Same to the experiment described in

Section 4.3, the model parameters are determined

by using the validation set. The R-LDA classifier

with the best found parameters is then applied to

the test set in three ways. The resulting CRRs
are depicted in Table 3, where R-LDAm1 and R-

LDAm2 correspond to the results obtained by

using the original test set and its mirrored version,

respectively, while R-LDAm3 denotes the results

from a combination of the two sets. As introduced

in Section 3, a recognition process is accepted by

R-LDAm3 only when the test sample and its mirror

are identified as belonging to the same subject,
otherwise the test sample is rejected to recognition.

Not surprisingly, as it can be seen from Table 3,

R-LDAm1 and R-LDAm2 have similar perform-

ance. This means that to recognize a test sample,

we can use either the sample or its mirror. Com-

pared to R-LDA in Table 2, the performance

improvement achieved by R-LDAm1 and R-

LDAm2 is up to approximately 2% in average over
the range L = 2–5. On the other hand, the reject

rates obtained in R-LDAm3 indicate that the rec-

ognition is incorrect in most cases when the sample

and its mirror are given different class labels.

Therefore, compared to R-LDAm1 and R-LDAm2,

an additional CRR improvement of approxi-

mately 2% in average over L = 1–5 is obtained

by R-LDAm3. These results shown in Table 3 dem-
onstrate that the mirrors of face images provide

not only additional training samples, but also
Table 3

Comparison of the CRRs (%) with the corresponding para-

meter values obtained by R-LDA on the test set using different

mirror schemes

L 1 2 3 4 5

R-LDAm1 56.01 70.25 80.18 86.84 90.59

(M*) 119 117 115 114 108

(g*) 0.3 0.40 0.068 10�4 10�4

R-LDAm2 56.01 70.64 81.50 86.89 90.28

(M*) 119 119 119 114 112

(g*) 0.38 0.53 0.016 10�4 10�4

R-LDAm3 59.57 73.11 82.26 88.19 91.07

Reject rate 7.85 6.21 3.14 2.06 0.87

(M*) 119 117 115 112 107

(g*) 1 1 0.064 10�4 10�4
complemental information, which is useful to en-

hance the generalization performance of a LDA-

based FR system.
5. Conclusions and future works

A new LDA method for face recognition has

been introduced in this paper. The proposed

method is based on a novel regularized Fisher�s
discriminant criterion, which is particularly robust

against the SSS problem compared to the tradi-

tional one used in LDA. It has been also shown
that a series of traditional LDA variants including

the recently introduced YD-LDA and JD-LDA

can be derived from the proposed R-LDA frame-

work by adjusting the regularization parameter.

Also, a scheme to double the size of face databases

is introduced, so that R-LDA can be carried out in

the extreme case where only one training sample

available for each subject. The effectiveness of
the proposed method has been demonstrated

through experimentation using the FERET

database.

Our future work will concentrate on a continu-

ing improvement of the R-LDA algorithm. Firstly,

as discussed before, an immediate direction is to

seek a fast and cost-effective parameter optimiza-

tion method instead of the exhaust search. How-
ever, such a research is rather difficult, due to

some unknown facts, for example,

(i) What is the actual distribution of the patterns?

(ii) How have the training data sampled the

underlying distribution of the patterns?

Classical parameter estimation schemes such as
leave-one-out may not work well, since the estima-

tion will experience high variance as it is under

small sample considerations. Alternatively, a fur-

ther study on the mathematical relations between

the number of training samples per subject L, the

number of subjects C, the regularization parameter

g, and the classification error seems more promis-

ing. Also, a kernel version of R-LDA is straight-
forward to develop a more general R-LDA

framework, which is able to deal with both linear

and nonlinear problems.
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